
Detection of magnetic barriers in a chaotic domain: first

application of Finite Time Lyapunov Exponent method to a

magnetic confinement configuration

G. Rubino1, D. Borgogno2, M. Veranda3, D. Bonfiglio3, S. Cappello3, D. Grasso1

1 Istituto dei Sistemi Complessi-CNR, Politecnico di

Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
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Abstract

Magnetic field lines embedded in a plasma confinement system are often characterized by a

chaotic motion. This weakens the confinement properties of any magnetic configuration. However,

even in case of chaotic domains, magnetic barriers can emerge and limit the field line motion

itself. In the context of the numerical simulation of a Reversed-Field Pinch configuration a new

magnetic topology analysis, borrowed from previous fluid dynamic studies, is here discussed. This

methodology relies on the behavior of the Finite Time Lyapunov Exponent (FTLE) associated

with the magnetic field. By referring to a previous work [D. Borgogno et al., Phys. Plasmas 18

102307, 2011], where the magnetic field is given in terms of analytical functions, in case of magnetic

barriers the FTLE field shows the presence of ridges, special gradient lines normal to the direction

of minimum curvature. These ridges can be recognized as Lagrangian Coherent Structures (LCSs)

for the system, actually opposing the penetration of magnetic field lines across them. In this

paper a more general numerical scheme for the detection of the LCSs has been adopted, which

allows to analyze realistic cases where the magnetic fields are numerically known on a discrete

mesh. After a validation test performed on the analytical case, a first application to a numerical

magnetohydrodynamics simulation of the RFP, characterized by a broad chaotic region, has been

performed. A strong magnetic barrier has been observed that effectively limits the field lines motion

inside the chaotic sea.
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I. INTRODUCTION

The understanding of the mechanisms leading to transport barriers formation is a common

interest in ordinary fluids and hot plasmas [1–6]. In the case of hot laboratory - magnetically

confined - plasmas for thermonuclear fusion research the barrier formation leads to improved

confinement properties and thus constitutes a subject of great interest. The phenomenon

appears to result from complex mechanisms, which involves microturbulence suppression

by macroscopic sheared flows and/or magnetic chaos healing with formation of coherent

magnetic structures. A satisfactory understanding of conditions in which transport barriers

occur in such different toroidal magnetic configurations as the tokamak, the stellarator and

the reversed-field pinch (RFP) is still lacking.

We describe here a first step in the application to magnetically confined plasmas of a tech-

nique developed for transport barrier diagnosis in ordinary incompressible fluids, where a

divergence-free condition holds for the velocity field. The divergence free property of the

magnetic fields provides the basis for the application of a similar technique in magnetically

confined plasmas. The RFP, in particular, provides an optimal test bed for the application

of this diagnostic tool since electron internal transport barriers (ITB) are presently believed

to be governed by the magnetic field dynamics. In fact, ITBs form in experiments due to

a global helical magnetic self-organization process which brings magnetic chaos healing in a

relevant portion of the plasma volume [7, 8]. This self-organization process, which amounts

to a global helical kinking of the toroidal plasma current and the ensuing process, consisting

on the disappearence of the magnetic island X point and thus of a preferred region for mag-

netic chaos development, can be described in its basic features within 3D nonlinear magneto

hydrodynamic modeling [9–11]. Numerical simulations will indeed provide the reference case

for the work presented here.

Theoretical and numerical studies carried out up to now on the RFP magnetic topology rely

heavily on the Poincaré plots. A Poincaré plot gives a detailed picture of the regular and

chaotic domains of the magnetic field, provided one integrates the magnetic field equations

starting from a sufficiently large number of initial conditions and for sufficiently large values

of the parameter (position) along the field lines, that plays the role of an effective time. In

this paper we will call this effective time the field-line-time or just time. When we refer

to real or dynamic time, we will explicitly say so. However, Poincaré maps do not provide
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information on the “transport” of the magnetic field lines, i.e. how the magnetic field lines

migrate in field-line-time. In particular they do not allow to investigate on the possible pres-

ence inside the chaotic domains of surfaces that may act as barriers to the magnetic field

line penetration on a given field-line-time scale. These structures are usually referred to as

Lagrangian Coherent Structures (LCSs), especially in the hydrodynamic systems literature;

in plasma literature, where Hamiltonian nonlinear dynamics has been perhaps more popu-

lar, similar bounds on transport have been identified as so-called cantori, i.e. the remnants

(forming a Cantor set) of conserved structures (KAM tori) under perturbation [12].

The investigation of LCS has been recently addressed by analyzing magnetic configurations

produced by numerical experiments of magnetic reconnection in collisionless plasmas within

a generic 3D geometry [13–15]. In particular in Refs. [14, 15] a technique derived from fluid

dynamics, based on the geometrical properties of the Finite Time Lyapunov Exponents

(FTLE) of the magnetic field lines, has been used. Compared to the standard Lyapunov

exponent that is defined for the time that goes to infinity, the FTLE measures the expo-

nential separation between two neighboring field lines after a given amount of time. Within

the context of FTLE theory, approximate Lagrangian Coherent Structures may be defined

as second-derivative ridges of the scalar FTLE field [2]. Following [2] we define a ridge as

a curve in the plane perpendicular to the field-line time direction where the gradient in

the FTLE-field is parallel to the curve and the second derivative of the FTLE-field in the

direction perpendicular to the curve is negative. As suggested in [2] this is in analogy with

hiking: while hiking along a “ridge” one would expect to be locally at the highest point of

the FTLE field transverse to the ridge and the curvature would be steepest downward trans-

verse to the curve. The analysis carried out in [14, 15] addressed a partially chaotic magnetic

configuration, where stochastic and regular domains coexist. In those cases the ridges of the

FTLEs showed the presence in the chaotic regions of well-defined magnetic structures that

act as temporary obstacles to the field line motion. A spectroscopic approach to the motion

of magnetic field line allowed to evaluate the effectiveness of these barriers and to show

that in the partly stochastic case a field line moves radially in steps. In each of these steps

the magnetic field line lays in structures which are in relation with rational values of the

winding number. This result, seemingly counterintuitive, seems strongly intertwined with

the ITBs’ characterization in magnetically confined fusion plasmas. Many authors analyzed

the nature of these transport barriers in the framework of Hamiltonian dynamics study. In
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[16, 17] the occurrence of strong transport barriers has been discussed in relation to the

presence of magnetic resonances and magnetic shear. In the Tokamap mapping framework

Misguich [18] has shown that the ITBs can be more precisely located on Cantori (irrational

surfaces) with noble q values embedded between two rational surfaces, which are expected

to correspond to less robust surfaces. Later Hudson [19, 20] has proposed a way to identify

these Cantori through ghost surfaces, showing in the first work that the steepest tempera-

ture gradients coincide with these irrational surfaces.

In this paper we intend to adopt the same approach of refs. [14, 15] for analyzing a weakly

stochastic magnetic field by simulating numerically a RFP state close to the quasi-single he-

licity (QSH) state, with the aim of identifying LCSs. In Section II we introduce the adopted

numerical technique, performing a validation test, whose results highlight the reliability of

the FTLE computation. A key feature of the considered scheme is the possibility to inves-

tigate realistic situations, where a numerical description of the magnetic field is generally

available, conversely to previous work where analytical functions were needed. In Section

III we describe the MHD equations model and the reference numerical case. Starting from

an axis-symmetric equilibrium, the magnetic configuration evolves towards a QSH state.

The results of the analysis, discussed in Section IV, show the presence of magnetic barriers

recognized as the LCSs related to the magnetic field configuration: the LCSs are aligned

along finite lengths manifolds, where the magnetic field lines show values in close relation

with rational values of the winding number.

II. NUMERICAL METHODS

A. FTLE computation

As already stated, in this work the FTLE method has been applied to reveal the coherent

structures in a magnetic configuration obtained from a numerical experiment simulating the

characteristic behavior of the RFP confinement scheme. In the RFP the MHD dynamo

activity provided by the resistive kink - tearing modes plays a major role in determining the

magnetic topology variations. The analysis of magnetic field topology is tackled solving the

magnetic field line equations. In cylindrical geometry the trajectory (r(z; z0,x0), θ(z; z0,x0))

of the magnetic field line that passes through r(z0) = r0, θ(z0) = θ0, at each dynamical time
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t, obeys the equation system:

dr

dz
=
Br(r, θ, z, t)

Bz(r, θ, z, t)
(1)

dθ

dz
=

1

r

Bθ(r, θ, z, t)

Bz(r, θ, z, t)
(2)

where Br, Bθ, Bz are the magnetic field components along the radial r, the poloidal θ and

the toroidal z directions, respectively. The above system describes in field-line time z what

has been coined in fluid dynamics as chaotic advection, the magnetic field playing the role

of the advecting velocity field.

The FTLE σ is defined by

σ(z, z0,x0) =
1

|z − z0|
ln
√
λ(z, z0,x0), (3)

|z − z0| being the length of the time the FTLE is computed and x ≡ (r, θ). The quantity λ

represents the maximum eigenvalue of the matrix

∆ =
dφzz0(x)∗

dx

dφzz0(x)

dx
, (4)

where φzz0 is the flow map that associates the initial position x0 at time z0 to the final

position x at time z according to the magnetic field line equations,

φzz0 : x0 7→ φzz0(x0) = x(z; z0,x0). (5)

The matrix
dφzz0 (x)

dx
denotes the Jacobian matrix of φzz0 and

dφzz0 (x)
∗

dx
its transpose. In the limit

|z − z0| → ∞ the standard Lyapunov coefficient is obtained [21].

In Ref. [14] the FTLEs have been computed by numerically implementing the method

derived in Ref. [22]. The key feature of this approach is an efficient decomposition of the

tangent map, corresponding to the linear representation of φzz0 , through orthogonal matrices.

This results in a set of coupled ordinary differential equations for the Lyapunov exponents

along with the various angles parameterizing the orthogonal matrices. The system of differ-

ential equations is treated as an initial value problem and solved numerically to obtain the

Lyapunov exponents. Despite the high precision level, a rather stringent constraint of this

method is represented by the requirement of an analytical description of the magnetic field.

In [14] it was possible to satisfy this requirement studying an academic case of 3D magnetic

reconnection in a periodic configuration. This allowed to apply Fourier decomposition to
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the magnetic field components and to consider just the higher amplitude modes for approx-

imating the original data [13].

On the contrary, in the present work a global MHD numerical simulation is considered and

the method of Ref. [22] cannot be used. For this reason the FTLE are now computed

directly from the definition (3), which requires the knowledge of the flow map. To perform

the analysis, the trajectories of magnetic field lines starting from a set of points regularly

distributed on a grid is computed during the time interval [z0, z]. Once the final positions of

each field line is found, the spatial gradient of the flow map can be evaluated at each point

in the initial grid by finite differencing with values at the neighboring grid points. In the

case of a central difference method, adopted in this work, the formula for the gradient of

the flow map at an arbitrary point (i, j) in the grid reads as

dφzz0(x)

dx

∣∣∣∣
xi,j

=

 ri+1,j(z)−ri−1,j(z)

ri+1,j(z0)−ri−1,j(z0)

ri,j+1(z)−ri,j−1(z)

θi,j+1(z0)−θi,j−1(z0)

θi+1,j(z)−θi−1,j(z)

ri+1,j(z0)−ri−1,j(z0)

θi,j+1(z)−θi,j−1(z)

θi,j+1(z0)−θi,j−1(z0)

 (6)

where xi,j(z) = (ri,j(z), θi,j(z)) are the coordinates of point (i, j) at time z. Once the quantity

in eq.(6) is computed for each point of the grid, the matrix ∆ is obtained by multiplying
dφzz0 (x)

dx
by its transpose. The computation of the largest eigenvalue of the 2x2 matrix ∆

finally gives the FTLE at the point (i, j) through the formula (3).

In order to verify its reliability, we adopted this new approach for computing the FTLEs of

the earlier magnetic configuration reported in Ref. [14], at the so-called “transition to the

global stochasticity” phase. Fig. 1 shows the comparison between the result we obtained (red

lines) and the FTLE field computed with the method described in Ref. [22]. We focused

on a small subdomain, compared to the original box showed in Ref. [14], where chaotic

and regular regions coexist. The finite time over which the Lyapunov exponents have been

calculated is the same in both cases and equal to z = 12Lz, where Lz is the periodicity

length along the toroidal direction. Moreover, two different initial condition distributions

have been used in order to check the convergence of the FTLE calculation, based on the

study of the flow map, to the one obtained in Ref. [14]. In particular, the two distributions

are generated by sampling uniformly on 300× 200 (fig. 1a) and 600× 300 (fig. 1b) points.

Figure 1, which show the linear plot of the FTLE field along the radial position x for y = 0,

highlight the quite similar behavior of the two approaches. In both graphs, red and black

curves show the presence of highly spiky regions (0.4 < x < 0.42 and 0.44 < x < 0.48 ), that

correspond to the areas where the magnetic field is most stochastic. In the remaining part
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(a)

(b)

FIG. 1: Profiles of the FTLE field σ along x, for y = 0. Red curves have been computed

using the formula 3 at z = 12Lz with two different uniform distributions of the initial

conditions in the domain 0.4 < x < 0.6 and −0.25 < y < 0.25: (a) 300 × 200 and (b) 600

× 300. Black curves have been obtained using the method described in [14].

of the considered domain, however, the FTLE profiles are rather regular, with extremely

sharp gradients. Here the FTLE distribution is characterized by the presence of ridges,

which identify the LCS confining the magnetic field lines. Comparing the figures 1a and

1b, the role of the mesh resolution is clearly visible. In fact, increasing by a factor of three

the number of initial conditions, more accurate results have been obtained, and the FTLE
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fields practically coincide with the one computed with the analytical approach, especially in

regions characterized by a quite smooth behavior.

B. LCS extraction

A definition of a LCS of the magnetic field configuration can be based upon the FTLE.

As in Ref. [14], our analysis follows the method discussed in Ref. [2, 3], where the La-

grangian coherent structures of a velocity field are defined as ridges of FTLE field of the

corresponding particle trajectories. In particular the “second derivative ridge” definition is

assumed, which relies on the Hessian of the FTLE field. In the case of magnetic fields, we

define a LCS as a ridge in the FTLE-field of the field line trajectories.

A ridge is a curve c(s) (s being the parameter along the curve) that satisfies two require-

ments:

1. The gradient in the FTLE-field is along the curve. This means that the tangent vector

c′(s) and ∇σ(c(s)) have to be parallel.

2. Σ(n,n) < 0 is minimal, where n is the unit normal vector to the curve c(s) and Σ is the

Hessian, evaluated at the point c(s).

To extract the LCS from the FTLE field, both the Hessian of the FTLE, Σ = d2σ(x)
dx2 , and

the gradient lines ∇σ are determined. In the case of the Cartesian grid we adopted, both

have been easily computed from finite-differencing. Once the eigenvectors corresponding to

the minimum eigenvalue direction of the Hessian are computed, a scalar field can be formed

by taking the inner product of these eigenvectors with the gradient field. Then ridges are

extracted by looking at the zero-valued level sets. When chaotic “flows” are taken into

account, as in the case of the magnetic fields we consider here, the influence of the numer-

ical noise on the computation of the ridges can become an issue. In order to remove these

spurious effects, we have chosen a natural, easy to implement, criterion which prescribes a

minimum height of the ridge and of the FTLE gradient field.

Fig.2 shows the FTLE ridges of the partially chaotic magnetic configuration described

in Ref. [14] we discussed above. Green lines correspond to the ridges extracted from the

FTLE distributions computed with the method based on the direct evaluation of the flow

map for both the considered meshes. Red curves refers to the FTLE field obtained with

the technique adopted in Ref. [14]. The two sets of curves are in quite good agreement,
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(a)

(b)

FIG. 2: Ridges extracted from the FTLE field computed with the method based on the

study of the flow map on the x− y subdomain [0.4, 0.6]× [−0.25, 0.25] (green lines) with

two different samplings: (a) 300 × 200 and (b) 600 × 300 points. The ridges extracted

from the FTLE field obtained with the method adopted in [14] are also shown (red lines).

particularly in fig. 2b. Observing fig. 2a, on one hand small misalignments emerge, and on

the other hand the detection of the LCSs is incomplete, since the ridge on the left (x < 0.46)

is not identified. This behavior is due to the different spatial resolution adopted in the two

FTLE computations, as can be seen by comparing the two figures. All the tests discussed
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above prove the FTLE computation adopted in this work is reliable and suitable for treating

general magnetic configuration, provided a large enough number of initial conditions is used.

III. MAGNETIC FIELD DESCRIPTION OF THE RFP REFERENCE CASE

In the following the study of the coherent magnetic structures that emerge during the

nonlinear stages of a reconnection process in a RFP confinement scheme is presented. The

dynamics of this process is provided by a numerical simulation [23] carried out with the code

SpeCyl [24], which proved to catch several aspects of the experimental phenomenology (see

for example the recent letter [25] and therein references). SpeCyl solves the 3D nonlinear

visco-resistive MHD equations in a periodic cylinder (rectified torus) with radial coordinate

r, azimuthal (poloidal) coordinate θ and axial (toroidal) coordinate z with a period of

2πR0. The aspect ratio of the rectified torus is set to R0 = 4. The model’s equations, in

dimensionless form, are given by:

∂v
∂t

+ v · ∇v = J×B + ν∇2v (7)

∂B
∂t

= ∇× (v ×B− ηJ) (8)

∇×B = J (9)

∇ ·B = 0 (10)

where B is the magnetic field, J the current density, and v the plasma velocity field.

The adimensional parameters η = S−1, where S is the Lundquist number, and ν = M−1,

where M is the viscous Lundquist number, represent the plasma resistivity and viscosity,

respectively. The initial condition of the dynamical simulation is the so-called “1D ohmic

equilibrium”, obtained from eq. 7 by imposing ∂
∂t

= 0 and v = 0, adding Ohm’s law [26].

Fig. 3 shows the radial profiles of some relevant quantities at the initial equilibrium.

In order to induce the magnetic relaxation to mean reversed field typical of the RFP two

linearly unstable helical perturbations are imposed on the initial axis-symmetric equilibrium.

The Fourier transforms of the perturbed fields along the poloidal and toroidal direction are

characterized by the mode number m1 = 1, n1 = −9 and m2 = 1, n2 = −10. They produce

two magnetic island chains resonating at different spatial position χ = const, where χ is the

helical flux function defined as B · ∇χ = 0. The Lundquist number is S = 3× 104 while the
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FIG. 3: Initial equilibrium radial profiles for some significant quantities.

magnetic Prandtl number P = ν
η

is set to P = 103. The dynamics of the process is shown

in fig. 4 where the temporal evolution of the magnetic energy of the main m = 1 modes is

reported. The n = −9 mode, the most unstable between the two perturbed modes, is the

dominant mode in the second part of the linear growth phase and at the beginning of the

nonlinear saturation phase, when the other m = 1 modes arise. The nonlinear dynamics

makes the n = −10 mode to become the dominant one after t = 2000τA. The exponential

decay of the secondary modes brings the system to the final n = −10 single helicity (SH)

equilibrium configuration.

The specific SpeCyl simulation we consider for this first application is a schematic yet

paradigmatic case of magnetic chaos healing in RFP [11], which has been discussed in its

general features in [23]. The highlights are as follows. In a first stage, starting around

t = 600τA, a macroscopic chaotic region appears between the two magnetic islands induced

by the initial perturbations and, in particular, inside the separatrix of the n = −9 mode.

As time increases, the chaotic volume increases together with the island widths, according

to the Chirikov criterion [27]. Later on, at t = 750τA, the amplitude of the n = −9 is so

large that the separatrix expulsion occurs, which is seen by disappearance of the helical axis.

Then, at t = 790τA, chaos is strongly reduced in the whole domain. It only survives at the

separatrix of the outer n = −10 island, which reappears with a rather elongated shape at

this time. The chaos healing effect is robust and lasts for a long time, even if the amplitude

of secondary modes is increasing. At t = 1800τA, for instance, well defined magnetic surfaces

are still observed in the whole domain, either closed around the helical axis or in the form

of secondary islands.

The analysis of the magnetic field topology during the evolution of the reconnection process

has been carried out by the field line tracing code NEMATO [28, 29]. Once the magnetic
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FIG. 4: The temporal evolution of the magnetic energy of the main m = 1 modes. The

time t is expressed in terms of the Alfvè time τA. Vertical bars mark the times

t = 600, 750, 790, 1800.

field at a fixed dynamic time t is provided, NEMATO solves the magnetic field line equa-

tions in the parametric form, dx
dτ

= B(x, t), on the 3D grid x, where τ is a parameter along

the field lines. It has been verified that this code is particularly suitable to study weakly

chaotic magnetic fields typical of the quasi-single helicity state in RFP. This is due to two

main features: the interpolation scheme, which ensures the solenoidal nature of the field

everywhere in the domain, and the volume-preserving integration scheme. Together, they

exactly preserve ∇ ·B = 0 to numerical round-off along each magnetic field line.

The magnetic field line trajectories computed by NEMATO can be visualized through

Poincaré maps on the poloidal sections θ = const or on the toroidal planes z = const.

This provides a glimpse of the magnetic field topology at a desired dynamical time t during

the numerical simulation performed by SpeCyl.

IV. MAGNETIC TRANSPORT BARRIERS IN A QUASI-HELICAL (QSH) CON-

FIGURATION

In this work we apply the FTLE analysis for the detection of transport barriers on a

magnetic configuration in the QSH state. In particular, we focused on the time t = 600τA

of the MHD simulation reported in fig. 4. It is worth noting, in fact, that at this dynam-

ical time the magnetic configuration is strongly dominated by a single helicity, the (1,−9)

mode, whose amplitude is two order of magnitude larger than the amplitude of the (1,−10)

mode. The Poincaré map in fig. 5 shows the topology of the corresponding magnetic field

on the poloidal section z = 0. It has been obtained by integrating a set of 256 magnetic

field lines up to the field-line time z = 1000Lz by the NEMATO code. The magnetic field
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FIG. 5: Poincaré map on the z = 0 section of the magnetic field at t = 600τA. The field

lines trajectories have been obtained by the NEMATO code starting from a set of 256

initial conditions uniformly distributed on a 16× 16 mesh, where 0 ≤ θ ≤ 2π and

0.2 ≤ r ≤ 0.45. The integration has been carried out up to z = 1000Lz.

lines are initially distributed over a uniform 16 × 16 mesh on the domain 0.2 ≤ r ≤ 0.45,

0 ≤ θ ≤ 2π. Two rather large regions with regular KAM surfaces, floating in the stochas-

tic sea, are visible. They represents the remnants of the magnetic islands induced by the

initial perturbations (1,−9) and (1,−10), whose O-points are centered around (0.25, 0) and

(0.35, 0) respectively. Smaller magnetic islands are also present, caused by the beating of

the two main perturbations.

The FTLE field for this system has been calculated for a set of 3.44×107 magnetic field lines

initially distributed at z = 0 over a uniform 4096×8400 mesh on the domain 0.2 < r < 0.45,

0 < θ < 2π. Fig. 6 shows the results after 10 iterations along the toroidal direction, which

corresponds to |z−z0| = 10Lz = 80π. It is important to point out that the determination of

a suitable integration time in the FTLE definition is a critical issue, as it naturally depends

on the specific case. As shown in Ref. [2] one must carefully choose an integration time

large enough to allow a sufficient separation of the field lines. On the other hand, we have

assumed that the field lines stretching is described by the derivative of the flow map: this

assumption is valid for an infinitesimal initial separation and, if z is large and the grid spac-
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ing is not sufficiently small, it could break down. A comparison of different results obtained

with different integration times has been carried out. The choice |z − z0| = 10Lz has been

considered as a suitable value since the corresponding structures well matches the essential

features of the topology of the considered magnetic configuration.

The FTLE distribution clearly exhibits extremely sharp gradients, corresponding to ridges,

inside the chaotic area. On the contrary, in the regular regions, both inside and outside the

stochastic domain, the FTLEs have a quite smooth behavior and small values. Finally, thin

layers, where the FTLE field is rather spiky, can be observed around the island patterns

related with the modes (1,−9) and (1,−10).

Second derivative ridges in this FTLE field are extracted according to the algorithm de-

scribed in sec.2 and are shown in fig. 7 (black curves) together with the Poincaré map. Well

defined ridges are distributed along the external borders that enclose the chaotic region.

This is not surprising because these borders are regular magnetic surfaces that correspond,

by definition, to LCSs and as a consequence to the ridges of the FTLE, according to Ref.

[2]. More interestingly, fig .7 shows that ridges do exist also in the middle of the stochastic

domain.

As in Ref. [14] we can prove these structures correspond to the invariant manifolds that

emanate from special hyperbolic points. These points are the intersections of the so-called

“distinguished” hyperbolic lines (the generalized X-lines) [13] with the z = 0 plane. Fig.8

shows the LCSs (black lines) with superimposed the manifolds rising at (0.256, π) (red line),

(0.2635, π) (light blue line) and (0.277, π) (green line). The manifolds are computed by

plotting the Poincaré maps of a set of magnetic field lines initially distributed on a close

curve centered around the corresponding hyperbolic points. This method is a simplified

version of the rigorous contour-dynamic technique [30], which can become not convenient

when chaotic fields are considered due to the high computational costs. In order to map

both the unstable, or repelling, manifold and the stable, or attracting, manifold magnetic

field line equations have been integrated forward and backward in time z, respectively. For

each hyperbolic point, we considered a set of 1024 initial conditions uniformly distributed

along the sides of a square whose width is L = 2× 10−4. The manifolds rising at (0.256, π)

have been traced up to |z| = 20Lz, while for the other two hyperbolic points the magnetic

field line integration has been carried out up to |z| = 25Lz. The figure shows that the ridges

tend to be aligned with and practically coincide with the branches of the corresponding
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FIG. 6: FTLE field obtained with a set of 4096× 8400 initial conditions uniformly

distributed on the domain [0.2, 0.45]× [0, 2π]. The integration time has been set to

z = 10Lz.

stable and unstable manifolds, which are computed for a few Lz periods. It is seen that

magnetic field lines hardly cross these manifolds, thus FTLE ridges form an actual barrier

with respect to magnetic field line transport.

In fig. 9 we have overplotted the FTLE ridges on the Poincaré map on the z = 0 plane

produced, after 1000 toroidal iterations, by two set of magnetic field lines whose initial con-

ditions are randomly distributed on the left (red area) and on the rigth (green area) of the

red manifold of fig. 8. It is clearly visible that the ridges associated to this manifold prevent

for a quite long time interval the transport of field lines from the stochastic area in red into

the green stochastic region, and vice versa. These ridges act therefore as effective transport
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FIG. 7: Ridges (black curves) extracted from the FTLE field shown in fig. 6.

barriers against the magnetic field line penetration.

As shown in Ref. [15], each LCS is characterized by a specific rational number of the pa-

rameter ι, the so-called rotational transform. It represents the frequency oscillation of the

hyperbolic line from which the LCS arises. It is well known that in the case of an axisym-
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FIG. 8: Ridges extracted from the FTLE field (black lines) with superimposed the

manifolds rising at (0.256, π) (red line), (0.2635, π) (light blue line) and (0.277, π) (green

line). Red manifold is traced up to z = 20Lz, while both the light blue and green

manifolds are traced up to z = 25Lz. The three manifolds have been obtained with a set of

1024 initial conditions, centred on the corresponding hyperbolic points, uniformly

distributed on a square in the (r, θ) plane of side L = 2× 10−4.

metric system ι corresponds to the inverse of the safety factor, 1/q = RBθ/rBz. According

to eq.2 q can be written as

q =
dφ

dθ
(11)

where φ = dz/R.

To compute the characteristic frequency of the magnetic barrier highlighted in fig. 9 we

followed the trajectory of a magnetic field line starting around the hyperbolic point (0.256, π)

for a time interval during which the field line remains trapped on the corresponding coherent

structure. An example of the characteristic behavior is shown in fig. 10, where the θ

coordinate is plotted versus the φ coordinate. The result is a set of straight lines whose

slope is constant and equal to 0.10512, close to the rational number 2/19. This means

that the considered magnetic field line describes a trajectory that travels m = 2 poloidal

laps each n = 19 toroidal laps. It is worth to note that this result agrees with the radial

profile of the safety factor, numerically measured in Ref. [23]. The oscillation frequency is
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FIG. 9: Poincaré map of two sets of initial conditions randomly distributed on the left

(red area) and on the right (green area) of the red manifold in fig. 8. This map has been

obtained with a set of 20 initial conditions in the red area and 12 initial conditions in the

green area. The black curves represent the ridges extracted from the FTLE field. The

field-line time integration for the Poincaré map is z = 1000Lz.

also consistent with the spatial position where the detected magnetic structure is centered.

Since it is located between the rational surfaces of the primary modes m1 = 1, n1 = −9 and

m2 = 1, n2 = −10, the corresponding wave numbers satisfy the condition:

|mni −min| = 1. (12)

A more precise identification of such structures in terms of winding number and noble cantori

(following [18, 19]) is out of the scope of this paper and is left for future work.

V. CONCLUSIONS

In this paper we report the first application of the Finite Time Lyapunov Exponent

method for analyzing the topology of a magnetic field resulting from 3D nonlinear MHD

simulations of the RFP. We focused on the magnetic field at a fixed dynamical time, cor-

responding to a state when a quasi-single helicity state arises. This is a partially chaotic

configuration, characterized by the presence of a dominant MHD mode that starts to impress
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FIG. 10: Evolution of the poloidal coordinate θ as a function of the toroidal coordinate φ

for a field line initially located at the hyperbolic point (0.256, π).

a 2D helical symmetry to the plasma column. The intrinsically 3D nature of the field results

in the presence of a domain characterized by the presence of stochastic magnetic field lines.

The aim of this analysis is to evaluate the possible presence in the chaotic domain of La-

grangian Coherent Structures, defined as ridges of the FTLE distribution, which can act

as barrier for the magnetic field line transport. Such barriers could influence the self-

organization process and play a fundamental role on the appearance of the QSH state ob-

served in RFP experiments.

Compared to previous analysis, where just an analytical description was available for the

magnetic field distribution, a new approach for the computation of the FTLE has been

reported that is suitable to be applied to configurations from numerical modeling and ex-

perimental cases.

As a first step the reliability of the new approach was verified: the new results showed an

excellent degree of agreement with the ones coming from the previous analytical description

of the magnetic field.

As a second step we analyzed the magnetic field coming from the 3D nonlinear MHD code

SpeCyl and analyzed by the NEMATO field line tracing code. Well defined chains of FTLE

ridges have been identified. Some of the ridges lie inside the chaotic regions of the Poincaré
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plots and we have verified through the analysis of the behavior of a sample of magnetic field

lines that these structures act as effective magnetic barriers preventing magnetic field line

transport across them. When a magnetic field line is trapped by such a structure it exhibits

an oscillation frequency close to the one of the corresponding hyperbolic trajectory. The au-

thors speculate that these structures can be associated with noble cantori existing between

two destroyed KAM tori, which are expected to provide important transport barriers for the

magnetic field lines.

Despite the preliminary character of this work, the analysis we carried out can provide new

insights into the dynamics of the magnetic field observed in RFP configurations. In particu-

lar the structures emerging from the ridges of the FTLE field can be identified as a precursor

signal for the onset of magnetic configuration, as the SHAx state. A deeper analysis, based

on the inspection of different magnetic configurations, is foreseen to verify this conjecture.
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