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Abstract

The proliferation of Internet of Things (IoT) systems is having a profound impact across
all aspects of life. Recognising and identifying particular users is central to delivering
the personalised experience that citizens want to experience, and that organisations
wish to deliver. This article presents a survey of human-computer interaction-based
(HCI-based) and natural habits-based behavioral biometrics that can be acquired unob-
trusively through smart devices or IoT sensors for user recognition purposes. Robust
and usable user recognition is also a security requirement for emerging IoT ecosys-
tems to protect them from adversaries. Typically, it can be specified as a fundamental
building block for most types of human-to-things accountability principles and access-
control methods. However, end-users are facing numerous security and usability
challenges in using currently available knowledge- and token-based recognition (i.e.,
authentication and identification) schemes. To address the limitations of conventional
recognition schemes, biometrics, naturally come as a first choice to supporting sophisti-
cated user recognition solutions. We perform a comprehensive review of touch-stroke,
swipe, touch signature, hand-movements, voice, gait and footstep behavioral biometrics
modalities. This survey analyzes the recent state-of-the-art research of these behavioral
biometrics with a goal to identify their attributes and features for generating unique
identification signatures. Finally, we present security, privacy, and usability evaluations
that can strengthen the designing of robust and usable user recognition schemes for
IoT applications.
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1. Introduction1

IoT ecosystems, integrating smart sensors, actuators, advanced communications,2

efficient computation, and artificial intelligence, have the power to transform the way we3

live and work. Almost every business vertical has started to embrace IoT technology [1].4

This includes sectors as diverse as automotive, energy, entertainment, education, food,5

finance, healthcare, and transportation where smart, integrated systems are delivering6

improved quality of life and resource efficiency by providing security-sensitive services7

via IoT applications. Bera et al. [2] reported that user authentication, access control,8

key management, and intrusion detection are essential requirements to prevent real-9

time data access directly from the IoT-enabled smart devices that are deployed in10

IoT ecosystems. Studies have indicated that application-layer attacks in the IoT are11

particularly complex to detect and deflect [3, 4]. Ultimately, any security breach12

of IoT ecosystems has the potential for profound consequences on consumers and13

society [5]. Therefore, robust and usable Authentication, Authorization and Accounting14

(AAA) mechanisms for applications bridging humans and IoT ecosystems, which can15

be specified as IoT Applications, are critical for maintaining confidentiality, integrity,16

availability (CIA) in the system.17

Many IoT ecosystems still rely on traditional Personal Identification Numbers18

(PINs), passwords, and tokens based user recognition mechanisms [6]. This is de-19

spite, users facing both security and usability challenges in using these conventional20

(knowledge- and token-based) recognition schemes [7, 8]. Further, the decision process21

in conventional authentication mechanisms is usually binary [9]. PINs and passwords22

can be easily guessed, shared, cloned, or stolen [10]. Conventional authentication23

schemes are also prone to a wide range of common attacks [11], such as dictionary-,24

observation- and replay-attacks. Weak passwords remain the major cause of botnet-25

based attacks, such as Mirai, on huge numbers of IoT systems [12]. Additionally, they26

possess several usability issues [13], such as placing overwhelming cognitive load27

on users and ergonomic inefficiencies for newer IoT end-points. As such, human-to-28

things recognition schemes for IoT ecosystems require rethinking, with behavioral29

biometrics providing an appropriate alternative to overcoming the drawbacks present30

in conventional authentication schemes.31

This article presents a comprehensive review of touch-stroke, swipe, touch signa-32

ture, hand-movements, voice, gait and footstep behavioral biometric modalities for33

designing user recognition schemes in emerging IoT ecosystems. The motivation for34

this particular selection of modalities is provided by the current focus of academic35

research, and the industrial trend towards human-computer interaction (HCI) and36
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natural habits-based behavioral biometrics-based recognition schemes. For instance,37

ViewSonic and Namirial partnered to deliver a behavioral biometric eSignature solution38

that includes the behavioral biometric of handwritten signatures to boost electronic39

signature security and reliability [14]. Banking sectors are investigating characteristics40

including touch-stroke dynamics to generate a trusted user profiles for distinguishing41

between normal and unusual user behavior, as a means to detect fraudulent users [15].42

Other companies, such as BehavioSec [16] and BioCatch [17] are leveraging behavioral43

biometrics, including swipe or touch gestures, typing rhythm, or the particular way an44

individual holds their device, to offer enterprise-scale security solutions for continual45

and risk-based authentication or fraud detection, for example. Electronic payment card46

providers are investigating behavioral biometrics for cutting-edge payment systems of47

the future [18]. A study of biometrics to achieve intelligent, convenient, and secure48

solutions for smart cities and smart transportation are presented in [19] and [20], re-49

spectively. Sensor-based activity recognition [21], such as gait, can be used to verify50

commuters through their walking patterns, thereby replacing the need for a travel pass51

to access public transportation. NEC Corporation and SITA have collaborated to roll52

out a walk-through, contactless digital identity solution for airports leveraging their53

biometric identity management platform to facilitate a non-intrusive method of identity54

verification [22]. So large is the potential that the market study forecasts that by 202555

behavioral biometrics market will reach 3.92 Billion [23].56

1.1. Objectives and survey strategy57

The objective of this article is to survey HCI and natural habits-based biometrics that58

can be utilized by researchers and engineers to design uni-modal or multi-modal user59

recognition schemes (leveraging concepts such as implicit, continuous, or risk-based60

[9]) for security-sensitive applications, thus, safeguarding IoT ecosystems.61

Table 1 lists previous surveys related to the behavioral biometric modalities covered62

in this article.63

Table 1: Earlier behavioral biometrics surveys

Ref Year Contributions
Yampolskiy and Govindaraju
[24]

2008 This survey presented a classification of behavioral biometrics based on skills, style,
preference, knowledge, motor skills, or strategy applied by humans.

Meng et al. [25] 2015 This survey covered the development of biometric user authentication techniques on
mobile phones. And, presented a study of voice, signature, gait, behavior profiling,
keystroke and touch dynamics behavioral biometrics.

Alzubaidi and Kalita [26] 2016 This survey investigated authentication of smartphone users based on handwaving,
gait, touchscreen, keystroke, voice, signature and general profiling behavioral bio-
metrics.

Oak [27] 2018 This survey analyzed persons’ behavior, such as keystroke dynamics, mouse dynam-
ics, haptics, gait, and log files, for their designing persistent security solutions.

Dang et al. [28] 2020 This survey focused on Human activity recognition (HAR) for designing context-
aware applications for emerging domains like IoT and healthcare by analyzing
sensor- and vision-based behavioral patterns.
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Ref. Year Contributions
Stylios et al. [29] 2020 This survey presented the classification of behavioral biometrics technologies. It re-

viewed behavioral traits like gait, touch gestures, keystroke dynamics, hand-waving,
behavioral profile, power consumption, for continuous authentication for mobile
devices.

In this survey, we first elucidate attributes and features of behavioral biometric64

modalities that can be acquired from smart devices equipped with motion sensors,65

touch screens, and microphones or by external IoT sensors or nodes in an unobtru-66

sive manner. We discuss the methodologies, classifiers, datasets, and performance67

results of recent user recognition schemes that employ these behavioral biometrics68

modalities. We then present security, privacy, and usability attributes with regard to69

the CIA properties in human-to-things recognition schemes. Ultimately, the challenges,70

limitations, prospects, and opportunities associated with behavioral biometric-based71

user recognition schemes are presented.72

1.2. Article Structure73

The article is structured as follows: Section 2 discusses behavioral biometrics, sensors,74

human-to-things recognition mechanisms and performance metrics. Section 3 elicits75

attributes and features of touch-stroke, swipe, touch signature, hand-movements, voice,76

gait, and footstep modalities that can be exploited for designing user recognition77

schemes. Section 4 presents the state-of-the-arts of user recognition schemes based on78

modalities discussed in Section 3. Section 5 presents a discussion on security, privacy,79

and usability of behavioral biometric-based user recognition schemes. Section 680

discusses the open challenges and limitations that deserve attention together with81

prospects and opportunities for evolving and designing behavioral biometric-based82

human-to-things recognition schemes. Section 7 concludes the article.83

2. Background84

Despite many advancements in recent years, human-to-things recognition (iden-85

tification and authentication) remains a challenge for emerging IoT ecosystems [30].86

Evidently, with improvements in sensors technology, the opportunity to evolve behav-87

ioral biometric-based human-to-things recognition schemes has increased significantly.88

2.1. Behavioral biometrics89

Behavioral biometrics involve human behavioral characteristics or activity pat-90

terns that are measurable and uniquely identifiable and so can be designed into user91

recognition schemes. Typically, behavioral biometric modalities can be considered92

according to persons’ skills, style, preference, knowledge, motor-skills, or strategy93
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while they interact with an IoT application [24]. The categories that can be derived94

are 1) authorship; 2) HCI; 3) indirect HCI; 4) motor skills; and 5) natural habit, based95

on various information extracted or gathered from a person. These categories are96

summarised in Figure 1.97

Figure 1: A categorization of behavioral biometrics [24]

• Authorship-based biometrics involves verifying a person by observing pecu-98

liarities in their behavior. This includes the vocabulary used, style of writing,99

punctuation, or brush strokes, occuring in their writings or drawing [31].100

• HCI-based biometrics, exploits a person’s inherent, distinctive, and consistent101

muscle actions while they use regular input devices, such as touch-devices,102

keyboards, computer mice, and haptics [32]. Furthermore, it leverages advanced103

human behavior involving knowledge, strategies, or skills exhibited by a person104

during interaction with smart devices.105

• Indirect HCI-based biometrics may be considered as an extension of the second106

category. It considers a person’s indirect interaction behavior, by monitoring low-107

level computer events (e.g., battery usage) [33], stack traces [34], application108

audit [35], or network traffic logs [36], or mutual interaction analysis (e.g.,109

completely automated public Turing test to tell computers and humans apart -110

CAPTCHA) [37].111

• Motor-skills based behavioral biometrics can be described as the ability of a112

person to perform a particular action using muscle movements [38]. These113
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muscle movements are produced as a result of coordination between the brain,114

skeleton, joints, and nervous system that differs from person to person [39].115

• Natural habits-based biometrics constitute purely behavioral biometrics measur-116

ing persistent human behavior such as gait [40], hand-movement [41], swipe [42],117

grip [43], and footstep [44].118

2.2. Sensors119

The rapid evolution of system-on-chip (SoC) and wireless technologies play a120

vital role in evolving smarter, smaller, accurate, and efficient sensors for behavioral121

biometric data acquisition. Table 2 describes sensors that can be integrated into smart122

devices and portable IoT devices for acquiring behavioral biometric modalities covered123

in Section 3.124

Table 2: Sensors for acquiring behavioral biometric modalities

Category Sensor description Sensor Type
Position Position sensors can be linear, angular, or multi-axis. It measures

the position of an object that can be either relative in terms of
displacements or absolute positions.

Proximity sensor, Potentiometer, Incli-
nometer

Motion, Oc-
cupancy

Motion and occupancy sensors detect movement and presence
of people and objects, respectively.

Electric eye, RADAR, Depth Camera

Velocity,
Acceleration,
Direction

Velocity sensors can be linear or angular. It measures the rate
of change linear or angular displacement. Acceleration sensors
measure the rate of change of velocity. Magnetometer estimates
the device orientation relative to earth’s magnetic north. Gravity
sensor indicates the direction and magnitude of gravity.

Accelerometer, Gyroscope, Magne-
tometer, Gravity sensor

Pressure Pressure sensors detect force per unit area Barometer, bourdon gauge, piezome-
ter

Force Force sensors detect resistance changes when a force, pressure,
or mechanical stress is applied.

Force gauge, Viscometer, Tactile sen-
sor (Touch sensor), Capacitive touch-
screen

Acoustic,
Voice

Acoustic sensors measure sound levels transform it into digital
or analog data signals.

Microphone, geophone, hydrophone

IoT endpoints (devices) can provide position, orientation, or other motion-based125

measurements to determine unique and finite hand micro-movements. These 3-D space126

measurements can describe device positioning and movement while users interact.127

Similarly, acoustic, pressure, motion, or occupancy sensors can be used for acquiring128

behavioral biometric modalities such as voice, gait, or footstep for user recognition.129

Touch screens can be utilized to acquire touch-stroke, swipe, or touch-signature data.130

2.3. Human-to-things recognition process131

ISO2382-2017 [45] specified biometric recognition or biometrics as an automated132

recognition of individuals based on their biological and behavioral characteristics.133

ISO2382-2017 mentioned that the use of ‘authentication’ as a synonym for “biometric134
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verification or biometric identification” is deprecated; the term biometric recognition is135

preferred. Thus, human-to-things recognition can be a generic term encompassing au-136

tomated identification and verification of individuals in the context of IoT applications.137

• According to ISO2382-2017 [45], an identification process is a one-to-many com-138

parison decision to determine whether a particular biometric data subject is in a139

biometric reference database. Identification systems can be employed for both nega-140

tive recognition (such as preventing a single person from using multiple identities)141

or positive recognition for authentication purposes.142

• Similarly, ISO2382-2017 [45] defines a verification process as a comparison decision143

to determine the validity of a biometric claim in a verification transaction. Thus,144

a verification process is a one-to-one comparison in which the biometric probe(s)145

of a subject is compared with the biometric reference(s) of the subject to produce146

a comparison score. Generally, a verification system requires a labeled claimant147

identity as an input to be compared with the stored templates (e.g., biometrics148

templates) corresponding to the given label, to assert the individual’s claim. Often,149

verification systems are deployed for positive identification to prevent systems from150

zero-effort impostors and illegitimate persons.151

2.4. Performance metrics152

In a biometric system designed to distinguish between a legitimate user or an153

impostor, there can be four possible scenarios. These are derived from the person being154

legitimate or not, and being (correctly or incorrectly) identified as legitimate or not.155

These are termed true acceptance (T A) or false rejection (FR) and true rejection (TR)156

or falsely acceptance (FA) [46]. We describe the most commonly used indicators for157

the performance evaluation of biometric systems.158

• True Acceptance Rate (TAR): This is the ratio of T A legitimate user attempts to159

the overall number of attempts (T A + FR). A higher TAR indicates that the system160

performs better in recognizing a legitimate user.161

• False Rejection Rate (FRR): This is the ratio of FR legitimate user attempts to the162

overall attempts (T A + FR). FRR is a complement of TAR and it can be calculated163

as FRR = 1 - TAR. ISO/IEC 19795-1:2006 [47] also denote the term FRR as False164

Non-Match Rate (FNMR).165

• False Acceptance Rate (FAR): This is the ratio of FA impostor attempts to overall166

attempts (FA + TR). A lower FAR means the system is robust to impostor attempts.167

ISO/IEC 19795-1:2006 [47] also specified the term FAR as False Match Rate (FMR).168
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• True Rejection Rate (TRR): This is the ratio of TR attempts of impostors to all169

overall attempts (FA + TR). TRR is the complement of FAR and can be calculated170

as TRR = 1 - FAR.171

• Equal error rate (EER): It is the value where both errors rates, FAR and FRR, are172

equal (i.e., FAR = FRR).173

• Accuracy: The ratio of (T A + TR) to (T A + FR + TR + FA).174

• Receiver- or Relative-Operating Characteristic (ROC): ROC plot is a visual175

characterization of trade-off between FAR and TAR [47]. In simple terms, this is a176

plot between correctly raised alarms against incorrectly raised alarm. The curve is177

generated by plotting the FAR versus the TAR for varying thresholds to assess the178

classifier’s performance.179

• Detection Error Trade-off (DET) Curve: A DET curve is plotted using FRR and180

FAR for varying decision thresholds. To determine the region of error rates, both axes181

are scaled non-linearly [47]. Deviation- or logarithmic scales are the most commonly182

used scales in such graphs.183

3. Behavioral Biometric Modalities’ Attributes and Features184

This section presents the attributes and features of behavioral biometric modalities185

that can be exploited for conceptualizing and designing human-to-things recognition186

schemes. In particular we examine behavioral biometric modalities based on HCI187

and natural habits that can be collected with no explicit user input using users’ smart188

devices, e.g., smart devices, smartwatches, etc., or external IoT sensors/nodes, e.g.,189

pressure sensors, camera, etc.190

3.1. Touch-strokes dynamics191

Touch-strokes can be described as touch sequences registered by a touchscreen192

sensor while users navigate on touchscreen-based smart devices using their fingers [48].193

Studies have shown that human musculoskeletal structure can produce finger move-194

ments that can differ from person to person [49]. Thus, a unique digital signature can195

be obtained from individuals’ touch-points or keystrokes collected using built-in touch196

sensors available in smart devices. Commonly, touch-stroke features can be categorized197

as spatial, timing, and motion features [50].198

3.1.1. Spatial features199

Spatial features for touch-stroke involves physical interactions between a user200

fingertip and a device touchscreen surface that can be acquired when a touch event is201

triggered. Subsequently, a cumulative distance, i.e., a sum of lengths computed from202
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all the consecutive touchpoints in the 2-D space, and speed, i.e., cumulative distance203

divided by total touch-time, can be derived from touch events [51]. Commonly used204

spatial features are touch positions, time-stamp, touch size, and pressure [52, 53].205

3.1.2. Timing features206

The touch-stroke timing features generation method can utilize dwell (press or207

hold) and flight (latency) time. Dwell time can be defined as the time duration of a208

touch-event of the same key and flight time can be defined as the time interval between209

the touch events of two successive keys. These features are directly proportional to the210

number of touches on the touch-screen. As an example, Figure 2 illustrates 30 features211

containing 8-Type0 dwell time features and 22-Type1 to Type4 flight time features that212

can be extracted from the 8 touch-sequence [54].

Figure 2: Commonly used duration based touch-strokes timing features

213

The touch-stroke timing features generation method can also utilize different key-214

touch duration as illustrated in Figure 3. The shortest feature-length can be termed as215

uni-graph, which is the timing feature extracted by taking the touch event timestamp216

values of the same key [55]. The timing features extracted from two, three, or more217

keys are termed as di-graph, tri-graph, and n-graph, respectively.218

3.1.3. Motion features219

Motion features can be acquired using motion sensors, such as Accelerometer,220

Gyroscope, Magnetometer, or gravity sensors that are available in most smart devices.221

Each touch event normally inflicts some movements or rotations that can be registered222

to generate a unique user authentication signature [56]. However, these motion features223

can be associated better for other user behaviors like hold- and pick-up movement [57].224
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Figure 3: Graph based touch-strokes timing features

3.2. Swipe225

Swipe can be defined as a finite touch-events sequence that occurred as a result of226

users touching a smart device’s touchscreen with their finger. Smart devices provide227

APIs to get touch coordinates, velocity, and pressure data for each touch-point [58].228

Some of the spatial features that can be extracted from a swipe action are the229

touch-points timestamp, x- and y-coordinates, velocity, and acceleration. Acceleration230

for each touch-point can be computed mathematically, from velocity data. The touch231

pressure of each touch-point determines how hard the finger was pressed on the screen,232

and what was the touch size. Also, trajectory length, duration, average velocity,233

average touch-size, start and end touch coordinates can be derived from a swipe234

data [59, 60]. Additionally, statistical features, such as min, max, average, standard235

deviation, variance, kurtosis, and skewness can be computed from each 2-D touch236

sequence, i.e., position, velocity, acceleration, and pressure, acquired for a swipe237

action [61].238

3.3. Touch Signature239

Touch signature, i.e., a person signing on smart devices’ touchscreen using their240

finger or stylus, is similar to a handwritten signature. Although, a touch signature241

can utilize the features that are extracted for a swipe gesture to generate a unique242

identification for users specified in Section 3.2.243

Typically, touch signature features can be classified as global and local features [62].244

Global features include total writing time, number of strokes, and signature size. Local245

features include local velocity, stroke angles, etc., computed at an instance of time or246

for a short duration. Some of the statistical features that can be extracted for touch247

signature are minimum, maximum, and mean of speed, acceleration, pressure, and size248

of the continuous strokes [63]. Further, for each stroke in a touch signature, touch-249

duration, segment direction, log curvature radius, stroke length to width ratio can be250

extracted [64, 65].251
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Touch-duration can be utilized for finding similarity between touch signatures of a252

person. The difference between the two touch-duration sequences (Tdi f f erence) can be253

computed using Equation 1. Ts(n) and Tr(n) are touch-duration of nth touch sequence,254

respectively that are obtained from two touch signatures of a person.255

Tdi f f erence =

N∑
n=1

|Ts(n) − Tr(n)| (1)

The direction (θi) of i-th segment having coordinates (xi, yi; xi+1, yi+1) can be calcu-256

lated using Equation 2.257

θi = arctan
(

yi+1 − yi

xi+1 − xi

)
∀ i = 1 to N (2)

After decomposing the signature into multiple strokes, Lognormal velocity distri-258

bution vi(t) of ith stroke for a given starting time (t0i), stroke-length (Di), logtime delay259

(µi) and logresponse time (σi) can be obtained using Equation 3.260

|vi(t)| =
Di

√
2πσi(t − t0i)

exp(−
(ln(t − t0i) − µi)2

2σ2
i

) (3)

3.4. Hand Movements261

Hand movements can be defined as a finite trajectory in 3-D space for gestures262

like hold, upward, downward, or snap while users perform a particular activity using263

their smart devices. For a user’s hand-movement action, unique user-identification-264

signature can be generated from collected X, Y , Z, and M coordinates. In this process,265

X, Y , and Z streams can be collected using sensors such as Accelerometer, Gyroscope,266

Magnetometer, or Gravity sensors, available in smart devices. Whereas, magnitude267

stream can be derived mathematically, from each sample (X, Y , Z) using Equation 4.268

M =
√

(X2 + Y2 + Z2) (4)

Where, M is the magnitude and X, Y , and Z are the X, Y, and Z coordinates obtained269

from each sensor sample.270

Univariate statistical features can then be extracted from each raw stream that aid271

to reduce the dimensionality of raw data and improve the signal-to-noise ratio [41].272

Some of the statistical features, such as min (minimum value), max (maximum value),273

mean (average value), standard deviation (variation from the mean value), skewness274

(measure of the distortion or asymmetry), kurtosis (measure of the tailedness), etc., for275

a dataset (S ) containing N values can be computed using Equations 5.276
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Minimum (Min) =
N

min
i=1

S i

Maximum (Max) =
N

max
i=1

S i

Mean (µ) =
1
N

N∑
i=1

S i

S tandard Deviation (σ) =

√∑N
i=1(S i − µ)

N

Kurtosis (k) =

1
N

∑N
i=1(S i − µ)4

σ4

S kewness (s) =

1
N

∑N
i=1(S i − µ)3

σ3

(5)

3.5. Voice277

Speech processing can be a challenging task as people have different accents, pro-278

nunciations, styles, word rates, speed of speech, speech emphasis, accent, and emotional279

states. Typically, a voice-based authentication system can be either text-dependent280

or text-independent. Figure 4 illustrates speech processing methods encompassing281

speaker identification, speaker detection, and speaker verification [66].

Figure 4: An overview of speech processing [66]

282

Voice biometrics exploit human speech parametrization or pattern matching/scoring283

methods to generate a unique identification signature. Human speech generation284

involves the lungs, vocal cords, and vocal tracts [67]. When a person speaks, the air285

expels from the lungs passing through the vocal cords that dilate or expand allowing286

the airflow to produce unvoiced or voiced sound. Subsequently, the air is resonated and287

reshaped by the vocal tract that consists of multiple organs such as the throat, mouth,288

nose, tongue, teeth, and lips. The vocal cord’s modulation, interaction, and movement289

of these organs can alter sound waves and produce unique sounds for each person. For290

a sound, the phoneme is known as the smallest distinctive unit sound of a speech [68]291
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and pitch can be referred to as a fundamental frequency [69]. Each phoneme sound292

can be explained as airwaves produced by the lungs that are modulated by the vocal293

cords and vocal tract system.294

Speech parametrization transforms a speech signal into a set of feature vectors, such295

as Mel Frequency Cepstral Coefficients (MFCCs), mean Hilbert envelope coefficients296

(MHEC) [70], Power Normalized Cepstral Coefficients (PNCCs) [71], and non-negative297

matrix factorisation (NMF) [72]. MFCCs are widely used parametric features for298

automatic speech and speaker recognition systems [73]. A Mel is a unit of pitch [74].299

The sound pairs that are perceptually equidistant in pitch are separated by an equal300

number of Mels. The mapping between frequency in Hertz and the Mel scale is linear301

below 1000 Hz and logarithmic above 1000 Hz. The Mel frequency m can be computed302

from the raw acoustic frequency.303

mel( f ) = 1127ln(1 +
f

700
) (6)

To extract MFCCs, first the voice signal is pre-emphasized using a first-order high-304

pass filter to boost the high frequencies energy. The next step involves windowing305

that can be performed using the Hamming function to extract spectral features from a306

small window of speech. Afterward, Fast Fourier Transform (FFT) is applied to extract307

spectral information from the windowed signal to determine the amount of energy at308

each frequency band. For computing MFCCs, filter banks are created with 10 filters309

spaced linearly below 1000 Hz, and the remaining filters spread logarithmically, above310

1000 Hz collecting energy from each frequency band. After taking the log of each of311

the mel spectrum values. Finally, Inverse Fast Fourier Transform (IFFT) is applied312

extracting the energy and 12 cepstral coefficients for each frame.313

Pattern matching/scoring methods involves probabilistic modeling (e.g., Gaussian314

Mixture Model (GMM) [75], Hidden Markov Models (HMMs) [76], Joint factor analy-315

sis (JFA), i-vectors [75]), template matching (e.g., vector quantization, nearest neigh-316

bor) and deep neural network trained on various combinations of i-vectors, x-vector,317

feature-space maximum likelihood linear regression (fMLLR) transformation [75] or318

Gabor filter (GF) [77]. I-vectors are low-dimensional fixed-length speaker-and-channel319

dependent space that is a result of joint factor analysis [78]. For extremely short320

utterances, i-vectors based approaches can provide an effective speaker identification321

solution using different scoring methods like cosine distance or probabilistic linear322

discriminant analysis (PLDA). In an x-vector system, DNN is trained to extract the323

speaker’s voice features, and the extracted speaker embedding is called x-vector [79].324
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3.6. Gait325

Human gait is the defined as the manner and style of walking [80]. Gait can be326

characterized by its cadence that is measured as the number of steps per time unit.327

Typically, a person’s gait varies during different activities, e.g., walking, running,328

hopping, ascending, or descending, etc. [81]. A gait cycle, illustrated in Figure 5,

Figure 5: An illustration of a gait cycle

329

consists of two primary phases: stance and swing [82]. The stance phase is the time-330

period during which feet are on the ground, constitutes approximately 60% of the331

gait cycle. The swing phase is the time-period during which the foot is in the air,332

constitutes the remaining 40% of the gait cycle. A stance phase can be further divided333

into 1) initial-contact and loading-response, 2) mid-contact and terminal-response, and,334

3) Pre-swing. Similarly, a swing phase can be divided into 1) initial, 2) mid, and 3)335

terminal swing [83]. Using these parameters, both time-based and spatial features can336

be extracted as indicated in Table 3.337

Table 3: Gait features
# Spatial Time
1. Stride length (cm) Duration of step (milli sec)
2. Step length (cm) Stride duration (milli sec)
3. Stride width or base of support (cm) Stance phase (milli sec)
4. Internal/External Angle (deg) Swing phase (milli sec)
5. Speed (m/s or cm/s) Cadence(steps/min)
6. Walk ratio (cm/step/min) −
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Some more gait features [40] that can be analyzed for user recognition are gait338

variability and angular kinematics. Gait Variability (GV) can be defined as changes in339

gait parameters from one stride to the next. In a gait cycle, the coefficient of variation340

(CV) that is a measure of total variability can be calculated as root mean square (RMS)341

of standard deviation (σ) of the moment over stride period t mean of the absolute342

moment of force over stride period using Equation 7.343

CV =

√
1
n

∑n
i=1 σ

2

1
n

∑n
i=1 |Xi|

(7)

Angular Kinematics of joint angles refers to the kinematics analysis of angular
motion [40]. Using Equation 7, angular displacement (the difference between the initial
and final angular position), angular velocity (change in angular position over a period
of time), and angular acceleration (change in angular velocity over a period of time).

Angular displacement (∆θ) = θ f inal − θinitial

angular velocity (ω) =
dθ
dt

angular acceleration (α) =
dω
dt

(8)

3.7. Footstep344

A footstep is defined as a combination of a single left and right stride of a person.345

Footstep features include stride length, stride direction, timing information, acoustic346

and psycho-acoustic parameters, spatial positions, and relative pressure values in foot347

regions. These features can be captured using a range of sensors including floor-based348

sensors[84], such as piezoelectric sensors, switch sensors, or fabric-based pressure349

mapping sensors.350

Ground Reaction Force (GRF) is the common feature providing a description of a351

person’s footstep force acquired from pressure sensors [44]. Ground Reaction Force352

(GRFi) per sensor can be computed by accumulating each ith sensor pressure amplitude353

from time t = 1 to t = Tmax using Equation 9.354

GRFi =

Tmax∑
t=1

Pi[t] (9)

Furthermore, using Equation 10 time-series arrays, namely, average spatial pressure355

(S Pave), cumulative spatial pressure (S Pcumulative), upper (S Pupper) and lower (S Plower)356

contours can be generated from the pressure signals acquired from N sensors for a T357

time-period [85].358
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S Pave[t] =

N∑
i=1

Pi[t] S Pcumulative[t] =

N∑
i=1

Pi[t] +

N∑
i=1

Pi[t − 1]

S Pupper[t] =
N

max
i=1

S i[t] S Plower[t] =
N

min
i=1

S i[t]

(10)

where, Pi[t] is the differential pressure value from the ith sensors at the time t, and, N is359

the total number of sensors. Footstep analysis is applicable for numerous applications,360

such as predicting human action, security, and surveillance at public places [85].361

4. State-of-the-art in HCI and natural habits based behavioral biometrics362

This section discusses the state-of-the-art for user recognition schemes based363

on HCI and natural habits-based behavioral biometrics discussed in Section 3. We364

present a systematic narrative of the recent literature developing touch-stroke dynamics,365

swipe gesture, touch signature, hand micro-movements, voice-prints, gait, and footstep366

behavioral biometrics modalities for designing user recognition schemes targeting IoT367

applications.368

Touch-stroke dynamics: User recognition methods based on touch-stroke dynam-369

ics can readily implemented in IoT endpoints such as smartphones, tablets, smart-370

watches, or other devices equipped with a touchscreen. Zheng et al. [52] utilized371

users’ tapping behavior for user verification in a passcode-enabled smartphone. They372

recruited 80 subjects to explore tapping behaviors using four different factors, i.e.,373

acceleration, pressure, size, and time. They evaluated their scheme using a one-class374

classifier and achieved an EER of 3.65%. Further, their experiment to quantitatively375

measure the effect of the mimic attack revealed that only dissimilarity scores of ac-376

celeration reduced, whereas the score ranges of the other three features spread wider.377

Similarly, Teh et al. [53] investigated touch dynamics biometrics by extracting a basic378

set of timing and spatial features known as First Order Features (FOF). They derived379

an extended Set of Features (SOF) from the FOF features. They used both a one-class380

classifier (K-Nearest Neighbor (kNN), Support Vector Data Description (SVDD)), and381

a binary-class classifier (kNN, State Vector Machine (SVM)) for evaluation of their382

scheme on a dataset having 150 subjects. Through experiments, they demonstrated383

a reduction in impersonation attempts to 9.9% from 100% by integrating the touch384

dynamics authentication method into a 4-digit PIN-based authentication method in385

contrast to the sole use of PIN-based authentication.386
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Draw-a-pin is a PIN content analyzer and drawing behavior analyzer to verify the387

two factors of a log-in attempt [86]. The system extracts touch information, such388

as x-coordinates, y-coordinates, finger pressure, and touch area size, from each 4-389

digit pin. They claim the scheme is resilient against shoulder surfing attacks and390

achieved an EER of 4.84% using the Dynamic Time Warping (DTW) algorithm on 20391

subjects. Similar to the draw-a-pin approach, Tolosana et al. [87] suggested replacing392

conventional authentication systems based on PIN and One-Time Passwords (OTP)393

with a scheme that allows users to draw each digit of the password on the device’s394

touchscreen. They created an e-BioDigit database consisting of 93 subjects to conduct395

their experiment. The authors evaluated the scheme using DTW by combining with396

the Sequential Forward Feature Selection (SFFS) function selection algorithm and397

Recurrent Neural Networks (RNNs) deep learning technology that exploited various398

touch features; they achieved an EER of 4%.399

Multi-touch authentication with TFST (touch with fingers straight and together)400

gestures is a simple and reliable authentication scheme for devices equipped with401

multi-touch screens [57]. The scheme exploits both hand geometry and behavioral402

characteristics and the authors collected a large multi-touch dataset from 161 subjects.403

They achieved an EER of 5.48% (5 training samples) using one-class SVM and kNN404

classifiers. Furthermore, they performed a security analysis for a zero-effort attack,405

smudge attack, shoulder surfing attack, and statistical attack. Touch-stroke dynamics is406

a relatively recent behavioral biometrics when compared to well established behavioral407

biometrics such as signature verification. Table 4 compares user recognition schemes408

based on touch-strokes dynamics.409

Table 4: User recognition schemes based on touch-strokes dynamics

Study Methodology/Features Algorithm/Classifier Dataset Performance
Li et al. [88],
2021

Single touch, touch move-
ment and multi-touch

SVM 60 subjects Average error rate ≈
2.9%

Teh et al. [53],
2019

FOF and SOF kNN, SVDD, and SVM 150 subjects Impersonation rate =

9.9%
Zheng et
al. [52], 2014

Tapping behaviors one-class machine learning
technique

80 subjects EER = 3.65%

Song at al. [57],
2017

Multi-touch with TFST One-class SVM and kNN 161 subjects EER = 5.48% (5 train-
ing samples)

Tolosana et
al. [87], 2017

Handwritten numerical dig-
its using finger-touch

DTW combined with the
SFFS and RNNs

e-BioDigit [89] (93
subjects)

EER = 4%

Swipe gesture: A swipe gesture (collection of touch-strokes from a touch-down410

to touch-release) can be processed for user recognition. SwipeVlock authenticates411

users based on their way of swiping the phone screen with a background image [60].412

The scheme was evaluated using a decision tree, Naive Bayes (NB), SVM, and Back413

Propagation Neural Network (BPNN) on 150 subjects and achieved a success rate414
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of 98%. DriverAuth collected and encoded a sequence of touch-events when a user415

swipes on the touchscreen using their finger. It achieved a TAR of 87% using Quadratic416

SVM (Q-SVM) on a dataset of 86 subjects. Jain et al. [56] analyzed swipe gestures,417

such as left-to-right swipe (L2R), right-to-left swipe (R2L), scroll up (SU), scroll down418

(SD), zoom in (ZI), zoom out (ZO) and single tap (ST), subsequently, extracting x–y419

coordinates, accelerometer, orientation sensor readings, and area covered by a finger to420

design an authentication scheme. The scheme recruited 104 subjects for evaluation and421

30 subjects for performance verification. Using a modified Hausdorff distance (MHD),422

they achieved an EER of 0.31% for combined gestures using score level fusion.423

Ellavarason et al. [59] proposed a swipe gesture authentication and collected a424

dataset under four scenarios, i.e., sitting (room and bus) and walking (outdoor and425

treadmill). They used SVM, kNN, and NB are used to evaluate the robustness of426

swipe gestures and achieved an ERR of 1% (sitting in a room), 30% (sitting in a bus),427

23% (walking on a treadmill), 27% (walking outdoor) on 50 subjects. According to428

Poze et al. [90], horizontal strokes hold more user-specific information and are more429

discriminating than vertical strokes. They investigated a statistical approach based on430

adapted Gaussian Mixture Models (GMM) for swipe gestures and achieved an EER of431

20% (40 training samples) using a dataset with 90 subjects. Garbuz et al. [91] proposed432

an approach that analyzed both swipes and taps to provide continuous authentication.433

The one-class classification model is generated using one-class SVM. The scheme can434

detect an impostor in 2-3 gestures, whereas the legitimate user is blocked on average435

after 115-116 gestures.436

Another scheme involved the extraction of temporal information from consecutive437

touch-strokes [92]. For evaluation, they temporal Regression Forest (TRF) architec-438

ture and achieved an EER of 4%, 2.5% on the Serwadda and Frank datasets, having439

190 and 41 subjects, respectively. Kumar et al. [93] proposed a multimodal scheme440

that exploited swiping gestures, typing behavior, phone movement patterns while typ-441

ing/swiping, and their possible fusion at the feature- and score-level for authenticating442

smartphone users, continuously. A multi-template classification framework (MTCF) is443

implemented for evaluation. They achieved an accuracy of 93.33% and 89.31% using444

feature level and score level fusion, respectively on 28 subjects. Table 5 compares user445

recognition schemes based on swipe gesture.446

Table 5: User recognition schemes based on swipe

Study Methodology/Features Algorithm/Classifier Dataset Performance
Jain et
al. [56], 2021

Touchscreen gestures (L2R,
R2L, SU, SD, ZI, ZO, and
ST)

Modified MHD 104 subjects for eval-
uation and 30 subjects
for performance verifi-
cation

EER = 0.31% for combined
gestures using score level fu-
sion

Gupta et
al. [58], 2019

Touch-events sequence Q-SVM 86 subjects [94] TAR = 87%
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Study Methodology/Features Algorithm/Classifier Dataset Performance
Ellavarason et
al. [59], 2020

Swipe gesture in four sce-
narios - sitting (room and
bus) and walking (outdoor
and treadmill)

SVM, kNN, and NB 50 subjects ERR = 1% (sitting in room),
30 %(sitting in bus), 23%
(walking on treadmill), 27%
(walking outdoor)

Li et al. [60],
2020

Swipe on an image Decision tree, NB, SVM,
and BPNN

150 subjects Success Rate = 98%

Pozo et
al. [90]. 2017

Horizontal and vertical
strokes

GMM 190 subjects EER = 20% (40 training
samples)

Kumar et
al. [93], 2016

Swipe, typing behavior,
phone movement patterns

MTCF 28 subjects Accuracy = 93.33% (feature
level fusion), 89.31% (score
level fusion)

Ooi et al. [92],
2019

Touch-strokes temporal in-
formation

TRF Serwadda (190 sub-
jects), Frank [95] (41
subjects)

EER = 4%, 2.5%

Touch-signature: Touch-signature using a finger or stylus on a touchscreen device447

is emerging as an alternative to an all-time acceptable handwritten signature for user448

recognition. Features explained in Section 3.3 can be exploited to identify a user for a449

number of security-sensitive applications, such as hotel bookings, online-banking, and450

shopping thereby helping minimize fraudulent activities.451

Tolosana et al. [64] proposed an on-line signature verification system that is adapt-452

able to the signature complexity level. In their proposed approach, a signature complex-453

ity detector based on the number of lognormals from the Sigma LogNormal writing454

generation model, and a time function extraction module are generated for each com-455

plexity level. Then, the DTW algorithm is used to compute the similarity between the456

time functions from the input signature and training signatures of the claimed user.457

The scheme achieved an EER of 2.5% and 5.6% on BiosecurID (pen scenario of 400458

subjects) and BioSign (pen and finger scenario of 65 subjects) datasets, respectively.459

Yoshida et al. [65] analyzed touch-strokes duration and segments’ directions of signa-460

tures using two Japanese characters. An objective measure of the difference between461

two sequences of touching duration is used to evaluate the similarity and the scheme462

achieved an EER of 7.1% using 10 subjects. Gomez et al. [96] proposed to improve the463

performance of online signature verification systems based on the Kinematic Theory of464

rapid human movements and its associated Sigma LogNormal model. The authors used465

the BiosecurID multimodal database of 400 subjects having 6,400 genuine signatures466

and 4,800 skilled forgeries for the evaluation of their schemes using DTW.467

Ren et al. [97] proposed a signature verification system leveraging a multi-touch468

screen for mobile transactions by extracting critical segments to capture a user’s469

intrinsic signing behavior for accurate signature verification. They applied DTW to470

calculate an optimal match between two temporal sequences with different lengths, and471

then measure the similarity between them. On 25 subjects, an EER of 2%, 1%, and 3%472

for single-finger, two-finger, and under the observation and imitation attack scenarios,473

respectively achieved. Al-Jarrah et al. [98] proposed anomaly detectors, such as STD474
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Z-Score Anomaly Detector, Average Absolute Deviation (AAD) Anomaly Detector,475

and Median Absolute Deviation (MAD) Anomaly Detector, for signature verification.476

Using distance functions for evaluation, they achieved an EER between 3.21% to 5.44%477

for skilled forgeries and 4.74% to 6.31% for random forgeries among 55 subjects.478

Behera et al. [99] proposed an approach based on spot signature within a continuous479

air writing captured through Leap motion depth sensors. The processed signatures are480

represented using convex hull vertices and DTW is selected for performance verification481

of the spotted signatures. The authors achieved an accuracy of 80% on 20 subjects.482

Ramachandra et al. [100] proposed user verification using a smartwatch-based writing483

pattern or style that exploited accelerometer data acquired from 30 participants. The484

accelerometer data is further transformed using 2D Continuous Wavelet Transform485

(CWT) and deep features extracted using the pre-trained ResNet50. Table 6 compares486

user recognition schemes based on touch signature.487

Table 6: User recognition schemes based on touch signature

Study Methodology/Features Algorithm/Classifier Dataset Performance
Tolosana
et al. [64],
2020

Time functions for differ-
ent complexity, Lognor-
mals from Sigma LogNor-
mal

DTW BiosecurID (pen scenario
of 400 subjects), BioSign
(pen and finger scenario
of 65 subjects)

EER = 2.5%, 5.6%

Al et
al. [98],
2019

finger-drawn signature Distance-based functions 55 subjects EER = 3.21% to 5.44%
(Skilled Forgery), 4.74% to
6.31% (Random Forgery)

Van et
al. [86],
2017

Touch information from 4-
digit pin drawing

DTW 20 subjects EER = 4.84%

Yoshida
et al. [65],
2017

Signatures touch-strokes
duration and segments
directions

Distance-based 10 Subjects EER = 7.1%

Behera et
al. [99],
2017

Spot signature using leap
motion

DTW 20 subjects Accuracy = 80%

Ren et
al. [97],
2019

Signature using multi-
touch screen

DTW 25 subjects EER = 2% (for single-finger
scenarios), 1% (for two-
finger scenarios), 3% (under
the observe and imitate at-
tack scenarios)

Hand-movement: IoT end-points equipped with motion sensors are capable of488

acquiring micro-movement produced as a result of a user’s unique gesture to perform489

certain activities. Subsequently, the raw data collected from various sensors for an490

activity can be exploited when designing a user recognition scheme. SmartHandle491

utilizes the user’s hand-movement in 3-dimensional space by determining the X, Y,492

and Z coordinates corresponding to the hand-movement trajectory, to generate a user-493

identification signature [41]. The classification model is evaluated using 3 different494

classifiers, i.e., the linear discriminant classifier (LDC), uncorrelated normal based495
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quadratic Bayes classifier (UDC), and random forest (RF). The scheme achieved an496

accuracy of 87.27% on a dataset containing 11 subjects. Centeno et al. [101] designed497

an approach that acquires user-specific motion patterns using an accelerometer as a498

result of the user’s interaction with a smartphone. The feature extraction process is499

based on autoencoders (a deep learning technique). On a dataset of 120 subjects, the500

scheme achieved an EER of 2.2%.501

DeepAuth leverages time and frequency domain features extracted from motion502

sensors and a long short-term memory (LSTM) model with negative sampling to build503

a re-authentication framework using 47 subjects [102]. The authors also compared504

DeepAuth with state-of-the-art classification methods such as SVM, RF, Logistic505

Regression (LR), and Gradient Boosting (GB) classifiers and achieved an accuracy506

of 96.70% for the data collected for 20 seconds. Another bimodal scheme exploited507

touch-tapping and hands-movements while users enter the 8-digit free-text secret [54].508

For the evaluation, NB, NeuralNet (NN), and RF classifiers are used and a TAR of509

85.77% is achieved on 97 subjects. VeriNET employed motion signals as a password510

and leveraged a deep-RNN to authenticate users [103]. The scheme is evaluated on a511

dataset containing 310 subjects to achieve an EER of 7.17% for PINs and 6.09% for512

Android locking patterns.513

SnapAuth profiles a user’s arm-movements when the user performs a snap-action514

wearing smart watches [104]. The scheme was evaluated using Bayes Net (BN),515

Multilayer Perceptron (MLP), and RF classifiers on a dataset of 11 subjects and516

achieved a TAR 82.34%. Li et al. [105] proposed a continuous authentication scheme517

based on free-text keystroke that exploited both keystroke latency patterns and wrist518

motion behaviors acquired by wrist-worn smartwatches. A Dynamic Trust Model519

(DTM) is developed to fuse two one-vs-all RF ensemble classifiers and achieved a TAR520

of 98.12% on 25 subjects. Another continuous authentication scheme compares the521

wristband’s motion with the phone’s motion of a user to produce a score indicating522

its confidence that the person holding (and using) the phone is the person wearing523

the wristband [106]. A two-tier classification approach (using RF and NB binary524

classifiers) to correlate wrist motion with the touch input is deployed giving an accuracy525

of 96.5% tested with 38 subjects. A motion-based authentication method for smart526

wearable devices, MotionAuth, constructed users’ identifiable signature by profiling527

their different natural gestures such as raising or lowering the arm [107]. They achieved528

an EER of 2.6% on a dataset of 30 users.529

SilentSense exploited touch behavior (e.g., pressure, area, duration, position) and530

micro hand-movements (e.g., acceleration and rotation) [108]. SVM is employed to531

detect the identity of the current user according to each interacting behavior observa-532

tion. On a dataset containing 100 subjects, SilentSense achieved an accuracy of 99%.533
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Similarly, Hand Movement, Orientation, and Grasp (HMOG) exploited both tapping534

and keystrokes modalities [109]. The features are extracted for hand micro-movements,535

grasp, and orientation patterns when a user taps or presses keys on a touchscreen. For536

the evaluation of the scheme, Scaled Manhattan with Fisher Score (SM-FS) Ranking,537

Scaled Euclidean with PCA (SE-PCA), and 1-Class SVM with Fisher Score (OCSVM-538

FR) Ranking is used. The scheme achieved an EER of 7.16% and 10.05% for walking539

and sitting postures, respectively, using a set of 100 subjects for the validation. Table 7540

compares user recognition schemes based on hand-movements.541

Table 7: User recognition schemes based on hand-movements

Study Methodology/Features Algorithm/Classifier Dataset Performance
Centeno et
al. [101], 2017

Motion patterns using ac-
celerometer

Autoencoders 120 subjects EER = 2.2%

Gupta et
al. [41], 2019

User’s hand-movement in 3-D
space

LDC, UDC, and RF. 11 subjects Accuracy = 87.27%

Bo et al. [108],
2013

Touching behavior SVM 100 subjects Accuracy = 99%

Amini et
al.[102], 2018

Time and frequency domain
features from motion sensors
and a LSTM model

SVM, RF, LR and GB 47 subjects Accuracy = 96.70% (20
seconds)

Mare et
al. [106], 2019

Compares the wristband’s mo-
tion with the phone’s motion

RF and NB 38 subjects Accuracy = 96.5%

Li et al. [105],
2017

Free-text keystroke DTM 25 subjects TAR = 98.12%

Buriro et
al. [104], 2018

Arm-movements to perform
snap-action

BN, MLP, and RF 11 subjects TAR = 82.34%

Lu et al. [103],
2017

Motion signals Deep RNN 310 subjects EER = 7.17% (PINs),
6.09% (Android locking
patterns)

Buriro et
al. [54], 2021

Touch-tapping and hands-
movements

NB, NN, and RF 97 subjects TAR = 85.77 %

Sitova et
al. [109], 2015

Hand movement, orientation,
grasp, tap and keystroke

SM-FS, SE-PCA, and
OCSVM-FC Ranking

100 subjects . Data
were for sitting and
walking posture

EERs = 7.16% (walk-
ing) and 10.05% (sit-
ting)

Voice: Voice is an easily collectible behavioral biometric modality that can be542

acquired by any IoT end-point equipped with a microphone. Section 3.5 has explained543

the features that are normally exploited for designing voice-based user recognition544

schemes.545

An automatic voice biometric authentication scheme that recognizes a speaker546

using MFCC and Discrete Cosine Transform (DCT) is presented in [110]. On a dataset547

of 13 subjects, a SVM using radial-basis function (RBF) kernel is used for evaluation,548

achieving a success rate of 90%. DriverAuth computed statistical features after549

extracting MFCCs from a bandpass filter voice signal containing 2 channels sampled550

at 44,100 Hz with 16 bits per sample [58]. The authors used Q-SVM, ETB, Weighted551

kNN (W-kNN) classifiers for generating a multi-class classification model. On a dataset552

of 86 subjects, the system achieved a TAR of 90.5% with voice features and 95.1%553
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with voice and swipe features combined.554

Doddappagol et al. [111] proposed text prompted voice recognition system that used555

MFCCs, Pitch and Formant technique for extracting features. On a dataset containing556

25 subjects, with SVM employed for user classification, an accuracy between 88.7%557

and 92% was achieved. BreathPrint exploits the audio signatures, i.e., sniff, normal,558

and deep breathing, of a person [112]. A microphone sensor in close proximity to559

users’ nose acquires these three audio signatures produced by them. A classification560

pipeline using Gammatone Frequency Cepstral Coefficients (GFCC) as features as561

part of a GMM based classifier was used for evaluation, and achieved an accuracy of562

94% on a dataset comprising 10 subjects. VoiceLive performs liveness detection by563

measuring Time-Difference-of-Arrival (TDoA) changes for a sequence of phoneme564

sounds [68]. It evaluates a phoneme sound localization based liveness detection system565

that distinguishes a passphrase spoken by a live user from a replayed one giving an566

accuracy of 99% on a dataset containing 12 subjects. Table 8 compares user recognition567

schemes based on voice-print.568

Table 8: User recognition schemes based on voice

Study Methodology/Features Algorithm/Classifier Dataset Performance
Doddappago et
al. [111], 2016

MFCCs, Pitch and Formant
technique

SVM 25 subjects Accuracy = 88.7%
to 92%

Chauhan et
al. [112], 2017

Audio signatures (sniff, nor-
mal, and deep breathing)

A GFCC and GMM 10 subjects Accuracy = 94%

Zhang et al. [68],
2016

Spoken passphrase Liveness detection by measuring
TDoA changes for a sequence of
phoneme sounds

12 subjects Accuracy = 99%

Barbosa et
al. [110], 2015

MFCC and DCT of voiceprint. SVM-RBF 13 subjects Success Rate = 90%

Gupta et al. [58],
2019

Statistical features from
MFCCs

Q-SVM. 86 users TAR = 90.5%

Gait: The human gait is a spatio-temporal motor-controlled biometric behavior569

that can be employed for to recognise individuals unobtrusively, using a camera,570

radar, position-, motion-, or pressure-based sensors. Musale et al. [113] proposed571

a Lightweight Gait Authentication Technique (Li-GAT) that exploits information,572

such as the subconscious level of user activities, collected from IoT devices having573

inbuilt motion sensors including an accelerometer. For evaluation, LR using deep-NN,574

RF, kNN classifiers were selected and achieved an accuracy of 96.69% on a dataset575

containing 12 subjects. Kastaniotis et al. [114] designed a gait recognition system576

based on a hierarchical representation of gait trajectories acquired using depth and577

motion sensors. The acquired pose sequences are expressed as angular vectors (Euler578

angles) of eight selected limbs. These trajectories (sequences of angular vectors) are579

then mapped in the dissimilarity space, resulting in a vector of dissimilarities that are580

modeled via sparse representation. For verification, three criteria were evaluated: the581
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Sparsity Concentration Index (SCI), the minimum dissimilarity (MinDiss), and the582

combination of both, and achieved an EER of 3.1% on 30 subjects.583

Deep Gait authenticates users based on a single walk cycle [115]. It acquires584

accelerometer and gyroscope readings from wearable or hand-held devices to determine585

a users’ gait. For evaluation, a deep-NN is used that achieved an EER of 1.8% on 51586

subjects. Another smartphone-based gait recognition system with the application of587

Subjective Logic (SL) for biometric data fusion is presented in [116]. Gait features588

considered for the system are statistical (ST), the histogram of the distribution (BIN),589

MFCCs, and Bark-frequency cepstral coefficients (BF1 and BF2). For evaluation,590

Extremely Randomized Trees (ERT), MLP, and RF classifiers are selected that gave an591

EER of 1.31% on 48 subjects. Lamiche et al. [117] proposed a bimodal authentication592

scheme based on gait patterns and keystroke dynamics. By using the smartphone’s built-593

in sensors, the user’s gait signals with keystroke dynamics are acquired simultaneously,594

during walking and text typing activities. The scheme was evaluated using 20 subjects595

and an accuracy of 99.11% is achieved using a MLP classifier.596

Gait-Watch is a context-aware gait-based authentication system, which is coupled597

with a smart-watch based activity detector to identify a user’s current activity [118].598

As per the real-time input of the activity detector, identification is performed on corre-599

sponding training templates. The method extracted unique features of gait dynamics by600

exploiting the scale-space of gait acceleration signals using a sparse coding scheme.601

For identification, probabilistic sparse representation classification (PSRC) is employed602

and the method achieved 97.3% recognition accuracy and 3.5% EER. An improvement603

of 30.21% in recognition accuracy is observed by dynamically determining the user’s604

activity. Table 9 compares user recognition purposes based on a user’s gait.605

Table 9: User recognition schemes based on gait

Study Methodology/Features Algorithm/Classifier Dataset Performance
Wasnik et
al. [116], 2017

Users’ gait ST, BIN, MFCCs,
BF1 and BF2

ERT, MLP and RF 48 subjects EER = 1.31%

Musale et
al. [113], 2018

Walking based activities deep-NN, RF, kNN 12 subjects Accuracy =

96.69%
Kastaniotis et
al. [114], 2015

Gait trajectories SCI, MinDiss and their combi-
nation

30 subjects EER = 3.1%

Bael et
al. [115],
2019

Single walk cycle using motion
sensors

deep-NN 51 subjects EER = 1.8%

Lamiche et
al. [117], 2019

Gait patterns and keystroke dy-
namics

MLP 20 subjects Accuracy =

99.11%

Footstep: Footstep features to recognize a person can be collected imperceptibly606

using pressure-based sensors. Moreover, people can be allowed to walk over the607

footstep sensors wearing footwear (such as shoes, trainers, boots) and carrying weights608

(such as shoulder bags and files) that make the recognition process more realistic.609
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Rodriguez et al. [119] proposed a scheme that exploits footstep signals in both610

the time and space domains. In the time domain, the extracted features include the611

ground reaction force (GRF), the spatial average, and the upper and lower contours of612

the pressure signals; the spatial domain, involves features including 3D images of the613

accumulated pressure. A SVM-RBF is used for evaluation. On a dataset of 120 subjects,614

EERs of 15.2%, 13.4%, and 7.9% were achieved, by a training classification model with615

40, 100, and 500 single footstep signals respectively, after fusing both time-domain and616

space-domain features. Similarly, Edward et al. [44] extracted geometric and wavelet617

features from a footstep dataset collected by the Swansea University Speech and Image618

Research Group. On a dataset of 94 subjects, the scheme achieved an EER 16.3% using619

the RF classifier for individual prediction.620

Zhou et al. [120] proposed a user identification scheme based on a single footstep621

biometric without considering the shape details or inter-step relationships of users’622

footprints. They utilized fabric sensors to register features such as shifting of the center623

of gravity, maximum pressure point, and overall pressured area. Evaluation of the624

scheme was performed using Q-SVM and it achieved an accuracy of 76.9% on a dataset625

containing 529 footsteps collected from 13 subjects.626

One automatic biometric verification scheme leveraged spatio-temporal footstep627

representation acquired from floor-only sensor data [85]. For evaluation, an ensemble628

of a deep resnet architecture and SVM models were used and achieved an EER of629

0.7% on 120 subjects. Riwurohi et al. [121] proposed a biometric identification system630

based on the sound of footsteps acquired using microphone arrays. The footstep sound631

features of 10 participants were extracted using MFCCs. The scheme achieved an632

accuracy of 98.8% using BPNN. Table 10 compares user recognition schemes based633

on a user’s footstep.634

Table 10: User recognition schemes based on footsteps

Study Methodology/Features Algorithm/Classifier Dataset Performance
Edward et
al. [44], 2014

Extracted geometric and
wavelet features from a
footstep.

RF 94 subjects EER = 16.3%

Vera et
al. [119],
2013

Time and space domains foot-
step signals.

SVM-RBF 120 subjects EERs = 15.2%, 13.4%, and
7.9% with 40, 100, and 500,
respectively

Costilla et
al. [85], 2018

Spatio-temporal footstep repre-
sentations

Deep resnet architecture and
SVM

120 subjects EER = 0.7%

Zhou et
al. [120], 2017

Single footstep signal with
inter-step relationships

Q-SVM 13 subjects Accuracy = 76.9%

Riwurohi et
al. [121], 2018

Footsteps’ sound BPNN 10 subjects Accuracy = 98.8%
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5. Security, Privacy and Usability Considerations635

Security, privacy and usability are indispensable non-functional requirements for636

designing human-to-things recognition schemes [122] that satisfy CIA criteria, i.e.,637

confidentiality (ensuring access to legitimate users only), integrity (guaranteeing mod-638

ification by legitimate users) and availability (ensuring uninterrupted availability to639

legitimate users). With regard to these requirements, substantial improvements can be640

observed in evolving behavioral biometric-based user recognition schemes for AAA.641

5.1. Security642

Reportedly, a number of security analyses have been performed to evaluate touch-643

based recognition mechanisms against common attacks such as impersonation, mim-644

icking, smudge or shoulder-surfing [52, 53]. Sewadda et al. [123] rigorously analyzed645

the impact of Lego-driven robotic attacks, namely, population statistics-driven and646

user-tailored attack on touch-based authentication. In a population statistics-driven647

attack, patterns are acquired from a large database to train the robot, whereas, in a648

user-specific attack, samples of a legitimate user are stolen to train the robot. Subse-649

quently, both attacks were launched by a Lego robot trained to swipe on the touch650

screen. Further, these attack methods can be refined for standard impostor testing for651

touch-based recognition schemes. Song et al. [57] conducted a security analysis of652

their TFST gesture authentication against: zero-effort attack, i.e., an adversary attacks653

without any prior knowledge of the underlying authentication scheme; smudge attack,654

i.e., an adversary manages to identify and trace oily residues on a touchscreen; shoulder655

surfing attack, i.e., an adversary secretly observes the legitimate user; and statistical656

attack, i.e., an adversary employs knowledge obtained from the statistics of a group of657

users.658

A Continuous Smartphone Authentication Method using wristbands (CSAW) ex-659

ploited motion gestures to verify whether a smartphone is in the hands of a legitimate660

owner or not [106]. Security analysis for CSAW is performed against: opportunistic661

snooping, i.e., an adversary snoops into other smartphones when the owner is not662

around; stealing credentials, i.e., an adversary steals the credentials for accessing smart663

devices remotely; and shadowing, i.e. an adversary shadows a user to access his/her664

smartphone illegitimately. They reported a false-positive rate of less than 2%. Yi et665

al. [124] performed an empirical study on the security and usability of a real-time free-666

form motion gesture authentication scheme (REMOTE) that leveraged user-created 3D667

gestures. They evaluated REMOTE against: random attacks, i.e. an adversary does668

have any prior knowledge of the victim’s gesture and apply random guess to attack;669

content-aware attack, i.e., an adversary has the descriptive information about the vic-670

tim’s gesture obtained via social engineering or a third party; and mimicry attack, i.e.,671
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an adversary observes a legitimate user’s gesture directly or through a recorded video.672

The authors reported that random attacks are ineffective for attacking gesture-based673

behavioral biometric authentication. In the case of content-aware attacks, additional674

descriptive information provides only minimal help to adversaries. Although, mimicry675

attacks seem more effective than the random and content-aware attacks, they still only676

achieve negligible success in most of the attack attempts.677

Many studies have been performed to understand common attacks on voice-based678

recognition systems. VAuth [125] exploited users’ language, accent, or mobility to679

ensure voice assistants - such as Siri, Google Now and Cortana - execute the commands680

that originate only from the voice of the owner. VAuth successfully averted attacks,681

such as replay-, voice-mangling, and impersonation attacks using a multi-stage match-682

ing algorithm. Rahmeni et al. [126] proposed a method to mitigate spoofing attacks,683

such as impersonation, replay, voice-conversion, and speech-synthesis independent of684

an attack-type. Their proposed method decomposes the speech signal into a glottal685

source signal and models the vocal tract filter using glottal inverse filtering. Features are686

obtained using Iterative Adaptive Inverse Filter (IAIF) descriptors that can be exploited687

to distinguish between genuine or spoofed input speech using a SVM and an extreme688

learning machine (ELM).689

Chang [127] proposed a two-layer authentication method using a voiceprint to690

mitigate replay attacks. Similarly, the VoiceLive system addressed a replay attack using691

extracts of the TDoA of each phoneme sound to distinguish between a passphrase692

spoken by a live user and a replayed one. It leverages the human speech production693

system and advanced smartphone audio hardware. Garg et al. [128] investigated the694

effectiveness of Constant-Q Cepstral Coefficients (CQCC) and MFCC features extracted695

from individual frequency subbands to improve the performance of replay attack696

detection in automatic speaker verification (ASV) systems. Tom et al. [129] proposed697

group delay (GD) grams that can be obtained by concatenating a group delay function698

over consecutive frames as a novel time-frequency representation of an utterance.699

Subsequently, GD-grams provides a time-frequency representation with a high spectral700

resolution that can be used for the end-to-end training of deep-convolutional NNs to701

detect audio replay attacks.702

Voice conversion attacks apply synthetic speech generation or source voice morph-703

ing to achieve the same effect as human impersonation or adapted speech synthesis,704

thus, deceiving the speaker identification (SID) and speaker verification (SV). An705

approach exploited score-level fusion of front-end features, namely, CQCCs, all-pole706

group delay function (APGDF), and fundamental frequency variation (FFV) to detect a707

synthetic speech [130]. Similarly, Yang et al. [131] investigated the high-frequency-708

based features for the detection of spoofing attacks. The method analyzed inverted709
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constant-Q coefficients (ICQC) and inverted CQCC using DCT on inverted octave710

power spectrum and inverted linear power spectrum respectively, to detect synthetic711

speeches. Wu et al. [132] reported that a hidden Markov model (HMM) based text-712

dependent systems with temporal speech information provided more resistance to voice713

conversion attacks than systems lacking temporal modeling.714

Munaz et al. [133] evaluated the security strength of a smartphone-based gait recog-715

nition system against zero-effort and live minimal-effort impersonation attacks, under716

realistic scenarios using live visual and audio feedback. Particularly, live impersonation717

attacks were performed by five professional actors specialized in mimicking body718

movements and body language. They reported no false positives under impersonation719

attacks and 29% of attacks were completely unsuccessful. Gait-Watch was evaluated720

against the imposter attack scenario [118] and reported a false acceptance of only 3.5721

per 100 impostor trials. ZEMFA [134], a zero-effort multi-factor authentication system722

for securing access to a terminal, leveraged a smartphone and smartwatch (or bracelet)723

to acquire gait patterns, i.e., mid/lower body movements measured using the phone and724

wrist/arm movements using the watch. The scheme reported 0.2% false negatives and725

0.3% false positives on average for passive attacks under benign settings. Further, the726

authors reported 4.55% false positives on average for active imitation attacks, such as727

treadmill-based attacks. Tram et al. [135] proposed a technique to prevent statistical728

attacks due to the inter-class low-discrimination and intra-class high-variation of gait729

data. The proposed technique leveraged Linear Discrimination Analysis (LDA) to730

enhance the discrimination of gait templates, and Gray code quantization to extract high731

discriminative and stable binary template that can significantly improve the security732

and performance of inertial-sensor based gait cryptosystem.733

Moreover, behavioral biometrics have been evaluated for designing implicit [136,734

137, 138], continuous [91, 93, 117], and risk-based [54, 139] user recognition schemes.735

Although, more comprehensive security evaluations of these behavioral biometric736

modalities are desired to avert any unauthorized intrusion by adversaries, repudiation737

claims by malicious users, denial-of-service to legitimate users, or users’ privacy738

erosion due to function creep [140].739

5.2. Privacy740

Privacy-preserving techniques [141], such as Template Protection Schemes, Bio-741

metric Crypto-Systems, and Pseudonymous Biometric Identities can be implemented to742

safeguard users’ biometric data to address issues arising from concerns in areas such as743

irreversibility, revocability, unlinkability, and discriminability. There are an increasing744

number of regional, national and international privacy protection laws and regulations,745

such as [142, 143, 144], that place biometric modalities under a special category of746
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personal data. ISO24745:2011 [145] defines the following 4 properties for a template747

protection scheme:748

• Irreversibility: Reconstruction of original biometric features from a stored biometric749

template must be computationally exhaustive to discourage adversaries to reconstruct750

the biometric data from features in protected form.751

• Revocability: Ability to generate multiple versions of secure biometric templates752

from the same biometric data of a user that can enable the replacement of the753

compromised biometric template with a new template instantaneously, without754

causing any inconveniences to the user.755

• Unlinkability: Multiple biometric templates of the same subject used by different756

recognition systems must not allow identifying/linking the user based on protected757

features.758

• Discriminability: Secure template must not degrade the recognition accuracy of a759

biometric-based recognition system and should maintain sufficient discriminative760

information from rest of the registered users.761

Some of the basic techniques for generating cancelable biometric templates are762

based on noninvertible geometric transformations, such as affine, cartesian, polar,763

or functional transformation [146]. Bioconvolving [147] can be useful for all the764

behavioral biometric modalities in which raw signals are a sequence of real-numbers765

of finite length. In this method, each transformed sequence can be obtained from the766

corresponding original sequence having N values by dividing the original sequence into767

W non-overlapping segments (W < N) using randomly selected W integers between768

1 and 99 in the ascending order. Zhi et al. [148] proposed learning-based Index-of-769

Maximum (LIoM) hashing that utilizes a supervised learning mechanism to generate a770

more discriminative and compact cancelable touch-stroke template. With a supervised771

learning approach, the LIoM learns the optimized projection itself, unlike data-agnostic772

IoM hashing that depends on random projection for hashing. The authors reported773

that the classification model generated with a protected template achieved significantly774

better accuracy than with an original template.775

Chee [149] proposed Random Binary Orthogonal Matrices Projection (RBOMP)776

and Two-dimensional Winner-Takes-All (2DWTA) hashing for voice template protec-777

tion. RBOMP transforms a 1-D voice feature (i-vector having a fixed-length real value778

representation) from a linear space into an ordinal space by convolving with a binary779

orthogonal matrix. Further, a user-specific random token and a non-invertible function780

such as prime factorization are used to conceal the returned index that strengthens the781
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system security significantly. Conversely, 2DWTA hashing transforms a 2-D feature782

from a continuous value to a discrete value. 2DWTA relies on an implicit ordering of783

the feature rather than the absolute feature value of the features. That is, 2DWTA hash-784

ing defines an ordinal embedding with an associated rank-correlation measure. Billeb785

et al. [150] proposed a fuzzy commitment scheme by employing binarized feature786

vectors in a cryptographic primitive for voice features that are extracted with a speech787

recognition system based on GMM and UBM (Universal Background Modeling). The788

proposed binarization scheme generates fixed-length binary voice templates.789

Elrefaei et al. [151] proposed a fuzzy commitment scheme to protect gait features790

extracted from gait images of one complete gait cycle using a local ternary pattern791

(LTP). The final feature vector is produced using principal component analysis (PCA)792

on the average images concatenated using a 2D joint histogram. Further, to enhance the793

robustness of the system, only highly robust and reliable bits from the feature vector794

are extracted. Bose–Chaudhuri–Hocquenghem (BCH) codes are used for key encoding795

and decoding during the enrolment and verification phase, respectively. Similarly, Rúa796

et al. [152] proposed a Hidden Markov Model-Universal Background Model (HMM-797

UBM) gait authentication system that incorporated template protection based on a798

fuzzy commitment scheme. The authentication succeeds only when the Hamming799

distance between the binary representation obtained during the verification and the800

one stored at the time of the enrollment is equal to, or less than, the error-correcting801

capability of the employed Error Correcting Code (ECC).802

In addition, hardware-level encryption can be employed on client devices to es-803

tablish trust between users and businesses as a part of a privacy-first approach for804

behavioral analytics. A biometric system in an IoT setting becomes unusable if it is805

unable to revoke biometric templates and avoid biometric template leakage as mul-806

tiple services rely upon same biometric modalities from each user. Comparatively,807

issues related to user privacy in employing behavioral biometrics are less invasive808

than biological biometrics; it is strongly recommended to include an appropriate tem-809

plate protection scheme for designing behavioral biometric-based user authentication810

schemes.811

5.3. Usability812

This section discusses how behavioral biometrics for user recognition schemes can813

meet the guidelines defined by ISO 9241-11 standard [153]. This standard defines814

usability as “the extent to which a product can be used by specified users to achieve815

specific goals with effectiveness, efficiency, and satisfaction in a specified context of816

use”. Furthermore, we describe how these attributes can be used for quantifying the817

usability of a user recognition system.818
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Still et al. [154] presented a set of human-centered authentication design guidelines.819

The guidelines for usable security included the need for transparent authentication820

process, no modality overheads on users’ limited working memory, to support inclu-821

sivity, and to provide faster access. Generally, usability evaluation methods (UEM)822

incorporate techniques such as inspection, testing, or surveying, to assess the extent to823

which usability objectives are achieved for a user recognition system. The usability824

evaluation processes can be formative, i.e., evaluation performed during the design825

and development phase of a system, or summative, i.e., evaluation based on users’826

assessment after they use the system [155].827

A number of behavioral biometric-based user recognition schemes rely on a System828

Usability Scale (SUS) for the subjective assessments of their usability [86, 156, 157].829

VAuth conducted a usability survey using Amazon Mechanical Turk [125]. TFST830

gesture authentication evaluates its usability by comparing to the commonly used831

methods of passcode and pattern lock mechanisms [57]. They determine the usability832

from four different perspectives: 1) Is it easy to memorize?; 2) Is it fast to login?; 3)833

Is it convenient to perform authentication?; and 4) Is it less error-prone? For each834

question, users could respond as “disagree”, “neutral” or “agree”. UEMs and surveys835

can help to analyze perceived usability and user experiences for a user recognition836

scheme to ensure wider acceptance from users.837

As illustrated in Figure 6, we recommend a holistic method for computing intrinsic838

usability attributes that can impact end-users’ decision to use a security mechanism: ef-839

fectiveness, efficiency, satisfaction, thoroughness, validity and reliability. Equations 11840

to 16 can be applied to measure usability attributes empirically, for a user recognition841

scheme by employing a UEM.

Figure 6: Attributes for usability evaluation

842

Effectiveness [158] is the degree to which users correctly and completely achieve
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specified goals and it can be measured using Equation 11.

E f f ectiveness =
Goals achieved success f ully

Total number o f goals
× 100% (11)

Efficiency [158] can be measured using speed and interactiveness using Equa-
tion 12.

E f f iciencyspeed = S topTimemilliseconds − S tartT imemilliseconds

E f f iciencyinteractiveness = Count(Number o f S teps)
(12)

Satisfaction [158] can be measured using Equation 13, which is an average of all
the responses to a post-task questionnaire questions. Questionnaire responses can be
an ordinal value, e.g., Linkert scale (1 = Strongly disagree to 5 = Strongly agree).

S atis f action =

∑N
n=1 Responsen

N
(13)

Thoroughness [159] of a user recognition scheme concerning all of the identified
usability issues can be measured using Equation 14. A UEM is expected to determine
all the possible usability issues with respect to a user recognition scheme.

Thoroughness =
Number o f real usability issues identi f ied

Number o f real usability issues exist
(14)

Validity [159] to assert the correctness of the UEM results can be measured using
Equation 15.

Validity =
Number o f real usability issues identi f ied
Number o f all usability issues identi f ied

(15)

Reliability [159] to determine the consistency of a UEM, regardless of the individual
performing the usability evaluation, can be measured using Equation 16.

Reliability =
Number o f usability issues identi f ied by each user

Number o f usability issues identi f ied by at least one user
(16)

During the design phase of a user authentication scheme, UEMs can effectively843

embody these attributes to indicate the overall usability. A relationship between the844

system architecture and given sets of usability requirements can be derived using845

Equations 11 - 16. This enables both software engineers and usability specialists846

to evaluate whether the system is ultimately usable. These metrics enable usability847
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specialists to determine which aspects of usability require redress. Subsequently,848

software engineers can evaluate how these aspects of usability can be fulfilled within849

the context of the architecture without affecting vital quality attributes, such as security,850

performance, availability, time and cost. Usability is a significant quality attribute, or851

non-functional requirement, since in cases that the human-to-things recognition scheme852

is unusable, users will either compromise the function to make it more usable, or avoid853

using completely.854

5.4. User Recognition Scheme Readiness855

While designing a user authentication scheme, the attributes - security, privacy,856

and usability are often perceived as orthogonal to each other. Studies have shown that857

available user recognition schemes struggle to satisfy these three attributes simulta-858

neously [160]. We introduce a dashboard that is a 2 × 2 matrix having usability and859

privacy status indicators as rows and columns to interpret a user recognition scheme860

readiness, as illustrated in Figure 7.

Figure 7: A dashboard for a user recognition scheme readiness

861

The dashboard can be useful when the user recognition scheme is baselined after862

incorporating a given set of security requirements. User recognition scheme qualifying863

to the Top-Right block of the dashboard indicates the scheme is usable and privacy-864

compliant, i.e., ready for deployment. Section 5.2 can be referred if the scheme qualifies865

to the Top-Left block, i.e., usable but not privacy-compliant. Section 5.3 can be referred866

if the scheme qualifies to the Bottom-Right block, i.e., not usable but privacy-compliant.867

The scheme is not ready if it only qualifies to the Bottom-Left block, i.e., neither usable868

nor privacy-compliant.869
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6. Open Challenges and Opportunities870

This section presents the limitations of current approaches to designing behav-871

ioral biometric-based authentication schemes and outstanding challenges followed by872

general prospects and opportunities. It is worth emphasizing that HCI and natural habit-873

based behavioral biometrics have the power to reshape the human-to-things recognition874

market in the next few years.875

6.1. Challenges and Limitations876

Given the heterogeneity of behavioral biometric modalities, the limitations and877

vulnerabilities associated with each modality must be investigated during the conceptu-878

alization phase of a behavioral biometric-based user recognition system.879

• Recently, deep generative models (DGMs) such as Generative Adversarial Networks880

(GANs) or Variational Autoencoders (VAE) have been adopted to generate attacks881

on biometric-based recognition systems and these represent a significant emerging882

challenge [161]. A thorough testing strategy for liveness-detection, intra-class883

variance and common attacks (e.g., malware, mimic, impersonation, spoofing, replay,884

statistical, algorithmic, and robotics attack) mitigation [29] must be developed as885

part of the security analysis.886

• Privacy regulation laws, such as General Data Protection Regulation (GDPR) [142],887

the California Consumer Privacy Act (CCPA) [143] and the Health Insurance Porta-888

bility and Accountability Act (HIPAA) [144], mandate an increase in responsibility889

and transparency for using and storing personal data. According to GDPR, biometric890

data that allow or confirm the unique identification of an individual is recognized891

as a special category of personal data under Art. 9 [162]. Consequently, there is a892

need to employ adequate measures (e.g., template protection and template storage893

location) for users’ privacy conformance as per these laws.894

• Another important aspect that requires addressing concerns the ethical risks in the895

use of behavioral biometrics [163]. Recording of data for behavioral biometric896

modalities over time could result in the dynamic behavior profiling of a person,897

which can reveal how the person has behaved in a certain context. Particularly,898

this can become more critical when modalities are combined with soft biometrics,899

such as age, gender, height, weight and ethnicity, since this can generate a more900

sensitive profile of a person. The creation of sensitive profiles can lead to ethical901

risks, such as: discrimination - for example to exclude a person from certain areas902

and activities; stigmatization - to create a negative interpretation of a person; and903

unwanted confrontation - the disclosure of personal information (for example, body904

signals may indicate a certain disease or cognitive ability of a person).905
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• Quality control of the biometric template is a prerequisite before the enrollment or906

verification/identification step [164]. This can support the correctness, consistency,907

redundancy and speed of a biometric system to overcome problems arising from the908

sensors, environment or users themselves.909

• Certain factors such as aging, fatigue, stress, mood, sleep deprivation, injury and910

disease could inhibit the effectiveness of behavioral biometric modalities. These911

factors also require a thorough investigation to support the evolution of behavioral912

biometric-based recognition systems.913

• Behavioral biometrics datasets are required to include all the demographics, such914

as covering different age groups, cultural factors and ethnicity, to provide better915

objectivity. Further, standards for behavioral biometrics and benchmarking of sensors916

must be developed and utilised.917

6.2. Prospects and Opportunities918

Behavioral biometrics have the potential to deliver secure, transparent, continuous919

and cost-effective human-to-things recognition solutions for emerging IoT ecosystems.920

They can offer multi-faceted benefits: 1) behavioral biometric modalities can be col-921

lected transparently (non-intrusive) [165]; 2) the availability of a wide range of sensors922

(e.g., Accelerometer, Gyroscope, Radar, Piezometer, Microphone and Proximity sen-923

sors) enable acquisition of behavioral biometric modalities accurately and efficiently;924

3) they can be leveraged for designing implicit (frictionless) [136], continuous (ac-925

tive) [33, 42] or risk-based (non-static) recognition systems due to the evolution of926

embedded Machine Learning engines [166]; 4) they do not add cognitive load on users;927

5) they cannot be easily stolen, shared, transferred, conjectured or hacked; and 6) they928

are, comparatively, less prone to cyber-attacks [122].929

Sensors to capture behavioral biometric modalities are advancing rapidly, both in930

scope and technology. With the emergence of fabrication techniques such as Micro-931

Electro-Mechanical Systems (MEMS), microminiaturized sensors, actuators, mechani-932

cal components and electronics can be integrated into a single chip [167]. ST Micro-933

electronics is one of the leading MEMS manufacturers that provides high-performance934

sensors with ultra-low power requirement [168]. RoKiX Sensor Node integrates multi-935

ple sensors with Bluetooth Low Energy (BLE) interface to provide the measurement of936

3D-acceleration, 3D-magnetism, 3D-rotation, pressure, and temperature [169]. A wide937

range of touch screen (such as 5-Wire Resistive, Surface Capacitive touch, Projected938

Capacitive (P-Cap), Surface Acoustic Wave (SAW) and Infrared (IR) [170]) sensors939

are available in the market that can be selected for ATMs, kiosks, vending machines,940

smart devices or wearables’ screens. High-performance piezoresistivity, capacitance or941
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piezoelectric pressure sensors can be miniaturized using silicon fabrication techniques,942

for example piezoelectric based insole sensor [171]. Time-of-Flight 3D sensors utilise943

Light Detection and Ranging (LIDAR) to measure distances and sizes, to track motions,944

and to convert the shape of objects into 3D models [172, 173].945

Operating systems such as Android, iOS, Windows provide SDK and APIs for946

interfacing sensors to acquire behavioral biometric modalities [174, 175, 176]. Leading947

system on a chip (SoC) manufacturers and designers, such as Intel and ARM provide948

SoCs supporting machine learning engines [23], AI-embedded chips [177] and NN-949

powered FPGAs [178] capable of supporting advanced algorithms for sensor data950

fusion, learning autonomously from existing data, acquiring knowledge for assessments,951

and making predictions and decisions. Further, IoT platforms, such as Google Cloud,952

IBM Watson, Amazon AWS, Microsoft Azure support advanced machine learning,953

and Artificial Intelligence algorithms backed by enormous computational power that954

can provide the necessary infrastructure to design behavioral biometric-based user955

recognition systems for a variety of applications. Thus these advances will continue to956

deliver further enhanced capabilities for behavioral biometric-based user recognition.957

Key market players, particularly, BehavioSec, BioCatch, EZMCOM, NEC Corpo-958

ration, SecuredTouch have been exploiting behavioral biometrics to design security959

solutions for financial institutions, businesses, government facilities, e-commerce mer-960

chants and online businesses to support security-sensitive applications. The security961

solutions offered range from prevention of the use of stolen or synthetic identities962

in applying for credit online to making better fraud decisions. Solutions can be de-963

ployed as an extra layer of intelligence to support user recognition in the fight against964

cyber-crimes.965

Table 11: IoT domains, key applications and behavioral biometrics usage
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Smart infrastruc-
ture

Smart homes, smart offices, smart cities,
smart grid, Waste management, social
networking apps

! ! ! ! ! ! !

Transportation Smart ticket booking, intelligent access
system, smart parking, driverless Taxis

! ! ! !

Healthcare Smart hospital, medical records ! ! !

Industrial control Smart retail, supply chain management ! !

Security surveil-
lance

Perimeter access control, border control,
intrusion detection systems

! ! ! !

36



Behavioral biometrics can offer opportunities to address the security and usabil-966

ity issues that end-users can face when using conventional user recognition schemes.967

Table 11 suggests IoT domains, key applications, and behavioral biometrics that can968

be exploited for user recognition. If not replacing conventional mechanisms entirely,969

behavioral biometrics can minimize the burden placed on them to security-sensitive970

IoT ecosystems [166]. Another benefit of behavioral biometrics is that they can be971

fused with each other, and with biological biometrics, seamlessly to build more robust972

recognition schemes. Security-sensitive sectors such as smart banking, e-commerce973

and finance are already leveraging behavioral biometric-based user recognition mecha-974

nisms [165]. Furthermore, HCI-based behavioral biometrics can be applied to minimise975

cyber-abuse and online scams, such as the spread of fake news, creation of bogus pro-976

files on social media platforms, phishing, as well as similar illegal activities.977

7. Conclusions978

Within the overall IoT security spectrum, robust and usable human-to-things recog-979

nition schemes are of increasing importance, given the highly prescriptive nature of980

conventional (knowledge- or token-based) recognition schemes currently being utilised.981

The efficacy of conventional schemes remains limited since they require users to recall982

something they know or to possess something. As such, user recognition schemes for983

emerging IoT ecosystems, which can fulfill both the security and usability criteria, and984

comply the privacy laws, are in genuine demand.985

This article has summarized the state-of-the-art in HCI- and natural habits-based986

biometrics, namely, touch-stroke, swipe, touch-signature, hand-movements, voice,987

gait and footstep. Attributes and features for each of these identified and analysed so988

that they can be best exploited in the design of user-friendly recognition schemes. A989

discussion of security, privacy and usability evaluation indicators together with the990

existing challenges and limitations is also presented that requiring attention to achieve991

the widespread adoption of behavioral biometric-based recognition schemes.992

Overall, the prospects and market trends cited in this article indicate that behavioral993

biometrics can provide innovative ways to implement implicit (frictionless), continuous994

(active) or risk-based (non-static) recognition schemes. With the availability of smart995

sensors, advanced machine learning algorithms and powerful IoT platforms, behavioral996

biometrics can replace conventional recognition schemes, thereby reshaping the existing997

user recognition landscape for IoT ecosystems.998
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