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Abstract
The classification methods presented in the “Data Mining: Classification and Prediction” chapter construct a model learning from a
training data set and then uses it to classify new unseen instances. These methods are referred as eager learners. In this chapter will be
introduced other classification methods, such as k-nearest-neighbor, case-based reasoning, genetic algorithms. Moreover, prediction
methods will be explored, in particular referring to linear and nonlinear regression and finally two cases of generalized linear models:
logistic and Poisson regression.
1A
2S
3T
Key Points

• Understanding the theory and the working of the most common regressors algorithms.

• Presenting the main characteristics and drawbacks of each function estimator algorithm.

• Allowing the reader to choose the algorithm that best suits their needs.
Introduction

The chapter introduces different classification and prediction methods, whose learning models learn from the training data set and
then use it to classify new unseen instances, highlighting for each model features, and advantages. The approaches discussed in the
chapter are the following: k-nearest neighbor, genetic algorithm, and regression models.

The k-nearest neighbor algorithm, also known as KNN or k-NN, is a non-parametric, supervised learning classifier. It is based
on the principle of finding a predefined number of training samples closest in distance to the new point and predict the label
from these.

The genetic algorithm is another learning method used in classification and regression tasks, inspired by the process of natural
selection of biology evolution. Likewise, the genetic algorithm belongs to the larger class of evolutionary algorithms (EA).

The chapter will also introduce to linear and non-linear regression methods, and some generalized linear models such as
logistic and Poisson regression. The chapter aims to guide the reader in introducing different learning models used for classifi-
cation and regression tasks, focusing also on practical examples.
k-Nearest Neighbor (k-NN)

A different approach to classification or regression is possible without any model construction first. This is known as the lazy
approach because of the working procedure: the learner does not construct any general model before seeing the test instance. The
learner stores all training instances and, only when a given test instance arrives, it generalizes the information coming from the
examples to classify or predict the new class label or numeric value. k–nearest neighbor (k-NN) and case-based reasoning are examples
of lazy learner.

k-NNmethod is based on the nearest neighbor decision rule (Fix and Hodges, 1951, 1952; Cover and Hart, 1967), according to
which the class of an object never seen before by the classifier depends on a set of previously classified records. The nearest
neighbor rule is widely applied in problems of pattern recognition, text categorization, ranking models, object recognition and
event recognition (Bhatia, 2010).
How it Works

k-NN compares an unknown instance with those belonging to the training set and assigns it the class according to the similarity
with training instances. Consider a training set of instances as pairs (Xi; yi), where Xi ¼ ðxi1; xi2;…; xinÞ is a tuple1 described by n
attributes and yi is the corresponding class label (qualitative or quantitative)2; i¼ 1;…; p is the total number of tuples in the data
set. A tuple is represented by a point in a n-dimensional space of attributes (or feature space3). A new instance to be classified will
tuple is a sequence of values concerning respectively fixed attributes. It is a vector in the feature space.
ee the paragraphs 1 and 2 of the chapter “Data Mining: Classification and Prediction”.
he feature space concept was introduced in the chapter “Data Mining: Classification and Prediction”, section “Components of a Generalized Linear Model”.



Fig. 1 k -NN classification in a 2-dimensional feature space; k ¼ 3. The black cross represents a new instance to classify. The arrows mark the
distance among the new tuple and 3 nearest neighbors.
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take one among the class label of k training tuples that are nearest neighbors in the space of representation (see Fig. 1). By using a
distance metric, the classifier establishes the neighbors in the feature space.

It is possible to use several distances functions to compute the similarities among tuples. This choice depends on the kind of the
data set, if it includes numeric, symbolic or categorical attributes.

Distance functions
For numeric attributes, common distances are Manhattan and Euclidean distances, which represent two particular cases of the more
general Minkowski distance.

Manhattan distance dM between the tuples X1 and X2 is known also as Minkowski distance of order 1 and is given by the Eq. (1)

dM X1;X2ð Þ ¼
Xn
i ¼ 1

x1i � x2i: ð1Þ

The Euclidean distance dE between two tuples X1 and X2 is computed as shown in Eq. (2):

dE X1;X2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i ¼ 1

ðx1i � x2iÞ2
s

: ð2Þ

It is known also as Minkowski distance of order 2.
Hamming distance is used to compare two tuples expressed by strings of n characters (symbolic attributes). In this case, the

distance reports the total number of correspondent positions where the symbols are different. For example, considering the strings
“ATCG” and “ATGG”, its Hamming distance is dM ¼ 1, differing only in the third position.

The computation of their distance for categorical attributes is not straightforward. The distance or, conversely, the similarity can
be evaluated considering schemes of numeric “translation”. Starting from the trivial case, the similarity between two categorical
attributes is 1 if they are identical or 0 if they are different. Considering instances described by more than one categorical attribute,
the similarity between them will increase with the number of matching attributes. This is the so-called overlapmeasure (Stanfill and
Waltz, 1986). Additional sophisticated procedures allow evaluating differential grading of similarities between instances described
by more than one categorical attribute (Boriah et al., 2008). Other distances can be used, for example, Jaccard distance (Levan-
dowsky and David, 1971), Dice’s coefficient (Dice, 1945), Tanimoto coefficient (Tanimoto, 1958) and cosine distance (Qian et al.,
2004).

The k value
Once calculated the distances from the other training examples, k-NN classifier establishes the class of the new instance by
choosing the most frequent label among k nearest neighbors (see Fig. 2). In prediction task, for a new instance in input, k-NN
predictor returns a real value, which is the average value of k numeric labels of nearest neighbors.

The choice of the k value influences the performance of the k-NN classifier. Indeed, a too small value of k makes the classifier
more sensitive to noising data. Conversely, if k value is too large, the classifier will consider also examples from other classes,
possibly deviating the result of classification. In the limit case, all the training instances will be considered and the most frequent
class label will be assigned to the new instance.



Fig. 3 k -NN regression: blue dots represent the training set plotted in a graph of yj values against the feature values xj . The red curve f is the
true function underlying the training set. The regression method approximates the true (unknown) function. Therefore, given the new instance
x ¼ 3, it provides as output a numeric value ŷ (one black cross for each value of k ) that should be as near as possible to the true value f ðxÞ. ŷ
value changes for different values of k .

Fig. 2 The choice of the k value conditions the output of the classifier, including more or less example of different class.
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The good value for the number k of neighbors is experimentally determined by estimating the error rate of the classifier/
predictor with a start number kð0Þ. If the performance needs to be improved, the number kð0Þ is increased, according to the number
of new neighbors. The error rate can be estimated through probabilistic methods (Duda, Hart and Stork, 1991).
k-NN Regression

For dataset of instances ðXj; yjÞ described by numeric attributes as component of the vector Xj and corresponding numeric value yj,
k-NN works as a regression method. Therefore, it allows to predict the numeric value ŷ corresponding to an unseen instance vector
X, on the basis of the information of k nearest neighbors in the training set. Consider the simple case of dataset described by a
single feature. Hence, the j� th instance of the dataset in represented by the pair ðxj; yjÞ, where xj is a scalar. The entire dataset can
be plotted in a 2-dimensional graph, where the x-axis represent the 1-dimensional feature space (see Fig. 3).

Given a new instance ðx¼ 4; ŷ ¼ ?Þ, k-NN provides as output a number ŷ arising from the Eq. (3) (Hastie et al., 2008):

ŷ ¼ 1
k

X
xiANkðxÞ

yi ð3Þ
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where NkðxÞ is the set x1;…; xkf g of the training neighbors of the new value x. Clearly, NkðxÞ depends on the value chosen for k.
Referring to the example depicted in Fig. 3, for k¼ 1, NkðxÞ will contain only one instance, which is the first in the list of the nearest
neighbors. Consequently ŷ ¼ y1 ¼ 6. For k¼ 2, ŷ ¼ 1

2 6þ 3ð Þ ¼ 4:5 and so on. As shown in the Fig. 3, the suitable choice of k
dictates the performance (with k¼ 3 the predicted value moves away from the true value).

Unlike the regression methods described below, k-NN regression is said to be a “non-parametric” method, since it does not
assume any explicit form for the prediction function f , meaning that it does not construct a model for f .
Conclusive Remarks

As resumed in the work of Bhatia (2010), k-NN technique includes advantages like a very fast training and a simple learning. It
shows robustness to noisy training data coming from pruning noisy tuples (Aha, 1992). On the other hand, the main dis-
advantages concern mainly the computational complexity (Preparata and Shamos, 1985) and memory limitation of this tech-
nique. The slowness of classification can be improved by using a partial distance calculation, where only a subset of attribute is
involved in the compute of the distance (Gersho and Gray, 1992). The editing of the stored tuples removes useless training
examples, helping to speed up the process of classification (Hart, 1968). Furthermore, the performance of k-NN algorithm can be
biased by the choice of the k value (Guo et al., 2003). Irrelevant attribute can easily mislead the decision of k–NN. For this reason,
it is made more robust by a specific pruning on data tuples.
Genetic Algorithms Classifier

Genetic algorithms (GAs) (Holland, 1975) are stochastic algorithms used to solve optimization and search problems, (see
Michalewicz, 1992). They are a type of evolutionary computation technique (Rechenberg, 1973) inspired by adaptation principles
of natural selection. They are domain independent methods, therefore, GAs are applied in several fields of computer science, for
example as optimization process in a number of problems such as routing and scheduling (the traveling salesman problem),
game-playing, cognitive modeling, transportation problem and control problems (Janikow, 1993; Goldberg, 1989; DeJong, 1985)
and also in the field of Neural Networks (Rojas, 1996).
Vocabulary

GAs works on a set of possible solutions to a given problem, by applying stochastic methods that simulate natural ways of
evolution. The biological world influences both computing methods and the language of GAs. In biological language, the genetic
information of each individual is contained in chromosomes (see Fig. 4, left side). A chromosome consists of units or genes that
control hereditariness of characters. Each gene occupies a given position or locus on the chromosome. The same gene can be in several states or
alleles, entailing the different ways in which an individual’s character (for example eyes color) manifests itself.

In GAs, the chromosomes represent candidate solutions to a given problem. A chromosome is made up of a sequence of genes
(see Fig. 4, right side). The genes encode a particular characteristic or feature of the candidate solution. For example, considering a
Fig. 4 left) Biological representation of a chromosome: a string of genes (bands with letters), which are a portion of DNA. Each portion occupies
a given locus on the chromosome. Uppercase or lowercase letter in a locus represents the allele of the same gene; right) Computational
representation of a chromosome: a sequence of genes, which are codified by one or more bits. The possibilities “0” or “1” at the same locus give
rise to alleles of the same gene.
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problem of optimization, the optimization function is a chromosome. Each parameter of the optimization function is a gene,
encoded by either a single bit or a short block of bits. A gene represented by single bit can be in two states, either “0” or “1”. These
two possibilities are the alleles of that gene. The different alleles of the same gene represent different values of the same feature in
GA vocabulary. For a gene that encodes more than two possible alleles, a block of bits is used.
How it Works

The basic idea of GA is to find the best individual in a population of chromosomes, namely candidates’ solutions of a given task
(optimization function or classification rule), following a process of natural selection. During such process, the fitter individuals of
the population are chosen to create the offspring. The offspring will result in a new successive population replacing the previous one. Each
replacement gives rise to a new generation, potentially including the fittest one among several individuals and hence the best solution to the
problem.

GAs employ the way of natural selection to allow proliferation and modification of good solutions and inhibit bad solutions,
in perfect analogy with the biological environment (Chang and Lippmann, 1991).

The implementation of GA is based on its genetic operators. The simplest form of GA employs creation, selection, crossover and
mutation. Genetic operators will be discussed in the following section. Furthermore, an evaluate function (Michalewicz, 1992) or fitness
function (Mitchell, 1996) allows evaluating each individual assigning it a score, namely the fitness. The fitness of an individual depends
on its goodness as a solution for the considered problem. The candidate who approaches the best solution will have the highest score. The
following section introduces an example of the fitness function and a simple scheme of GA with genetic operators.

Fitness function
In the optimization problem, the aim is to find the set of parameters that maximize or minimize a given function. Consider for
example the function of Eq. (4) (Riolo, 1992):

f xð Þ ¼ xþ sin 32xð Þ;with0rxrp ð4Þ

The values of x maximizing the function are the candidate solutions. The possible values of x are encoded in strings of bit: they
represent the chromosomes on which will operate the GA. To evaluate a candidate bit string, it is enough to convert it in the
correspondent real number x

0
and calculate the value of the function in x

0
. This value is the fitness of the string.

Operators of GA: Creation, selection, crossover, mutation
The evolution process in GAs starts with the creation of the initial population by the specific homonym genetic operator. The individuals in a
population are chromosomes encoded by the bit string that is initialized to “1” or “0” values.

Once the first population is created, the fitness of individuals is evaluated. Then, the selection operator identifies the fittest
candidates to breed. The probability of selection is indeed an increasing function of fitness (Mitchell, 1996). The same chromosome can be
selected more times to reproduce if it is fitter than others.

A crossover operator acts on a couple of selected chromosomes, the parents, exchanging portions of these, In Fig. 5, it is shown the simplest
crossover operator, which acts in a single locus of the chromosome (single point). First, the crossover operator randomly chooses a
locus on the parents’ chromosomes. Then it exchanges the substrings, creating two offspring. The aim of this process is to mix the
parents to produce new chromosomes.

Crossover can provide new chromosomes until that the individuals are not too similar to each other. For this scope, the new
individual can be altered by the operator mutation that randomly selects bits in a string and then inverts them, as shown in Fig. 5.
Fig. 5 The parents “blue” and “pink” strings breed through the crossover operator. It creates two new chromosomes children (offspring) from
the single crossover point at the fourth-bit position. The mutation operator changes the offspring.



Table 1 Pseudocode summarizing the steps of a generic GA
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Crossover and mutation are random operators, meaning that they will act with a fixed probability, respectively pc (crossover
probability or crossover rate) and pm (mutation probability or mutation rate).

A simple scheme of operation of GA is illustrated below.
Scheme of a simple GA
The process begins with the creation operator, which produces an initial population of chromosomes. The intermediate step
provides a recursive modification of population, by applying other genetic operators such as selection, crossover and mutation. At
the end of the evolution process, only the fittest offspring will survive, representing the selection of the best solutions.

The following scheme shown in Table 1 sums up the steps of a GA observing what has been reported by Mitchell (1996):
The iterations of this procedure are called generations. Their number varies typically from 50 to 500 or more (Mitchell, 1996). The set

of generations is called run. After a run, the fitness function will indicate one or more individuals highly fit in the population. The
performance of the GA often depends on the characteristic chosen to treat a given problem, for example, the size n of population and pc and
pm value. Considering the importance of randomness in GA, a better information can result from the average over many different
runs of the given problem.
Optimization Problems and Classification Tasks

In optimization problems, the individuals in a population are the possible solutions (Sivanandam and Deepa, 2007). Fitness
function assesses each solution by a fitness value (Chang and Lipmann, 1991).

Genetic search algorithms show a suitable approach to feature creation, feature and examples selection. These skills make GAs
suitable for pattern classification tasks (Chang and Lippmann, 1991).

In classification problems, the individuals in the initial population are rules randomly generated. Classification accuracy
evaluates the fitness of a rule, considering a set of training instances (Han et al., 2012). A GA can be used to optimize the parameter
set of a prediction function by using the error rate of the prediction function as fitness value (Johnson et al., 2014).
Conclusive Remarks

The main advantages of GAs are robustness and independence of their search mechanism from the application field. In particular,
domain independence allows that a new employee needs only a proper encoding of the given problem (Janikow, 1993). In speech
recognition domain, GAs have a processing time for features selection similar than traditional methods but use a lower number of
input feature (Chang and Lippmann, 1991). GAs can work on tasks of artificial machine-vision producing outputs of classification
with error rate nearly 0%, obtaining results better than KNN and Neural Network Classifiers (Chang and Lippmann, 1991). The
ease of application is also an advantage of GAs, in addition to the effectiveness in finding a proper solution to in-depth search
problem (Chang and Lippmann (1991)).

On the other hand, the run time of GAs can be long (Chang and Lippmann, 1991; Janikow, 1993), this being one of major
drawbacks of this technique. Furthermore, domain independence entails as a disadvantage that the performance of GAs is heavily
dependent on the quality of the problem coding.
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Linear and Nonlinear Regression Prediction

The aim of this paragraph and the successive one is to introduce numerical prediction methods,4 which answers to given task by
supplying continuous target values. Problems that require numerical predictors can be addressed by a function estimator or regressor
(Flach, 2012). It provides real numeric values starting from a set of numeric input data such as observations or measurements. This
kind of predictor builds a model function that fits training data of a given task. Such a function will be able to predict unknown
numerical data for a new instance pertaining to the same domain of the learned problem (Han et al., 2012).

Regression predictors forecast data trends by applying the statistical tool of regression analysis in several domains of interest
from marketing management (Stock and Watson, 2003) to bioinformatics analysis (Wu et al., 2009).

Regression is an approach mostly used for numerical prediction. According to the kind of the problem to treat, two different
models can be used, linear and nonlinear regression. Both models describe a relationship between a dependent variable y and one
or more independent variables X. The main difference between these two types of regression relies on the relationship between the
independent variable and the parameters of regression, i.e. if it is a linear combination of those or not.

The curve obtained from regression analysis is straight-line for linear regression and can be of other types for nonlinear
regression (polynomial curves with a degree greater than 1 are considered a special case of multiple regression and can be treated
with linear regression; they are an example of functions called linear regression models) (Flach, 2012; Bishop, 2006).
How Regression Prediction Methods Work

Regression prediction methods fall into the category of geometric models. Here, the techniques represent a given task and therefore
data set in an n-dimensional geometric space, called feature space,5 being each instance described by n features. Regression
methods construct classification models by employing geometric concepts such as lines or planes or considering measures of
distance as similarities among properties.

To train a regression prediction method, it is necessary to model training data with a function f . Training data are a set of
examples, where each instance is described by a pair ðX; yÞ, X ¼ ðx1;…; xnÞ is the vector of the features and y is the predefined
numeric label representing a “true” function value. Starting from the training data set, a function f that maps an input vector of
attributes X from the feature space to the space of real number will be built, providing f ðXÞ as output. The input X is the vector of
the independent or predictor variables, whereas f ðXÞ is the dependent or response variable (Flach, 2012).

During the training process, the predictor learns the best function that fits the data, identifying the suitable parameters
w¼ ðw1;…;wnÞfor f . The learning relies on the difference or residual (ϵi) between the actual and the predicted values, for the i� th
instance respectively yi and fwðXiÞ, as shown in the Eq. (5)

ϵi ¼ yi � fwðXiÞ ð5Þ

In particular, to avoid that positive and negative errors mutually cancel out, it is usual to consider squares of residuals ðϵiÞ2 to
evaluate regression models. Therefore, the error function6 is expressed from the residual sum-of-squares RSSðwÞ, given by

Pp
i ¼ 1 ϵi

2, as
shown in the following Eq. (6):

RSS
�
wÞ ¼

Xp
i ¼ 1

ðyi � fwðXiÞÞ2 ð6Þ

where the sum run over the total number p of instances in training set.
The method of the least squares is used to find the best function, minimizing the error function RSS with respect to the parameters

w. The function fw looks for this procedure will be bound to satisfy the relation of minimum squares of residuals, and it will be
hence as close to the data as possible.
Linear Regression Predictor

Linear is the simplest type of regression. The model is a linear function of a predictor variable X. When a scalar predictor variable is
used rather than a vector, the independent variable X is a single number x. In this basic case, known as simple linear regression, it is
hypothesized that the model function describing each instance i of the data is straight-line, expressed by the Eq. (7).

fwðxiÞ ¼ w0 þ w1xi ð7Þ

where the weights w0 and w1 are respectively the intercept and the slope of the line, also known as regression coefficients or
regression parameters. To get the coefficients that are suitable for the given problem, RSSðwÞ will be minimized. Indeed, according to
the least squares method, the weights values will be obtained by solving the system of two normal Eqs. (8) and (9) which put equal
to zero the partial derivatives of RSS with respect to the parameters weights w0 and w1:
4See also the first two paragraphs of the “Data Mining: Classification and Prediction” chapter.
5Introduced in section “Linear and nonlinear classifier” of the “Data Mining: Classification and Prediction” chapter.
6The error function was introduced in the chapter “Data Mining: Classification and Prediction”.
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∂RSS
∂w0

¼ � 2
Xp

i
ðyi � w0 � w1xiÞ ¼ 0 ð8Þ

∂RSS
∂w1

¼ � 2
Xp

i
ðyi � w0 � w1xiÞxi ¼ 0 ð9Þ

The system leads to the solutions shown in Eqs. (10) and (11):

w1 ¼
Pp
i ¼ 1

ðxi � ̅xÞðyi � ̅yÞ
Pp
i ¼ 1

ðxi � ̅xÞ2
ð10Þ

and

w0 ¼ ̅y � w1 ̅x ð11Þ
where ðxi; yiÞ is one of the p pairs of data set, and ̅x and ̅y are the mean value of the set fxig and fyig where i¼ 1;2;…p.
In training phase, the predictor finds the weights w1 and w0 and therefore the builds the function f that models the data set.

Linear regression predictor will employ this function to make a numerical prediction about a new numeric instance x0 as input in
the Eq. (11).

Multiple linear regression
When the independent variable is a vector X ¼ ðx1;…; xnÞ, the Eq. (11) changes in Eq. (12):

fw Xð Þ ¼ w0 þ
Xn
j ¼ 1

wjxj ð12Þ

where the vector of weights w expresses the regression coefficients (or parameters). Now, the curve that fits the data change
from a straight-line to a plane (for n¼ 2) or a more general hyperplane (for n42). Each component of the vector X is a predictor
variable, and hence the regression is defined multiple instead of simple, see previously, where a single scalar predictor variable x is
used. Even in this case, the residual sum-of-squares RSSðwÞ, expressed by the Eq. (6) have to be minimized with respect to the
parameters w to obtain their best values, according to the minimal squares method.

Polynomial regression
Polynomial regression adopts the function fwðxÞ, defined in the Eq. (13):

fw xð Þ ¼ w0 þ w1xþ w2x2 þ…þ wmxm ¼
Xm
j ¼ 1

wjxj ð13Þ

where m is the order of the polynomial and x is the only predictor variable. Although the polynomial curve is a nonlinear
function of the independent variable x, it is a linear combination of the polynomial coefficients w. Such kind of functions can be
treated as linear regression. Indeed, linear regression is used for models that are linear in the parameters (are in the predictor
variables linear or not).

The least squares method can be applied to estimate the parameters, resorting to the technique of multiple regression. Indeed, it
is possible to consider a set of new variables as expressed in Eq. (14):

xj ¼ xj ð14Þ
where j¼ 1;…;m. Replacing these new variables in Eq. (13), each term of order higher than one is substituted with a new

independent variable and the polynomial function takes the form of Eq. (14), resulting in a linear form of the multiple predictor
variables.

Lasso regression
The “Least Absolute shrinkage and Selection Operator” (Lasso) regression technique is an extension of the basic linear regression
(Tibshirani, 1996). Lasso integrates either feature selection and regularization. Unlike linear regression, Lasso aims at minimizing
the following objective function:

Xp
i ¼ 1

yi � w0 �
Xn
j ¼ 1

wjxij

 !2

þ l
Xn
j ¼ 1

wj ¼ RSSþ l
Xn
j ¼ 1

wj ð15Þ

where p is the number of training instances and n is dimension of the feature vector. The first term is the residual-sum-of
squares (see Eq. (6)), while the second one is the L1 norm penalty term, since the L1 norm of a coefficient vector w is defined as:

w1 ¼
Xn
j ¼ 1

wj ð16Þ
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The penalty term allows some of the regression coefficients to go exactly to zero, pushing this way the sparsity of the model.
Finally, l is a tuning parameter that represents the strength of the penalty: greater l values means more coefficients becoming zero.
The penalty term, then, let the lasso regression to perform feature selection, because it drives some coefficients to become exactly
zero when the tuning parameter is large enough. The features associated to zero coefficients, in fact, are considered not so relevant
to the target variable, with the penalty terms able to identify and rank the most important features. This mecanism is managed by
the tuning parameter l. The tuning parameter, in fact, controls the impact of the penalty term and determines the tendency of the
regression coefficients b. That means l is related to the regularization of the model, with larger l values leading to strong
regularization, and small l values pushing towards weak regularization.

It is noteworthy that the choice of the tuning parameter l is a critical choice when adopting a lasso regression model. Its choice
usually depends on the current available dataset and on the desired sparseness degree of the model. Some particular training
procedures, such as cross validation, can allow to try different l values and search for the one providing the best model scores.

Ridge regression
Ridge regression (Hoerl and Kennard, 2000) is another kind of linear regression method that considers some learning issues such
as multicollinearity and overfitting. Similar to lasso regression, ridge regression aims at minimizing the following objective
function:

Xp
i ¼ 1

yi � w0 �
Xn
j ¼ 1

wjxij

 !2

þ l
Xn
j ¼ 1

w2
j ¼ RSSþ l

Xn
j ¼ 1

w2
j ð17Þ

where p is the number of training instances and n is dimension of the feature vector. As seen in Eq. (17), the first term is the
RSS, while the second term is the L2 norm penalty term, since L2 norm is defined as:

w2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

2 þ…þ w2
n

q
ð18Þ

l is a tuning parameter that represents the strength of the penalty. Differently from lasso regression, in this case large value of l
tends to reduce the values of the coefficients towards zero, but not exactly equal to zero. Once again, therefore, the tuning
parameter l is responsible for regularization of the model. This behavior is able to prevent the so-called multicollinearity, that
occurs when the independent variables of a regression model are actually correlated. On the other hand, since ridge regression
does not put to zero the coefficients, but just mimise them, it is not well suited for feature selection. Finally, ridge regression
provides a balanced model, because the L2 penalty term tends to estimate small weights for variable associated to great weights,
rather than to assign zero values to variables related to small weights.

Elastic net
Elastic Net is a regression technique that combines the penalty terms introduced by both lasso and ridge regressions (Zou and
Hastie (2005)). Elastic Net, in fact, aims at minimizing the following objective function:

Xp
i ¼ 1

yi � w0 �
Xn
j ¼ 1

wjxij

 !2

þ l1
Xn
j ¼ 1

wj þ l2
Xn
j ¼ 1

w2
j ¼

¼ RSSþ l1w1 þ l2w2
2: ð19Þ

In this case, we have two tuning, or regularization, parameters l1 and l2 that control the L1 penalty and the L2 penalty,
respectively. From Eq.(19) we can see how elastic net a general case of lasso and ridge regression methods is. If l1 ¼ 0 we have
ridge regression, whereas if l2 ¼ 0 we have lasso regression. Eq.(19) can be rewritten in order to consider just one tuning
parameter l as follows:

RSSþ l � 1� L1Ratioð Þ
Xn
j ¼ 1

w2
j þ l � L1Ratio

Xn
j ¼ 1

wj ð20Þ

where L1Ratio represents the amount, in percentage, of the L1 penalty, scaled according to the value of l. For example,
regarding a given l value, if we want a 30% of the L1 penalty, the corresponding L2 penalty will be equal to l *(1-L1Ratio) ¼
l*0.7. As seen earlier, with L1Ratio ¼ 0 we have the ridge regression and with L1Ratio ¼ 1 we have the lasso regression.

Elastic net, integrating both lasso and ridge penalty terms, introduces some advantages. First of all, it can perform feature
selection because the coefficients of less significant or irrelevant variables can be set to zero. A model with fewer variables,
moreover, is less exposed to possible overfitting. Elastic net is a more robust model with regards to ridge and lasso because it
embed both of them and it is also able to cope with multicollinearity, thai is correlated variables, and variables with different
scales. Finally, elastic net provided better performances than other linear regression models, above all when dealing with dataset
with a large number of features.
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PLS regression
Partial Least Squares Regression (PLS Regression) is a powerful multivariate statistical technique (Tenenhaus, 1998) that finds its
application in several scientific fields, such as chemometrics, bioinformatics, and process modeling, because it can extract relevant
information from complex and collinear datasets.

PLS Regression operates on the principle of extracting latent factors that capture the maximum covariance between the predictors
and the response variable. Unlike standard regression methods, PLS Regression does not rely solely on the original predictor variables
but constructs a set of latent variables (factors or components) representing linear combinations of the original variables.

The main advantages of the PLS Regression algorithm (Russolillo, 2012) are listed in the following:
Dealing with Collinearity: PLS Regression gives good results in scenarios where traditional regression models struggle due to

multicollinearity. By constructing latent variables that summarize the information in the original predictors, PLS effectively
addresses collinearity issues.

Effective in High-Dimensional Data: PLS Regression offers a robust solution in fields where the number of predictors far
exceeds the number of observations. It efficiently handles high-dimensional datasets, making it well-suited for big-data scientific
studies.

Simultaneous Analysis of Multiple Responses: PLS Regression extends naturally to multiple response variables, allowing
scientists to simultaneously model complex relationships involving several dependent variables.
PLS regression standard algorithm
PLS Regression works on extracting latent factors that capture the maximum covariance between the predictors and the response
variable. Unlike standard regression methods, PLS Regression does not rely solely on the original predictor variables. Still, it
constructs a set of latent variables (factors or components) representing linear combinations of the original variables. This helps
address multicollinearity and high dimensionality issues, which are prevalent in many scientific datasets.

PLS Regression is composed of four steps:

(1) Data Standardization: Before applying PLS Regression, it is common practice to standardize the data to ensure that all
variables have a mean of zero and a standard deviation of one. This step is crucial for preventing larger-scale variables from
dominating the modeling process.

(2) Construction of Latent Variables: PLS Regression decomposes both the predictor matrix X and the response matrix Y into
sets of latent variables. These latent variables are created iteratively, with each new component capturing the maximum
covariance between X and Y while being orthogonal to the previously constructed components.

(3) Weighting Scheme: PLS Regression introduces a weighting scheme during decomposition, assigning weights to the predictor
variables based on their contribution to the covariance structure. This weighting helps in emphasizing the most relevant
information in the data.

(4) Model Calibration: The final step involves using the latent variables to build a predictive model. The relationship between
the original predictors and the response variable is captured through a set of coefficients, and the model can be used for
prediction and interpretation.

The PLS regression model assumes the set of P predictor variables and the set of R response variables underly in a common
structure that can be resumed by a few latent components th (h ¼ 1 . . . H), calculated as a linear combination of the predictor
variables.
Table 2 Pseudocode summarizing the steps of PLS Regression algorithm
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Predictor and response are decomposed into:

X ¼ THP’H þ EH

Y ¼ THC’H þ FH

where matrices X and Y represent predictors and response matrices, PH and CH are the loading matrices, and EH and FH are the
residual matrices representing the part of the variability in data due to noise.

The PLS regression algorithm, as presented in Tenenhaus (1998) is shown in Table 2:

PLS main implementations
Partial Least Squares algorithms come in two main implementations (Halstensen, 2020): PLS1 (Partial Least Squares Type 1) and
PLS2 (Partial Least Squares Type 2). These variants differ in handling the relationship between the predictor variable X and the
response variable Y in regression tasks.

PLS1 is designed for cases with a single response variable of interest. PLS1 constructs latent variables (components) that
maximize the covariance between the predictor matrix (X) and the response variable (Y). Each latent variable is designed to
capture the information shared between X and Y while orthogonal to previously constructed components. The primary focus is on
the relationship between X and a single Y. PLS1 is commonly used when there is a clear and specific dependent variable of interest,
such as in univariate regression tasks.

PLS2 extends the PLS algorithm to cases where there are multiple response variables. PLS2 constructs latent variables to
maximize the covariance not just between X and a single Y (as in PLS1) but simultaneously maximizes the covariance between X
and multiple Y variables. The latent variables capture shared information between X and a set of response variables. PLS2 is
applied in scenarios where the relationships between multiple predictors and multiple responses need to be modeled
simultaneously.

Anyway, PLS1 and PLS2 share some general features; both build latent variables iteratively, refining the model in each step to
maximize the covariance between the predictors and the response(s). Also, in both variants, the constructed latent variables are
orthogonal to each other, meaning that they capture unique information not explained by the previous components. Finally,
similar to the standard PLS algorithm, PLS1 and PLS2 often begin with data standardization to ensure that all variables have a
comparable scale.

In general, PLS1 and PLS2 find applications in various domains, including chemometrics, bioinformatics, and other fields
where the relationship between multiple predictor variables and one or more response variables needs to be modeled.

PLS variants and extensions
Several variants and extensions of the Partial Least Squares (PLS) algorithm have been developed to address specific challenges or
face different data mining scenarios, offering flexibility in addressing specific challenges and extracting valuable insights from
complex datasets (Tenenhaus et al., 2005; Trygg and Wold 2002; Embrechts and Ekins 2007; Chun and Keles, 2010). Some
noteworthy PLS variants used in data mining are reported in the following:

(1) Sparse PLS Regression (sPLS) addresses the issue of model interpretability and reduces the number of variables in the model.
It is used when feature selection is crucial, introducing sparsity constraints during the model fitting. This helps identify and
focus on a subset of the most relevant variables, improving model interpretability and potentially enhancing prediction
performance.

(2) Kernel-based PLS (K-PLS) extends PLS to handle non-linear relationships in the data by using kernel functions. K-PLS is
applied in scenarios where linear models do not have well-captured relationships between variables. It transforms the data
into a higher-dimensional space using kernel functions, making it possible to capture non-linear patterns.

(3) PLS-Canonical Analysis (PLS-CA) integrates PLS with canonical correlation analysis to jointly model relationships between
two sets of variables. PLS-CA is used in data mining applications where understanding the relationships between two sets of
variables is crucial. It helps identify latent structures that explain the maximum covariance between the two sets of variables.

(4) Orthogonal PLS (O-PLS) handles the problem of model interpretation and focuses on separating predictive and orthogonal
components. O-PLS is employed when there is a desire to isolate predictive information from orthogonal variation in the
data. This variant is helpful in situations where the goal is to enhance the interpretability of the model by distinguishing
between systematic and noise-related variations.

(5) PLS-Path Modeling extends PLS for structural equation modeling to assess relationships between latent variables. PLS-Path
Modeling is applied when the goal is to model complex relationships among latent variables. It combines the strengths of
PLS with the structural equation modeling framework, allowing for a comprehensive exploration of relationships in a data-
driven manner.
Nonlinear Regression

Nonlinear regression is employed to describe observational data by using a function fw Xð Þ that is a nonlinear combination of the
model parameters. In such function, the independent variables can be greater or equal to one. An example of nonlinear regression
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curve is in the following Eq. (21):

fw Xð Þ ¼ w0x
w1
1 xw2

2 ð21Þ

where w¼ ðw0;w1;w2Þis the vector of the parameters and X ¼ ðx1; x2Þ is the vector of independent variables.
For nonlinear regression, there is not a general method to obtain the best parameters. Indeed, the least squares method for

nonlinear case leads to a system of normal equations without an analytic solution for w. Therefore, numerical methods will be
considered to solving nonlinear least squares.

In general, nonlinear regression entails an iterative procedure to estimate the best fit. A first fitting curve is generated from an
initial value for each parameter. The RSS function, see Eq. (6), estimates the vertical distance between the data points and this
curve. The next step tries to reduce such distance adjusting regression parameters iteratively, leading to a minimum of RSS. The
obtained parameters depend on the choice of the initial values and also on the numerical optimization methods adopted to
minimize RSS.

Examples of numerical methods used to minimize RSS are:

(1) the gradient descent (or steepest descent) method;
(2) the Gauss-Newton method;
(3) the Levenberg-Marquardt method;
(4) the Gaussian process regression.

Gradient descent (or steepest descent) method
This technique7 exploits the information of the gradient of a function to find, step by step, the direction of steepest descent to its
minimum value. The method begins with an initial arbitrary solution of the minimization problem and then changes it with a
variation in the direction indicated by the gradient.

In the regression case, RSS is the function to minimize by varying the parameters w. The method starts generating a first fitting
curve resulting from an initial value wð0Þ for the parameters. Then, it calculates the RSS between the actual value yi of data set and
the value resulting from the first fitting curve fwð0Þ xið Þ. To minimize this RSS value, the initial solution wð0Þ will be updated
iteratively considering the relation wðkþ1Þ ¼wðkÞ þ akpk, where k is the step of procedure iteration, ak is the small amount of
variation for the parameter w, and pk ¼ �rRSSðwðkÞÞ is the direction of steepest descent. RSS is computed at every new step, to
monitor the procedure. The minimum will be reached when every further variation of w will produce an increase in the corre-
sponding RSS value.

Gauss-Newton method
As for the previous method, Gauss-Newton starts from an initial estimate for the parameters wð0Þ. In the next step, it approximates
the fitting function f as a function of the parameter w with a Taylor-series

about the point wð0Þ. At the 1st order, the fitting function is approximated to a line, according to the local linear model. Hence,
RSS0 is computed considering the linear approximation of f and minimized following the usual linear squares methods. The
resulting value for the parameters wð1Þ, is used in the next iteration of the method, until the entire procedure converges, i.e. when
the original RSS is minimized (Ruckstuhl, 2010).

Levenberg-Marquardt
It consists of a blending of the previous methods, taking respective advantages. Indeed, the gradient descent works well in the
initial iterations, but its performance decreases when parameters are near to the best values. On the other hand, Gauss-Newton
method works better in successive iterations rather than in early ones. Levenberg-Marquardt starts its process by using a gradient
descent approach and gradually changes it with the Gauss-Newton approach (Motulsky and Christopoulos, 2004).

Gaussion process regression
A Gaussian Processes Regression (GPR) model can make predictions by incorporating prior knowledge, represented by kernels,
and provides uncertainty measures for these predictions (Rasmussen and Williams, 2006). In the context of GPR, when given a set
of observed data points, the regression is conducted by Gaussian processes, defining a distribution across an infinite number of
functions that can fit the given data points (Ghahramani, 2011). Specifically, GPR is a non-parametric Bayesian approach to
inference. Instead of deducing a distribution over the parameters of a parametric function, Gaussian processes enable the inference
of a distribution directly over the function of interest. The Gaussian process establishes a prior function, which transforms into a
posterior function once specific values from the prior distribution are observed (Krasser, 2018).

Further considerations
Unlike the linear case, nonlinear regression can find a local minimum of the RSS curve that is not the "true" best values for the
regression parameters. An example of a false minimum is shown in Fig. 6. Finding a local minimum does not depend on the numerical
method chosen, since it can be determined by the initial choice of the parameters wð0Þ. To overcome this problem, it is advisable to
7It was introduced in the “Data Mining: Classification and Prediction” chapter, about the backpropagation algorithm of feedforward neural networks.



Fig. 6 Finding a local minimum is an intrinsic problem of nonlinear regression. It can be overcome by running nonlinear regression using
different initial values for several computings.
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repeat nonlinear regression many times with different parameters, i.e. using different initial values. The optimization process can
guarantee the best fit solution if different choice of the vector wð0Þ for the regression curve lead to the same minimum in RSS curve.
Goodness of a Model

Once the model is built, it can be useful to confirm the goodness of the fit. The meaning of the data, when it is known, suggests the
type of regression to use and, as a general rule, the goodness of a fit relies on the acceptability of the parameters’s value found. In
general, to confirm the goodness of a fit, it is used the r2or R2 index (traditionally distinct for linear and nonlinear regression
respectively) and the residual analysis.

r2 or R2

r2 index is a number without units between 0:0 and 1:0. It is calculated through the Eq. (22):

r2 ¼ 1:0� RSSreg
RSStot

ð22Þ

where RSSreg is the same of the Eq. (6) and RSStot indicate the residual sum-of-squares of actual data point yi from a horizontal
line of equation y¼ ̅y , i.e. passing through the mean of all yi values. r2, therefore, states if the found function of regression fits the
data better than a horizontal line, in which case the r2 value is close to 1. The comparison is shown in Fig. 7:

R2 have the same meaning of r2 but is capitalized to indicate nonlinear case.

Residual analysis
The residual analysis allows assessing if the model chosen to describe the data is suitable or not. This analysis evaluates the trend of
residuals ϵi of the Eq. (5) as a function of the independent variables X. The Fig. 8 illustrates three plots of residuals ϵi against the
single independent variable x. A random pattern in the plot (left panel) confirms that a linear model is suitable for the regression
analysis. Otherwise, another model would be used.
Conclusive Remarks

Method of regression rely on the assumption that the scatter of the data around the fitting line or curve follows a Gaussian or normal
distribution. Therefore, the error of the dependent variable is random with mean zero. Furthermore, another hypothesis is that the
variance of the error is a constant (homoscedasticity), i.e. the measure of the square variability of the error with respect to the mean of
its distribution is uniform along the curve (Motuslsky and Christopoulos (2004)). Therefore, there should not be any dependence of
residuals from fitted values (otherwise, the weighted least squares method have to be used; it will be discussed in the next paragraph 5.

Finally, the linear regression described above represents an appropriate prediction method when the dependent variable is a
continuous variable (namely, it follows a Gaussian distribution). A generalization of linear regression can be made including non-
continuous data for the dependent variable, and will be treated in the next paragraph 5.



Fig. 7 Two cases of comparison between the fitting curve and the horizontal line passing through the mean value ̅y of yi data (B and D).
Above: a case of linear regression (A); Below: a case of nonlinear regression (C).

Fig. 8 Two typical patterns for residual plot: ϵon the y-axis vs a single independent variable x . a) the random plot suggest that the linear fitting
model is a good choice to describe the data; b) a non-random plot suggests a nonlinear model.
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Generalized Linear Models

The regression analysis is a statistical method used to estimate the possible relationship between two types of variables. According
to the regression method, a dependent variable Y or response variable8 is expressed as a function of one or more independent
variables, also known as predictor or explanatory variables of the form X ¼ ðx1;…; xnÞ. Generalized Linear Model (GLM) (Nelder and
8Here, the response variable is indicated with uppercase to highlight that is a random variable.



16 Data Mining: Prediction Methods
Wedderburn, 1972) is a generalization of the linear regression. It allows to model categorical response variables as a function of
explanatory variables by using linear regression.

Categorical response variables or observations can be binary, having “yes” or “no” possibilities as outcomes or more generally,
“success” or “failure”. To describe such binary observations of the response variable Y , it is usual to assume a binomial distribution
for the data set yi.

If the observations are counts, then a Poisson or negative binomial distribution is suitable to describe such data that will be
nonnegative integers (Agresti, 1996).

Common types of GLMs are logistic regression and Poisson regression, which are employed respectively for the previous two
cases. They will be described in the following sections.
Components of a Generalized Linear Model

A generalized linear model is composed of three components: i) random component, ii) systematic component, iii) link function.
The random component specifies the response or dependent variable Y and the probability distribution hypothesized for it. The
systematic component points out the explanatory or independent variables ðx1;…; xnÞ, which describe each instance Xi of the data
set, where i¼ 1;…; p is the total number of instances in the data set. Values of the explanatory variables are treated as fixed and not
as random variable. The link function gðmÞ indicates a function of mean m of the probability distribution of Y ; beingm¼ EðYÞ the
expected value or mean of Y . The expected value m of a probability distribution can change depending on the explanatory
variables. For example, the probability of the incidence of a disease can be considered as function of the presence of a risk factor.
GLMs uses a prediction equation or model equation to relate this expected value or mean to the explanatory variables through the link
function. Such model equation has a linear form, as shown in Eq. (23):

g mð Þ ¼ aþ b1x1 þ…þ bnxn ð23Þ

where the linear combination of the explanatory variables is known as linear predictor. a and bj are the coefficient of regression,
with j¼ 1;…; n if the independent variables are n.

The simplest link function is the identity link g mð Þ ¼ m. If put in the left side of the Eq. (23), it describe a linear model for the
mean response as a function of the independent variables. Using only one explanatory variable, the model equation with identity
link has the form shown in the Eq. (24):

m xð Þ ¼ aþ bx ð24Þ

This is known as ordinary linear regression model,9 employed for continuous responses. Therefore, linear regression is a special
case of GLMs, known as Normal GLM because it assume a normal distribution for Y .

Other link functions consider a nonlinear relation between m and the predictor variables. An example is the log link function,
which considers the log of the mean g mð Þ ¼ logðmÞ. Prediction Eq. (23) employs log link function as left side when the mean m can
not be negative, as with count data. GLM using the log link function is known as the loglinear model.

Another nonlinear link function is the logit link: g mð Þ ¼ log m
1�m

� �
, which models the log of an odds. It is convenient when

0rmr1, as a probability. GLM using the logit link function is known as logit model or logistic regression model.
The next sections aim to describe GLMs for discrete responses in the two most important case: logistic regression models for

binary data and loglinear models for count data.
Logistic Regression

Logistic regression (Cox, 1958) is the most common method for analysis of binary response data (Dobson, 2001). The logit model
estimates the probability of a binary response Y (random component) as a function of one or more predictor or independent
variables xj

� �
(systematic component), where j¼ 1;…; n. For simplicity, it will be introduced the case of a single explanatory

variable x.
The possible outcome for a response variable Y is denoted by 1 (“success”) or 0 (“failure”).
The distribution of the response variable Y is specified by the probabilities P Y ¼ 1ð Þ ¼ p or P Y ¼ 0ð Þ ¼ 1� p for the single

observation. The number y of successes in n independent observations follows the binomial distribution with index n and
parameter p, as shown in the Eq. (25):

P y;pð Þ ¼ n
y

� �
pyð1� pÞy ð25Þ

where y¼ 1;2;…; n. The binomial distribution has expected value10 or mean E Yð Þ ¼ m¼ np and variance11 var Yð Þ ¼ s2 ¼ npð1� pÞ.

9The model Eq. (24) with regression coefficients a and b recalls the Eq. (7) of the linear regression method with regression coefficients respectively to w0 and w1.
10The expected value E(Y) is the probability-weighted average of all possible outcomes of a random variable.
11The variance var(Y) ¼s2¼E(Y-E(Y))2 is the expected value of the squared difference between a random variable and its mean.



Fig. 9 Logistic regression functions, increasing and decreasing curve respectively for positives and negatives values of the b parameter. The
second panel shows two different rate of change for two different positive value of b.
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Binomial data are described by a GLM having the prediction Eq. (26):

g p xð Þð Þ ¼ log
p xð Þ

1� p xð Þ
� �

¼ aþ bx ð26Þ

where log p xð Þ
1�p xð Þ
� �

is the logit function of p, also known as “logit(pÞ”. Logit function is the link function between the mean
probability p and the linear regression expression. From the Eq. (26) it is possible to obtain the relationship between the success
probability p xð Þ and the predictor variable x. It is nonlinear, but varies continuously following a characteristic S-shaped curve,
described by the so-called logistic regression function of Eq. (27):

p xð Þ ¼ 1
1þ e�ðaþbxÞ ð27Þ

where x is the single independent or explanatory variable, a and b are the coefficients of regression. The bvalue establish the rate
of sigmoid variation. As shown in Fig. 9, the increase or decrease of the curve depends on the positives or negative value of b. The
rate of change of the sigmoid becomes steeper for greater values of b. For b¼ 0 the binary response Y is independent of the
explanatory variable x and the sigmoid becomes a horizontal line.

The outcomes of p are number between 0 and 1. They can be considered as the probability that the dependent variable Y is a
success case or not (i.e. if the class label of Y is “yes” or “no” respectively).

Logistic regression classifier
Logistic regression can be used also to solve problems of classification. In general, logistic regression classifier can use a linear
combination of more than one feature value or explanatory variable as argument of the sigmoid function. The corresponding
output of the sigmoid function is a number between 0 and 1. The middle value is considered as threshold to establish what belong
to the class 1 and to the class 0. In particular, an input producing an outcome greater than 0.5 is considered belong to the class 1.
Conversely, if the output is less than 0.5, then the corresponding input is classified as belonging to 0 class (Harrington, 2012).

Nominal and ordinal logistic regression
Binomial or binary logistic regression is specific to treat a response variable with binary or binomial categories, as “true” or “false”,
“male” or “female”, “healthy” or “sick” etc. Cases where the response variable considers more than two categories are described by
nominal or ordinal logistic regression (Dobson, 2001), depending on whether they are ordered categories or not. An example of
ordinal variable is one that can assume the values “low”, “medium” or “high” as the level of response to a medical treatment. It is
an ordinal variables because follow ordered scales, unlike the nominal variables, for example “classical”, “rock”, “blues” or “jazz”
as favorite type of music. Methods used for nominal variables can be used for ordinal ones. Conversely it is not true (Agresti,
1996).
Poisson Regression

Poisson regression is the GLM used to describe frequencies or count data. Such data usually exhibit a Poisson distribution for the
probability to count a number y of events in a given temporal interval, knowing the average number y of events in that interval.
Poisson distribution is shown in the Eq. (28):

P y;yð Þ ¼ e�y y
y

y!
ð28Þ

where y¼ 0; 1; 2;… The only parameter of the distribution is y and it can take positive values (y40Þ; it expresses the mean and
also the variance of the probability distribution, i.e. respectively E Yð Þ ¼ y and var Yð Þ ¼ s2 ¼ y. This means that the variability of
the counts tends to increase when the number of counts increases.
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The link function for this GLM is the log link function. Therefore, the prediction equation follows the loglinear model shown in
Eq. (29):

g yð Þ ¼ log yð Þ ¼ aþ bx ð29Þ
The mean y is an exponential function of the explanatory variable x, as shown in the Eq. (30):

yðxÞ ¼ exp aþ bxð Þ ¼ eaðebÞx ð30Þ
The values of the parameter b determine how the mean y varies with the explanatory variable, increasing or decreasing

respectively for positives or negatives b. If b¼ 0 the means of Y is independent of x.
How GLMs Work

Estimating parameters: Maximum likelihood extimation
For a continuous random response variable Y the probability density function or probability distribution is denoted as Pðy;/Þ,
where y is the observation of the Y variable for a fixed /, which is the vector of parameters of the distribution, with components
like the expected value EðYÞ and variance varðYÞ. In general, the parameters values are unknown. Data sample allows estimate
these parameters by using the so-called likelihood function. The likelihood function Lð/; yÞ has the same algebraic form of the
probability density function but conversely, L is a function of /, for y fixed. The method of estimation of the parameter is based on
the Maximum Likelihood (ML) estimation, which finds the parameter value that maximizes the likelihood function. The value of /
which maximizes the likelihood function is called maximum likelihood estimate of /, and is indicated as /̂. Frequently, it can be
convenient to deal with the log-likelihood function l /; yð Þ ¼ logLð/; yÞ. Indeed, the parameter value sought /̂ will maximize also the
log-likelihood function. It will be found by differentiating the Lð/; yÞ or l /; yð Þ with respect to each fj, and solving the simul-
taneous equations ∂Lðð/;yÞ

∂ fj
¼ 0 for j¼ 1;…; p. In practical applications, numerical methods allow find /̂ without solve these

equations. GLMs works with such numerical approximations.

Example of application
Considering the binomial case, whose probability distribution is expressed by Eq. (25), likelihood function says how the prob-
ability of a given number of successes y in n trials varies as a function of the success parameter p of the single trial. It is expressed by
Lðp; yÞ, where 0rpr1 for binomial distribution. For example, the success parameter for the heads output (Y ¼ 1) in a single throw
of a fair coin is p¼ 0:5. The Fig. 10 shows the likelihood function for two fixed numbers of success y¼ 0 and y¼ 5 in n¼ 10
throws. (The number of success could be considered as the head outcome in the coin throw). The likelihood function for y¼ 0 has
the form L p;0ð Þ ¼ 10

0

	 

p0ð1� pÞ10 ¼ ð1� pÞ10. For binomial outcomes of y successes in n trials, the likelihood function has a

maximum for p̂ ¼ y=n.

Estimating parameters: Least squares estimation
Another method of estimate for the parameter of a model is that of least squares, already introduced in the previous paragraph 4.2
(linear and nonlinear regression). Here, considering Yi independent random variable with i¼ 1; :::; p and indicating with mi their
respective expected values, the hypothesis is that each mi is a function of a regression parameters vector b. The estimator b̂ is that
minimizes RSS, namely the sum of squares of the differences between observed Yi and expected values miðbÞ: RSS¼

P
Yi � miðbÞ½ �2

(as seen above in Eq. (6)). b̂ is the parameter for which the RSS is minimized. Therefore, as seen in Eqs. (8) and (9), it is obtained
by solving simultaneous equations of the type: ∂RSSðbÞ

∂ bj
¼ 0, where j¼ 1;…; n.
Fig. 10 Binomial likelihood functions for a number of success y ¼ 0 and y ¼ 5 successes in n ¼ 10 trials. Likelihood function says that the
probability of y ¼ 0 for the head outcome in n ¼ 10 throws has a maximum for p̂ ¼ 0 (unfair coin).
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If the variance si2 is not the same for each Yi, then the weighted sum RSS¼ P 1
si2

Yi � miðbÞ½ �2 is minimized, ensuring that the Yi

observations with greater variance, that mean less reliable, have a less effect on the estimates. This is the weighted least squares
method.

Also for the least squares method, it is possible resort to numerical approach to find the estimator.
Under assumption of Gaussian distribution for the value of Y , least squares estimates coincide with the ML estimates (Agresti,

1996).

Fitting generalized linear models
Newton-Raphson algorithm

In GLMs, a numerical algorithm is used to find ML estimates as distribution parameters values /̂ of the model (as a function of
regression coefficients b̂). It starts assuming an initial value for the parameters maximizing the likelihood function. Through
successive approximations, the parameters values tend to get closer to the ML estimates. For binomial logistic regression model
and Poisson loglinear regression model, the above-mentioned method is the Newton-Raphson algorithm (Agresti, 1996). This
algorithm is a simplification of the Fisher scoring algorithm. Through the Newton-Raphson algorithm, the log-likelihood function
is approximated by a second –degree polynomial curve in the neighborhood of the initial parameter guess. Indeed, for a such
parabola-shaped function it is easier to determine the value corresponding to the maximum. This value will be the second guess
for the ML estimate. Hence, the algorithm iterates the approximation with the concave parabola in the neighborhood of this
second guess. This procedure is repeated until the location of the maximum does not change anymore.

Model checking
It is possible to evaluate the goodness of a fit considering the distance between the observed value yi and the fitted values m̂ i, namely
the residuals yi � m̂ i, for each observation i of the dataset.

To check a model involving a Normal distribution (Normal GLM), it is usual to consider a standardized residual obtained by
dividing it by the estimate ŝ of its unknown s parameter ,12 as shown in Eq. (31):

ri ¼ yi � m̂ i=ŝ ð31Þ

If the assumption at the base of the model is correct, then the residuals should follow a Normal distribution with mean of zero
and constant variance. They should be also independent from the explanatory variables. The goodness of the choice of the model
adopted to describe the data is checked using suitable graphical methods. For example, a plot of residual against each explanatory
variable should not show any pattern (as illustrate in Fig. 8). In addition, a plot of residuals against the fitted values m̂ i allows to
detect an eventual change in variance, in violation of the assumption of constant variance (homoscedasticity) (as discussed in the
section “How regression prediction methods work”). Further, to examine the goodness of the model, the residuals can be
aggregated and, as already seen above (paragraph 4.1) it is preferable to consider the sum of the squares of residuals on the entire
dataset:

P
yi � m̂ ið Þ2

A quantitative test to check the goodness of a fitting model is the χ2 in the following Eq. (32):

χ2 ¼
X Oi � Eið Þ

Ei

2

ð32Þ

where the argument of the sum is the square of the standardized residuals of Eq. (31). In particular, the Eq. (32) becomes the
Eq. (33) for the logistic model and the Eq. (34) for the Poisson:

X
r2 ¼

X yi � np̂ ið Þ
np̂ ið1� p̂ iÞ

2

ð33Þ

X
r2 ¼

X yi � ŷ i
� �

ŷi

2

ð34Þ

where the sum run over the total number of data considered.
The χ2 test evaluates the agreement between the observed distribution of data and the expected GLM employed to describe the

data. It provides a numeric value that allows establishing if the supposed GLM describes adequately the data.
Conclusive Remarks

GLMs represent a unifying model of several statistical methods. They are a generalization of the linear regression (section "How it
Works") because include response variables that follow a distribution model different from the Gaussian model (therefore not
necessarily continuous but also categorical response variable) (Agresti, 1996; Dobson, 2001).
12The standard error s¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Yð Þp

, namely the root square of the variance.
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Conclusions

The methods described in this chapter are aimed at regression, the prediction of the value corresponding to a new input; these
methods are also indicated as regressors or function estimators.

The algorithms considered are K-nearest neighbor, genetic algorithms, linear and non-linear regression, among others. For each
method we focused on their characteristics, highlighting advantages and critical issues.

Besides the theoretical considerations, we also report some practical considerations, helping the reader in their own imple-
mentations and developments of new applications.
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