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ABSTRACT
In this paper, we apply a theoretical model for fluid state thermodynamics to investigate simulated water in supercooled conditions. This
model, which we recently proposed and applied to sub- and super-critical fluid water [Zanetti-Polzi et al., J. Chem. Phys. 156(4), 44506
(2022)], is based on a combination of the moment-generating functions of the enthalpy and volume fluctuations as provided by two gamma
distributions and provides the free energy of the system as well as other relevant thermodynamic quantities. The application we make here
provides a thermodynamic description of supercooled water fully consistent with that expected by crossing the liquid–liquid Widom line,
indicating the presence of two distinct liquid states. In particular, the present model accurately reproduces the Widom line temperatures
estimated with other two-state models and well describes the heat capacity anomalies. Differently from previous models, according to our
description, a cluster of molecules that extends beyond the first hydration shell is necessary to discriminate between the statistical fluctuation
regimes typical of the two liquid states.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0157505

I. INTRODUCTION

The anomalous thermodynamic properties of water become
more pronounced in deeply supercooled conditions.1 Among other
theoretical scenarios to explain water anomalies, the existence
of a liquid–liquid phase transition (LLPT), and corresponding
liquid–liquid critical point (LLCP), has been hypothesized in the
supercooled region.2 According to this scenario, a first order phase
transition exists between two liquid states differing in density: the
high density liquid (HDL) and the low density liquid (LDL). The
extension of the coexistence line associated with the phase transi-
tion beyond the second critical point, the Widom line, is typically
considered as providing the border between regions mostly char-
acterized by either the HDL-like or the LDL-like phase. The LLPT
and LLCP are supposed to lie in the so called no man’s land,

where experimental observation is hampered by fast crystallization.
Therefore, the investigation of supercooled water, and its thermo-
dynamics, received strong support from theoretical-computational
approaches.3–7

A remarkably successful and versatile approach to study the
thermodynamics of the liquid–liquid transition can be found in
so-called two-state (or binary mixture) models.1 The fundamen-
tal idea behind such models is the existence of two distinct but
continuously interconverting local structures, each of which is repre-
sentative of one of the two phases of water: LDL-like structures with
lower energy and entropy, and HDL-like structures where energy
and entropy are higher. The competition between these two local
structures can lead to phase separation if the non-ideal component
of the Gibbs free energy of mixing is strong enough. The origin of
the non-ideality in this mixing term remains an interesting point
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of discussion. While for models such as ST2, the transition was
shown to be energy-driven,8 criticality in real water was proposed to
be mainly entropy-driven.9 Recently, a minimal microscopic model
that does not rely on phenomenological assumptions was devel-
oped by Caupin and Anisimov,10 providing a unified framework
to describe polymorphic liquids. Many researchers have instead
focused on connecting the two-state model to explicit microscopic
structural descriptions, defining structural quantities that could
serve as order parameters in these equations of state.11–18 A struc-
tural order parameter-free approach to distinguish the two states on
the basis of their entropic and energetic differences has also recently
been proposed.19 Despite numerous efforts, a complete microscopic
description of water’s local structures has yet to be achieved. Foffi
and Sciortino18 have shown that, close to the liquid–liquid critical
point, most of the existing structural descriptors accurately follow
the critical density fluctuations, sampling a clearly bimodal free
energy landscape; in parallel, work by Offei-Danso et al.20 based on
a new unsupervised learning approach has shown the impossibil-
ity of associating individual molecules to distinct local structures in
ambient-condition water through standard structural descriptors.

Recently,21 we proposed a statistical mechanical model to
describe the thermodynamics of fluids based on the quasi-Gaussian
entropy (QGE) theory.22,23 In this model, the theoretical background
of which is briefly recalled in Sec. II, we used the distributions of
the fluctuations of macroscopic properties to describe the thermody-
namics of the system as a function of both temperature and pressure
deriving a complete equation of state in the isothermal–isobaric
ensemble.

In our previous work,21 we applied this model to the liquid to
gas transitions in sub- and super-critical fluid water. We showed
that fluid water thermodynamics can be well described using two
gamma state solutions (i.e., solutions based on Gamma distribu-
tions): a liquid-like gamma state and a gas-like gamma state, able to
describe, respectively, the liquid/pseudo–liquid and gas/pseudo–gas
phases in both the sub- and super-critical p, T spaces. We also mod-
eled the phase or pseudo-phase transitions by introducing a new
parameter, namely Nc, which represents the minimal size of the
cluster of correlated molecules inside the macroscopic system. In
other words, interpreting the macroscopic system as a set of sub-
systems in either the liquid-like or gas-like state, Nc corresponds to
the size of the smallest subsystem that can be found in the liquid-
like and gas-like states. According to this interpretation, in the
sub-critical region Nc →∞, providing the discontinuous behavior
of macroscopic phase transitions. From the comparison between
experimental water data and our equation of state, we obtained in
the super-critical region Nc = 5, i.e., the smallest subsystem size
in the supercritical fluid corresponds to the number of molecules
involved in the minimal hydrogen-bonding (HB) network. In our
model, the macroscopic phase transition is only determined by the
Nc →∞ limit, as the non-ideal term in the free energy of mixing
vanishes within the assumptions/approximations used.21

In the present work, we use the same model to investigate
the properties of supercooled water in the region where a contin-
uous transition between the two liquid phases differing in density
is expected by crossing the liquid–liquid Widom line. To achieve
this aim, we perform molecular dynamics (MD) simulations of the
TIP4P/2005 water model, which was shown several times to dis-
play a LLPT,24–26 using various temperatures along different isobars.

We apply the above-introduced model along these isobars without
explicitly including the pressure dependence, obtaining, therefore,
the thermodynamic properties as a function of the temperature at
each pressure. In analogy with what we did for the liquid to gas phase
transition, we use two gamma state solutions to model the LDL-like
and HDL-like phases. Using the enthalpy fluctuation moment gen-
erating functions, as provided by the two gamma distributions, we
gain insights into the thermodynamic properties, such as the Gibbs
free energy (G) and heat capacity (Cp), of the LDL-like and HDL-like
states as a function of the temperature. In addition, we also dis-
cuss the behavior of the parameter Nc along the investigated isobars.
Finally, we compare the results of our model with those provided by
the use of well established order parameters that make use of specific
structural features to investigate the LDL-like and HDL-like phases.

II. THEORY
In the QGE theory, the basic statistical mechanical relations

are rewritten in terms of the distributions of the fluctuations of
macroscopic properties. Thanks to that, it is possible to describe
the thermodynamics of the system without evaluating the partition
function. It was previously shown22,23,27 that the thermodynam-
ics of fluid state systems can be well described by making use of
Gamma distributions to model the fluctuation distributions of ther-
modynamic properties (such as enthalpy and volume). The use of
Gamma distributions permits the analytical derivation of relevant
thermodynamic quantities avoiding the use of empirical functions
or parameters, providing a physically coherent description of the
system under investigation. Below, we provide the main equations
used in the present paper to describe the isobaric thermodynam-
ics of water in the supercooled region. The theoretical basis of
the approach and the full derivations can be found in the original
work.21

Given a fluid system of N molecules in the isobaric–isothermal
(N, p, T) ensemble, its Gibbs free energy is given by

G(p, T) = −kBT ln Δ(p, T) (1)

with kB is the Boltzmann constant and T is the absolute temperature,
and Δ(p, T) is the isobaric–isothermal partition function,

Δ(p, T) =∑
V

Q(V , T)e−βpV , (2)

Q(V , T) = Θ∑
l
∫

V
e−β[𝒰e(q)+ℰvb,l(q)+𝒦(q,π)]dΓ. (3)

In Eqs. (2) and (3), p is the equilibrium pressure, 1/β = kBT, the
summation in Eq. (2) is over all the possible volumes V of the system
(the difference between two consecutive volumes is virtually corre-
sponding to a differential), the summation in the canonical partition
function Q(V , T) is over all the vibrational states, and the subscript
V of the integral sign means that integration is performed within the
volume V . Moreover, 𝒰e(q) is the electronic ground state energy
(the electronic excited states are disregarded as they are virtually
inaccessible except at extremely high temperatures), ℰvb,l(q) is the
lth vibrational state energy, 𝒦(q,π) is the classical kinetic energy,
Θ is a constant providing the quantum corrections for the permu-
tations of identical particles (possibly including the degeneration
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factor of the electronic ground state), and dΓ = dqdπ/hn expresses
the number of semiclassical quantum states within the phase space
differential with h being the Planck’s constant, q being the n gen-
eralized semiclassical coordinates, and π being the corresponding
conjugated momenta. By expanding the exponential term in Eq. (3),
Eq. (1) can be rewritten as follows (see Zanetti-Polzi et al.21):

βG(p, T) ≅ − ln Qvb(T)

− ln∑
V
Θ∫

V
e−β[𝒰e(q)+𝒦(q,π)+pV]dΓ (4)

with

Qvb(T) =∑
l

e−βEvb,l , (5)

the vibrational partition function, where Evb,l is the lth vibrational
state mean energy.21

In a statistical mechanical ensemble, it is always possible to
define a proper reference state such that the free energy difference
between the actual condition and the reference one can be expressed
in terms of the moment-generating function of the distribution of
a specific macroscopic fluctuation. Setting at T0 the temperature of
this reference state and defining the excess Gibbs free energy as

G′ ≅ G + kBT ln Qvb. (6)

It can be shown21 that the excess free energy change can be expressed
using the moment generating function of the distribution of the
single phase space position enthalpy 𝒰e(q) +𝒦(q,π) + pV ,

βG′(p, T) − β0G′(p, T0) = − ln ⟨e−Δβ[𝒰e(q)+𝒦(q,π)+pV]⟩β0 , (7)

where the β0 subscript of the angle brackets means averaging within
the β0 ensemble. Using for such distribution the diverging Gamma
distribution and its moment generating function21 and given the
excess entropy, enthalpy, and heat capacity (s′0, h′0, and c′p0) at the
arbitrary reference temperature T0, we can derive the excess ther-
modynamics along an isobar according to the diverging gamma state
model

μ′(p, T) = G′(p, T)
N

= h′0 − T0c′p0 + T(c′p0 − s′0) + Tc′p0 ln
T0

T

= μ′0 + (T − T0)(c′p0 − s′0) + Tc′p0 ln
T0

T
, (8)

s′(p, T) = S′(p, T)
N

= s′0 + c′p0 ln
T
T0

, (9)

h′(p, T) = H′(p, T)
N

= h′0 + c′p0(T − T0), (10)

c′(p, T) = C′p(p, T)
N

= c′p0, (11)

Notably, the linear temperature dependence obtained for the
excess enthalpy h′(p, T) can be used as the diagnostic criterion for
validating the diverging Gamma state as a proper model for the iso-
bar thermodynamics. By using Eqs. (6) and (8), we can obtain the

complete molecular Gibbs free energy (i.e., the chemical potential)
along the isobar

μ(p, T) ≅ μ′(p, T) − kBT ln qvb(T)

= μ′0 + (T − T0)(c′p0 − s′0) + Tc′p0 ln
T0

T
− kBT ln qvb(T)

(12)

with qvb being the molecular vibrational partition function and fur-
nishing via its temperature derivatives the corresponding molecular
full entropy, enthalpy, and (isobaric) heat capacity.

If we can conceive the macroscopic system as constituted by
a mixture of M subsystems, each including Nc molecules and cor-
responding to either the LDL-like or the HDL-like state, we can
construct a general model for the LDL⇋ HDL equilibrium. In fact,
defining with μ∗LDL and μ∗HDL the LDL and HDL chemical potentials
when the whole macroscopic system is either in the LDL or HDL
state, respectively, the total free energy of the macroscopic system
(for a given subsystem LDL-HDL configuration) can be expressed
by21

Gconf =
M

∑
j=1

Ncμconf ,j (13)

with μconf , j being the chemical potential of the molecules within the
jth subsystem, corresponding to either the LDL (μconf , L) or HDL
(μconf , H) one,

μconf ,L ≅ μ∗L + χHδL, (14)

μconf ,H ≅ μ∗H + χLδH

= μ∗H + (1 − χH)δH , (15)

with χH being the fraction of the M subsystems in the HDL-like
state, χL = 1 − χH being the fraction of the LDL-like subsystems, and
δL, δH being the LDL-like and HDL-like chemical potential correc-
tions when considering either a single LDL-like subsystem into a
HDL-like macroscopic system (i.e., χH → 1) or a single HDL-like
subsystem into a LDL-like macroscopic system (i.e., χL → 1). Note
that in the last equations, the terms providing inhomogeneity effects
neglect any local effect due to the neighboring subsystems, assum-
ing the free energy corrections only depend on the overall fractions
χH , χL. It is also worth noting that these free energy corrections
possibly include surface effects due to such inhomogeneities. How-
ever, when the subsystem molecular size (i.e., Nc) is as small as in
the present case (10–20 molecules, see below), there is no phase
separation; thus, surface tension can be disregarded.

Using Eqs. (13)–(15) and assuming δL ≅ −δH , we obtain (con-
sidering all the subsystem configurations providing all the com-
binations of k LDL-like and M − k HDL-like subsystems) the
isothermal–isobaric partition function and corresponding chemical
potential21

Δ(p, T) ≅
M

∑
k=0

M!
k!(M − k)! e−βG(k)

≅
M

∑
k=0

M!
k!(M − k)! e−βkNcμ∗L e−β(M−k)Ncμ∗H

= (e−βNcμ∗L + e−βNcμ∗H)
M

, (16)
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μ(p, T) = G(p, T)
N

= −kBT
N

lnΔ(p, T)

≅ −kBT
Nc

ln (e−βNcμ∗L + e−βNcμ∗H) (17)

with N = NcM being the total number of water molecules in the
macroscopic system. The approximation used δL ≅ −δH is based on
the fact that a molecule within an HDL subsystem embedded in
LDL subsystems experiences an increase in the average number of
hydrogen bonds roughly equal to the decrease in the average number
of hydrogen bonds experienced by a molecule within a LDL sub-
system embedded in HDL subsystems. From the above-mentioned
equation, we can obtain the molecular enthalpy, entropy, and heat
capacity, as follows:

h(p, T) = (∂βμ
∂β
)

p
≅ e−βNcμ∗L h∗L

e−βNcμ∗L + e−βNcμ∗H

+ e−βNcμ∗H h∗H
e−βNcμ∗L + e−βNcμ∗H

, (18)

s(p, T) = −( ∂μ
∂T
)

p
≅ e−βNcμ∗L s∗L

e−βNcμ∗L + e−βNcμ∗H

+ e−βNcμ∗H s∗H
e−βNcμ∗L + e−βNcμ∗H

, (19)

cp(p, T) = ( ∂h
∂T
)

p
≅ c∗p,L +

e−βNcΔμ∗ Δc∗p
1 + e−βNcΔμ∗

+ Nc(Δh∗)2 e−βNcΔμ∗

kBT2(1 + e−βNcΔμ∗)2 , (20)

with Δμ∗ = μ∗H − μ∗L , Δh∗ = h∗H − h∗L , and Δc∗p = c∗p,H − c∗p,L, with the
star superscript indicating that the property refers to the pure LDL
or HDL macroscopic system.

We remark that here, unlike other two-state models, we do not
deal with the interconversion of individual molecules between two
distinct local structures; rather, our equation of state represents the
interconversion between spatially extended clusters of molecules.
A cluster-based approach to the two-state model was also adopted
by Holten et al.28 to describe the thermodynamics of mW water,
obtaining an equation of state formally identical to that of a poly-
mer solution in Flory–Huggins theory.29 In that case, the cluster
dimension N is a purely phenomenological parameter included to
provide a reduction of the mixing entropy. In our model, instead,
the Nc parameter follows from an explicit physical model based on
constructing the thermodynamics on the cluster domains.

III. RESULTS AND DISCUSSION
To model the thermodynamics of supercooled water, we per-

form MD simulations of the TIP4P/2005 water model30 along five
different isobars (details on the MD simulations are provided in the
supplementary material). As shown in Fig. 1(a), we choose along the
first three isobars (i.e., 1, 400, and 1000 bars) a range of temperatures
that crosses the previously predicted Widom line for the TIP4P/2005
water model.24,25 Therefore, along these three isobars, a continuous

FIG. 1. (a): Filled diamonds identify the MD simulation temperatures along the
five isobars: 1 bar (black), 400 bars (red), 1000 bars (green), 1650 bars (blue),
and 3000 bars (magenta). In dark red, we report the liquid–liquid coexistence line
(solid), Widom line (dashed), and LLCP (filled circle) as estimated by the two-
structure equation of state (TSEOS) for the TIP4P/2005 water model by Singh
et al.24 (b): Filled diamonds correspond to the densities as obtained in our MD
simulations along the five isobars: 1 bar (black), 400 bars (red), 1000 bars (green),
1650 bars (blue), and 3000 bars (magenta). Previously obtained24 densities for the
same water model are reported as open circles. Colored dashed lines are a guide
for the eye. Since we could not find previous results at 1650 bars, we compare
our simulated densities with those previously reported at 1500 bars (bottom blue
dashed line) and 1750 bars (top blue dashed line).

transition between the LDL- and HDL-like phases can be observed.
At 1650 and 3000 bars, instead, water is in the HDL-like phase at all
the simulated temperatures. As a benchmark for our simulation con-
ditions, we also compare, in Fig. 1(b), the densities as obtained from
our MD simulations at all temperatures and pressures with those
previously obtained for the same water model24 (more details are
provided in the supplementary material).

Using the average volume and energy as obtained by averag-
ing over the MD simulation frames, we can then obtain the system
excess enthalpy for each isobar as a function of the temperature.
The collected trends, reported in Fig. 2, show that at 1650 and 3000
bars [panel (d), blue and magenta lines, respectively], the excess
enthalpy shows a linear temperature dependence. Since along these
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FIG. 2. Calculated excess enthalpy at 1 bar (a), 400 bars (b), 1000 bars (c),
1650 and 3000 bars [(d), blue and magenta, respectively]. At each pressure, the
enthalpy values as obtained from the MD simulations are reported as filled circles,
while the corresponding enthalpy trend provided by the model is reported as a solid
line in panels (a) to (c). The points used to define the LDL- and HDL-like gamma
states are highlighted as open squares and circles, respectively. The linear trends
of the enthalpy corresponding to the full LDL- and HDL-like gamma states in the
whole temperature range are reported as dashed and dotted lines, respectively.

two isobars, water is only found in the HDL-like state, the lin-
earity of the enthalpy shows that the HDL-like state can be well
modeled as a single gamma state. At 1650 bars, taking as refer-
ence for the HDL-like gamma state the points at the three highest
temperatures [highlighted with blue squares in Fig. 2(d)], a slight
deviation from the linearity is observed at the lowest temperature
(i.e., 200 K), which is close to the estimated Widom line tempera-
ture (i.e., ≈185 K). This behavior is consistent with an isobar slightly
below the critical pressure, for which a continuous yet sharp tran-
sition is expected by crossing the Widom line. The enthalpy trends
at 1, 400, and 1000 bars [panels (a), (b), and (c), respectively] show
instead an evident non-linear behavior. Therefore, liquid water at
these pressures cannot be described by a unique gamma state. Yet,
at the highest and lowest temperatures, linearity is recovered, sug-
gesting that along these three isobars, an interconversion between
two different statistical fluctuation regimes takes place and that each
regime can be modeled as a gamma state. In what follows, we will
refer to these two distinct gamma states as LDL-like (low tempera-
ture) and HDL-like (high temperature) gamma states. Nonetheless,
it has to be noted that the definition of these two states as emerging
from our model does not exactly overlap with the definition of LDL-
and HDL-like molecules that can be obtained with order parameters
based on structural features that have been developed to investi-
gate the properties of supercooled liquid water.12,14–17,31–33 Similarly,
the two gamma states, defined on the basis of the system statistical
fluctuations, are not expected to exactly overlap with the LDL- and
HDL-like phases obtained by means of two state models that treat
water as a binary mixture of two different local structures.9–11,24,25

To define the LDL- and HDL-like gamma states at each pres-
sure, we make use of the lowest and highest simulated temperatures

(highlighted with open circles and squares, respectively, in Fig. 2).
Given the difficulties in obtaining reliable results from very low tem-
perature MD simulations, only two points are used to define the
LDL-like gamma state. The actual linear temperature dependence
of the enthalpy, implying that the LDL-like gamma state is properly
identified, can only be confirmed from the estimation of the Widom
line temperature at each pressure (vide infra). The linearity of the
enthalpy in the high temperature region can instead be well appreci-
ated in Fig. 2. Interestingly, it can be observed that the linear region
identifying the HDL-like phase comprises temperatures that are not
used to define the gamma state, showing that at all the investigated
pressures in TIP4P/2005 water is found in a single fully HDL-like
state above ≈280 K.

Once the LDL- and HDL-like gamma states are defined at each
pressure, by using Eqs. (8), (10), and (18), we can obtain the model
enthalpy curve by fitting the enthalpy values obtained from the MD
simulations (a summary of the fitting parameters is provided in
Table 2 in the supplementary material). The fit provides Nc and
Teq, with Teq the equilibrium temperature, defined as the temper-
ature at which Δμ∗ = 0. Following the definition used by Singh et al.
in the two-structure equation of state (TSEOS),24 in this paper we
choose to define the Widom line temperature, TW , as coinciding
with Teq. The values obtained for Nc are reported in Fig. 2, while
those for TW are reported in Fig. 3(b) (open diamonds). The val-
ues obtained for Nc are of the same order of magnitude for all the
investigated pressures. More specifically, we obtain very similar Nc
values at 1 and 400 bars (11 and 10, respectively) and an increased
Nc value at 1000 bars (25). Despite these values do not show a
clear trend, we cannot exclude that Nc might slightly increase with
the pressure and that this increase cannot be observed between 1
and 400 bars due to the noise of the simulated data. In particular,
the enthalpy estimate from the low temperature MD simulations
might be affected by inaccuracies resulting in slight Nc changes. On
the other hand, the similarity among the three Nc values obtained
from the fit suggests that, similarly to what observed for the water
liquid–vapor transition, a unique Nc value at all pressures could be
a proper choice to describe the liquid–liquid Widom line crossing.
We recall indeed that in the super-critical region of the liquid–vapor
phase transition, we found in our previous work21 that using
Nc = 5 at all temperatures and pressures, the experimental super-
critical thermodynamics was well reproduced. In analogy to this
result, and assuming that the liquid–gas and the liquid–liquid phase
transitions should behave similarly, we speculate that a single Nc
value could provide a proper description of the thermodynamics of
the super-critical regime of the liquid–liquid phase transition. As a
matter of fact, using as unique Nc the average among the three fit-
ted values (i.e., 15), the enthalpy trends are still very well fitted (see
Fig. 2 of the supplementary material) with negligible effects on the
estimate of TW (Fig. 3 of the supplementary material).

Recalling that Nc is the minimum number of water molecules
necessary to define a cluster that can be found in one of the two
gamma states, we note that to describe the existence of one liquid
phase into the other, a larger number of molecules is necessary with
respect to what observed for the liquid-like and gas-like phases. In
that case, Nc = 5 corresponds to the minimal HB pattern around
a central molecule, and each subsystem of Nc molecules can be
pictured as fluctuating between forming and disrupting this HB
network. In the super-critical region of the liquid–liquid phase tran-
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FIG. 3. (a): Isobaric heat capacity along the three isobars: 1 bar (black), 400 bars
(red), and 1000 bars (green). (b): the Widom line temperature TW obtained from
the fits of the enthalpy trends reported in Fig. 2 is reported for the three pressures
(open diamonds: 1 bar, black; 400 bars, red, and 1000 bars, green) and compared
with that obtained with the TSEOS for TIP4P/2005 by Singh et al.24 (dark red
dashed line). The liquid–liquid coexistence line and LLCP as estimated by the
TSEOS are also reported as the dark red solid line and filled circle, respectively.
The cp maxima obtained by our model are reported as open triangles (same color
code for the three pressures).

sition, the minimal HB network is not sufficiently big to define
one of the two liquid phases differing in density (in Fig. 4 of
the supplementary material, we show that if we use Nc = 5, the
data are poorly fitted). This observation agrees well with the fact
that most of the difference between LDL- and HDL-like states was
shown to depend on the second hydration shell, which is shifted
toward lower radii upon raising the density.34–37 As a matter of fact,
Nc = 15 (i.e., the average among the three Nc values obtained from
the fir at the three pressures) roughly corresponds to the number of
water molecules up to the second hydration shell as provided by the
O–O radial distribution function (see Fig. 5 of the supplementary
material). Therefore, each subsystem can be pictured as fluctuating
between the LDL-like state, in which the first 10–20 first neighbors
are arranged around the central molecule in two well defined shells,
and the HDL-like state, in which the boundary between the first and

second hydration shells is less defined and the space between the two
shells is filled by interstitial water molecules.

As shown in Fig. 3(b), the TW values obtained from the fit are
in good agreement with those obtained from the TSEOS by Singh
et al. for the same water model.24 In both models, TW is defined
as the temperature at which Δμ∗ = 0, showing that the two theo-
retical descriptions, although based on different physical concepts,
provide a similar chemical potential behavior. In Fig. 3(a), we also
report the isobaric heat capacity, cp, as a function of the tempera-
ture as provided by the enthalpy trend obtained from the model [see
Eq. (20) and Fig. 2]. In Fig. 6(A), in the supplementary material, we
also report the comparison between the cp trends obtained from the
model and those obtained by the numerical temperature derivative
of the enthalpies extracted from the MD data (i.e., the filled circles
in Fig. 2). We note that, since the simulated enthalpies are very well
reproduced by the model (see Fig. 2), the discrepancies between the
model and the MD derived cp trends can be ascribed to the limited
temperature resolution in the numerical derivative. The overall cp
trend, both obtained by the model and obtained by the numerical
temperature derivative, is in agreement with previous calculations
under the same pressure conditions.19 This is also true for the esti-
mate we make of the isothermal compressibility, kT , from our MD
simulations [see Fig. 6(B) in the supplementary material], which are
in agreement with previous corresponding calculations. In Fig. 3(b),
the temperatures of the cp maxima obtained at the three pressures
are also reported (open triangles). We note that, according to our
model, the cp maxima are found at higher temperatures with respect
to TW by 7–8 K (with a slightly reduced temperature difference at
1000 bars, in agreement with the fact that at the critical point the
Widom line and the loci of maxima of cp coincide). We also note
that recent estimates of the cp maxima along the same isobars for
the same water model provided somewhat lower temperatures for
the cp maxima (specifically, 220 vs 238 K; 212 vs 230 K; and 200
vs 211 K for isobars 1, 400, and 1000 bars, respectively). We can-
not unequivocally determine the origin of the difference between the
two estimates of the isobaric heat capacity temperature maxima; we
note, however, that the heat capacity trend is very sensitive to small
variations of the internal energy and density of the systems along the
MD simulations, suggesting that the cp is not the best observable to
be compared among different models or calculation procedures.

From the temperature trend of Δμ provided by the model, we
can also obtain the fraction of LDL- and HDL-like gamma states as a
function of the temperature at each pressure. In Fig. 4, we report the
LDL-like fraction at 1 and 1000 bars and compare it with the same
quantity as provided by two different order parameters, namely ζ
and ψ. The value ζ i of a molecule i is defined as the difference
between the distance rj′i of the first neighbor not hydrogen bonded
to i and the distance rj′′i of the last neighbor hydrogen bonded to
i.14 ψ is a recently introduced order parameter based on the observa-
tion that the distance between pairs of molecules separated by four
links along the HB network (chemical distance D = 4) is different
in the LDL- and HDL-like phases. The value ψi of a molecule i is
defined as the minimal distance between molecules at chemical dis-
tance D = 4 from i.18 To define the LDL-like fraction using the two
order parameters, we use as a threshold to separate the two states the
crossing point between the distributions obtained at the lowest and
highest temperatures (see Fig. 7 in the supplementary material). It
can be observed that, according to the model, the LDL-like fraction is
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FIG. 4. (a) and (c): Fraction of LDL-like water as a function of the temperature at
1 bar (a) and 1000 bars (c) as provided by our model (solid line), by the ζ order
parameter (filled circles) and by the ψ order parameter (filled diamonds). (b) and
(d): Fraction of LDL-like water as a function of T /Teq, with Teq the temperature
at which the model and ζ provide LDL fraction = 0.5, at 1 bar (b) and 1000 bars
(d) as provided by the coarse grained version of the ζ order parameter using an
increasing number N of nearest neighbors to perform the coarse-graining. Insets in
panels (b) and (d) report the root mean square error (RMSE) between the curves
by increasing N. The black dashed line highlights N = 15.

null for temperatures above ≈250–280 K (at 1000 and 1 bars, respec-
tively), as anticipated by the linearity of the enthalpy trend at high
temperatures. In the same temperature range, the order parameters
provide instead a non zero LDL-like fraction (≈10%–15%), reach-
ing at 1 bar a plateau value of ≈10% even at the highest temperature
(400 K).

This apparent discrepancy can be rationalized by taking into
account the interpretation of the Nc parameter in the model. As a
matter of fact, Nc is the minimal cluster of water molecules that can
be found in the LDL- or HDL-like gamma states and is, therefore,
the smallest number of water molecules necessary to distinguish the
two regimes of statistical fluctuations. While it is reasonable that
at high temperatures some molecules have some structural features
that can be identified as LDL-like (in terms of, e.g., tetrahedral-
ity, absence of interstitial water molecules, or chemical distance as
defined according to the ψ parameter), it is highly unlikely that a
cluster of Nc nearest neighbors has these LDL-like features. This
can be appreciated in Fig. 5, where we report the probability that
we can find, using ζ as an order parameter, a LDL-like molecule
among the first 15 nearest neighbors of an LDL-like molecule. It can

FIG. 5. Probability of being identified as an LDL-like molecule for the first Nc neigh-
bors of a LDL-like molecule. Identification of the LDL-like molecules is done using
the ζ order parameter. Panel (a): data at 1 bar and 300 K, Nc = 15. Panel (b): data
at 1000 bars and 300 K, Nc = 15.

be observed that at high temperatures, the probability that each of
the first neighbors of an LDL-like molecule be also LDL is rather
low. The probability of having all these neighbors identified as LDL-
like is, therefore, negligible. Therefore, according to the ζ parameter,
a cluster of 10–20 LDL-like water molecules is not found at high
temperatures. Coherently with this observation, the LDL-like frac-
tion at high temperatures obtained with our model is null. This also
implies that single isolated water molecules that possess, at high
temperatures, structural LDL-like features cannot be assigned to the
LDL-like phase if a more extended structural organization is taken
into account. Yet, according to our model, a cluster of molecules that
extends beyond the first hydration shell is necessary to discriminate
between the statistical fluctuation regimes typical of the two phases.

Recently, spatial coarse-graining was proposed as a strategy to
take into account the effect of nearest neighbors in calculating the
ζ order parameter.38 The coarse-grained value of ζ, ζCG, for the
molecules i is obtained by averaging its ζ value with that of the
molecules within its first shell (i.e., within 0.35 nm). We show in
Figs. 4(b) and 4(d) that by calculating ζCG including an increasing
number N of nearest neighbors (going beyond the first shell), we
obtain a steeper variation of the LDL-like fraction as a function of
the temperature, similarly to what we obtained with our model. This
confirms that the discrepancy between the fraction estimated by the
model and by the order parameters arises from the dimension of
the minimal nucleus of molecules that defines either the LDL- or
the HDL-like phase. Indeed, Nc and the coarse-graining radius N
regulate the steepness of the crossover between the two structural
regimes in a similar way: a larger size for the minimal cluster leads
to a sharper crossover. It can be observed in the insets of panels
(b) and (d) of Fig. 4 that coarse-graining on an increasing number
of nearest neighbors has a very relevant effect on the LDL-fraction
up to N = 10–12. A further enlarging of the spatial coarse-graining
has instead a minor effect. The significant variation of the LDL-like
fraction for N ⩽ Nc ≈ 15 suggests that the Nc value obtained within
our model is a reasonable value for the minimal cluster necessary
to define the thermodynamic properties of the two liquid phases.
In addition, the above-mentioned results also suggest an interesting
connection between the Nc parameter of our thermodynamic model
and structural order parameters that will be further investigated in
future works.
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IV. CONCLUSIONS
In this work, we apply a theoretical model we have recently

proposed for fluid state systems21 to the investigation of simulated
supercooled water. The model uses basic statistical mechanical and
thermodynamic relations to obtain the thermodynamic properties
of liquid water as a function of temperature. The model shows
that in supercooled conditions, water thermodynamics along iso-
bars (i.e., as a function of the temperature) can be well described
using two gamma state solutions (i.e., solutions based on Gamma
distributions) representing the two liquid states differing in den-
sity: the LDL-like state and the HDL-like state. Remarkably, the very
same description used to model the experimental data on the liquid-
and gas-like thermodynamics also applies for simulated data in
the supercooled region, confirming the strong parallelism between
the pseudo-phase transition in real supercritical water and that in
simulated supercooled water.

When compared to other two state models, the model we use
here has more or less the same number of fitting parameters. How-
ever, while in other models some of these parameters come from
a phenomenological/empirical description, in our model the fitting
function strictly derives from a physical model. In addition, the lin-
earity of the enthalpy when the system is in a single Gamma state
furnishes a simple and efficient diagnostic criterion to identify the
temperature range in which a single phase exists and to evaluate the
accuracy of the model itself.

By interpreting the liquid system as an ensemble of inter-
converting LDL-like and HDL-like subsystems containing Nc
molecules, the model also describes the transition between the LDL-
like and the HDL-like states by crossing the Widom line. Application
of the model using several temperature/pressure conditions in the
supercooled region provides a series of Widom line temperatures in
good agreement with those estimated by previous models.24,25

The fit of the enthalpy at the three pressures crossing the
Widom line provides values for Nc, the minimum number of water
molecules necessary to define a cluster that can be found in either
the LDL- or the HDL-like state, of the same order of magnitude
(≈10–20 molecules). Considering that the parameter Nc is com-
pletely unbiased, this suggests that in liquid water, the first hydration
shell is not sufficient to distinguish between the two regimes in terms
of statistical fluctuations. We also compare the LDL-like fraction
provided by the model with that provided by structural order para-
meters, showing that this quantity strongly depends on the inclusion
of medium-range order effects (up to the second shell). As a mat-
ter of fact, the LDL fraction estimated by the order parameters
is in good agreement with that estimated by the model only if a
coarse graining of the order parameter is performed beyond the first
hydration shell.

SUPPLEMENTARY MATERIAL

Details on the MD simulations, the model fitting parameters,
the enthalpy trends fit with a fixed Nc value, the radial dis-
tributions functions, the cp and kT trends obtained from the
MD data, the distributions of ψ and ζ, and a discussion of the
hydrogen bond identifications are included in the supplementary
material.
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