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A B S T R A C T

Indoor localization is crucial for developing intelligent environments capable of understanding user contexts
and adapting to environmental changes. Bluetooth 5.1 Direction Finding is a recent specification that leverages
the angle of departure (AoD) and angle of arrival (AoA) of radio signals to locate objects or people indoors.
This paper presents a set of algorithms that estimate user positions using AoA values and the concept of
the Confidence Region (CR), which defines the expected position uncertainty and helps to remove outlier
measurements, thereby improving performance compared to traditional triangulation algorithms. We validate
the algorithms with a publicly available dataset, and analyze the impact of body orientation relative to
receiving units. The experimental results highlight the limitations and potential of the proposed solutions.
From our experiments, we observe that the Conditional All-in algorithm presented in this work, achieves the
best performance across all configuration settings in both line-of-sight and non-line-of-sight conditions.
1. Introduction

The past decade, indoor localization techniques have significantly
improved in terms of accuracy and availability, driven by the growing
demand for location-based services in various IoT scenarios [1,2]. This
technological evolution has been marked by the adoption of RF-based
technologies, as outlined in [3], and the incorporation of different
techniques such as RSS (Received Signal Strength), AoA or AoD (Angle
of Arrival and Departure) [4], PDoA (Phase Difference of Arrival), and
ToF (Time of Flight). Notably, short-range wireless technologies like
Bluetooth [5,6], WiFi, and Ultra Wide Band (UWB) have played a
pivotal role in this context.

In 2019, the Bluetooth Special Interest Group (SIG) introduced a
new protocol specification as an extension to Bluetooth Core Specifi-
cation 5.1, known as Bluetooth 5.1 Direction Finding (DF) [7]. Such
specification relies on AoD and AoA techniques and is specifically
tailored for indoor positioning of objects and people [8,9]. In this
setup, the receiving device, such as an anchor deployed within an
indoor environment, is typically equipped with an antenna array and
a microcontroller responsible for measuring the phase difference of
messages transmitted by a tag, as detailed in [10]. The antenna can
estimate the AoA on two planes: azimuth and elevation thus enabling
the position estimation of a moving target.

In this study, we present a set of increasingly complex algorithms
for indoor positioning based on Angle of Arrival (AoA) estimation. The

∗ Corresponding author.
E-mail addresses: francesco.furfari@isti.cnr.it (F. Furfari), michele.girolami@isti.cnr.it (M. Girolami), fabio.mavilia@isti.cnr.it (F. Mavilia),

paolo.barsocchi@isti.cnr.it (P. Barsocchi).

proposed algorithms are based on the concept of Confidence Region
(CR) useful to estimate the actual target’s location. More specifically,
given a set of anchor nodes estimating azimuth angles for a given
target, the CR is defined as the region of uncertainty regarding the
actual position of the target. The CR can be determined through a
geometric process and subsequently such region can be used to validate
the position of the target. Given a CR, position estimates made by each
anchor that do not belong to the region are potential outliers and are
excluded from the position estimation process. In fact, in real-world
scenarios, several factors can impact the reliability of measurements.
Multipath effects and reflections can introduce delays and distortions in
received signals. Measurements that are unreliable due to these factors
are often referred to as anomalies in machine learning and outliers
in statistics [11,12]. Classical methods can be so heavily influenced
by outliers that the resulting model may be entirely inaccurate. One
approach to addressing the outlier problem is to identify and remove
them. The issue of outliers is increasingly becoming a significant re-
search focus, with various terms used in the literature, such as robust
methods, anchor selection, and outlier filtering.

We introduce the All-in Region, All-in Circle, and Conditional All-in
Circle algorithms, and we compare their performance against various
baseline methods. Rather than starting with the traditional linear least
squares solution (LLS) – which provides a suboptimal result that can be
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improved through a weighted solution (WLLS) when angular measure-
ment statistics are available – we opted for a minimal solution. This
approach calculates the centroid of all possible intersections from the
angular directions, while excluding potential outliers.

This method is particularly suited for mobility scenarios where it is
difficult to collect statistics on the reliability of angular measurements,
making it challenging to apply methods like WLLS or more accurate, yet
computationally intensive, non-linear methods such as Maximum Like-
lihood (ML). Despite this, the results show that the proposed methods
can achieve even better outcomes than traditional approaches.

Our performance assessment is based on the analysis of a real-
world dataset, as reported in [13], which is publicly available.1 The
selected dataset provides Angle of Arrival (AoA) measurements from
four anchor nodes positioned across a wide indoor area. Data were
collected under three distinct application scenarios: static target, where
the target remains stationary in the same position for a specified period;
moving target, where the target moves throughout the room; and
proximity, where some targets move in close proximity to each other.
Each dataset is annotated with ground truth information, which is the
actual position of the target, to validate performance. Based on our
experiments, the Conditional All-in algorithm demonstrates the best
performance, with the 90th percentile of the localization error being
less than 2.00 m, the 75th percentile below 1.50 m and the 50th
percentile below 1.00 m.

The contribution of the proposed work can be summarized as:

• the introduction of a geometrical process bounding the target’s
position. This process can be adopted in both AoA-based and
AoD-based algorithms;

• the definition of three algorithms of increasing performance and
decreasing computational complexity, enabling the estimation of
a static/moving target indoor;

• the performance evaluation of the algorithms using real data
collected from Bluetooth 5.1-compliant hardware. The dataset,
along with ground truth annotations, is made available to the
community for the sake of repeatability;

The remind of this paper is organized as follows. In Section 2 we
introduce the basic elements of the Direction Finding specification and
triangulation techniques. In Section 3 we survey existing works based
on AoA for indoor localization, Section 4 we introduces the CR-based
algorithms. The performance evaluation is reported in Section 5, while
Section 6 discusses the use of AoA for indoor localization.

Furthermore, for better understanding, we provide a table in
Appendix, explaining all the abbreviations used in the paper.

2. Background knowledge

We first introduce the Bluetooth 5.1 Direction Finding (DF) speci-
fication, and then some concepts of triangulation techniques based on
the estimation of directions.

2.1. The Direction Finding specification

To accurately determine the AoA of signals transmitted by a mobile
target, it is crucial to equip receivers with an antenna array [10]. The
antenna array typically consists of multiple antenna elements arranged
in a specific geometric pattern, such as a uniform linear array (ULA)
or a uniform rectangular array (URA). AoA is derived through the
measurement of phase difference 𝛾 within signals captured by adjacent
antennas, employing RF radiogoniometry techniques. This calculation
leverages the knowledge of the signal’s wavelength 𝜆 and the antenna
geometry, which includes the distance 𝑑 between the antennas.

1 https://doi.org/10.5281/zenodo.7759557
2 
Fig. 1. AoA computation based on the geometry of the antenna array.

As reported in Fig. 1, assuming the radio signal is a plane wave with
a constant frequency impinging on the antenna array of the receiver,
AoA 𝜃 can be easily calculated by the formula 𝜃 = ar ccos( 𝜆𝛾

2𝜋 𝑑 ). The
formula represents a basic model for AoA calculation. More complex
algorithms are often employed to account for various factors such as
multipath propagation, antenna mutual coupling, and noise. These ad-
vanced techniques may include MUSIC (Multiple Signal Classification),
ESPRIT (Estimation of Signal Parameters via Rotational Invariance
Techniques), or machine learning-based approaches.

The Bluetooth 5.1 specification enables the determination of AoA
by introducing a Constant Tone Extension (CTE) to the Protocol Data
Unit (PDU) format of BLE messages. The CTE is a crucial component
of the DF feature, as it provides a stable signal for accurate phase
measurements. The CTE follows the CRC code, as shown in Fig. 2
and consists of a sequence of unwhitened 1-valued bits with vari-
able length between [16–160] μs; this extension guarantees a constant
frequency for this part of the Bluetooth signal. Throughout the CTE
period, the anchor equipped with an antenna array can obtain In-Phase
and Quadrature (IQ) samples without the influences of modulation.
Finally, given the IQ samples the anchor effortlessly estimates the
information about the received signals, such as the phase difference
from which computing the AoA on the azimuth and elevation. The
ability to determine both azimuth and elevation angles represents a sig-
nificant advancement in indoor positioning technology, enabling new
applications and improved accuracy of three-dimensional positioning
systems for location-based services.

2.2. AoA-based techniques

The DF specification standardizes angle estimation, and commercial
products are increasingly available that enable position estimation
using triangulation or multiangulation techniques.

Differently from RSSI-based trilateration [14], which requires three
anchors to estimate the target’s position, the AoA-based technique
only requires one anchor to estimate the target’s planar coordinates,
given the target’s height ℎ. In particular, the cone generated by the
target’s elevation angle can be intersected with an orthogonal plane
with respect to the azimuth plane, along the azimuth direction (as
studied in [15]). However, when the target’s height ℎ is unknown,
then two anchors are required to estimate the target’s position. In this
last case, the estimated position can be calculated by intersecting the
straight lines representing the azimuth directions.

In this work, we focus on the second case previously mentioned.
More specifically, our scenario consists of multiple anchors arranged
vertically on the walls of the indoor environment. In this way the
azimuthal plane of the anchors is parallel to the walking surface and
allows us to simplify the study on the XY plane by excluding informa-
tion on elevation. The Fig. 3 shows a graphical representation of the
indoor environment, where anchors A1 and A2 are deployed on the
adjacent walls. The azimuth angle (𝜙) for each anchor ranges from −90◦

to 90◦ (left to right in Fig. 3). The target is represented as a red dot,

http://dx.doi.org/10.5281/zenodo.7759557
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Fig. 2. Bluetooth packet format supporting Direction Finding capability.
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Fig. 3. Position estimation using azimuth angles.

and its location (𝑥𝑇 , 𝑦𝑇 ) can be estimated with the linear equations of
the directions provided by the 2 anchors:

(𝐀𝐱 = 𝐛) ≡
{

t an(𝜙1) ⋅ 𝑥 + 𝑦 = 𝑦𝑎1
− cot (𝜙2) ⋅ 𝑥 + 𝑦 = − cot (𝜙2) ⋅ 𝑥𝑎2

(1)

whose solution can be obtained with the Cramer’s rule, as follows:

𝑥𝑇 =
𝐷𝑥
𝐷

=
𝑦𝑎1 + cot (𝜙2) ⋅ 𝑥𝑎2
t an(𝜙1) + cot (𝜙2)

; (2)

𝑦𝑇 =
𝐷𝑦

𝐷
=

cot (𝜙2) ⋅ (𝑦𝑎1 − t an(𝜙1) ⋅ 𝑥𝑎2)
t an(𝜙1) + cot (𝜙2)

(3)

However, it is important to remark that the validity of Eq. (1) is
estricted to only four critical conditions, as detailed in the next.
Parallel and Coincident Lines: the resulting system from Eq. (1)

s indeterminate, i.e., when the determinants 𝐷 , 𝐷𝑥, 𝐷𝑦 are 0, then the
detected directions by anchors are parallel and coincident, as shown in
Fig. 4(a) Such condition happens when the target’s location is located
anywhere along the connecting line between the anchors A1 and A2.

Parallel lines: the anchor’s directions are parallel but not coin-
cident, i.e., when 𝐷 = 0 and 𝐷𝑥 ≠ 0 or 𝐷𝑦 ≠ 0, as depicted in
Fig. 4(b). In these cases, Eq. (1) does not admit any valid solution. An
alternative approach would be to deploy the third anchor, adding one
more equation to the linear system given in Eq. (1).

Outside intersections: there exist a valid intersection between the
nchor’s directions, i.e., 𝐷 ≠ 0, but the estimated location of the target
ies outside the environment, as shown in Fig. 4(c). In this case, anchors
stimate slightly different directions of the target, and the resulting

intersection point falls beyond the boundary of the environment. Nev-
ertheless, this situation can be mitigated by intersecting the lines with
the boundaries of the environment.

Amplified error: the target is located along the line connecting the
two anchors, but small measurement errors amplify the localization
error, projecting the intersection of lines far from the target, as shown
y the red square in Fig. 4(d).

When several angular measurements are available, obtained by
eploying multiple anchors in the environment, system (1) becomes
verdetermined, i.e. the number of equations 𝑚 is greater than the
umber of unknowns 𝑛.

𝐀𝐱 = 𝐛, with 𝐀 ∈ R𝑚,𝑛, 𝐱 ∈ R𝑛,𝐛 ∈ R𝑚 and 𝑚 ≥ 𝑛 (4)
e

3 
These systems of equations are solved using the linear least squares
(LLS) method. It involves minimizing the distance between the vector
Ax and the vector b, called residual, which is achieved by multiplying
the pseudoinverse matrix of A by b.

�̂�𝐿𝐿𝑆 = (𝐀𝑇𝐀)−1𝐀𝑇 𝐛 (5)

Accuracy of LLS methods can be improved by including a weight matrix
𝐖. Qualitatively, the matrix introduces the effect of the noise statistics
in the estimation of angles and allows to improve the localization algo-
rithm adding information on the reliability of the single equation of the
linear system. The weight matrix, each observation being independent,
is a diagonal matrix given by:

𝑊 = 𝛴−1 = diag
(

1
𝜎2𝜙1𝑑

2
1

, 1
𝜎2𝜙2𝑑

2
2

,… , 1
𝜎2𝜙𝑀 𝑑2𝑀

)

(6)

where 𝜎2𝜙𝑖 is the azimuth variance and 𝑑𝑖 the distance from the 𝑖th
anchor. The problem is that with the angular measurements we cannot
lso obtain a distance measurement. An efficient way is to proceed in

two steps: first we apply Eq. (5) of the LLS method and then with the
istance estimate we proceed to calculate the weights and the weighted
olution (WLLS) given by equation:

�̂�𝑊 𝐿𝐿𝑆 = (𝐀𝑇𝐖𝐀)−1𝐀𝑇𝐖𝐛 (7)

The variance requires a certain observation period to be calculated
correctly, which implies that the target should remain stationary during
he observation window.

3. Related works

In recent years, there has been a growing interest in the devel-
pment and assessment of various radio frequency (RF) techniques
nd technologies for indoor positioning [16]. This interest can be

attributed to the widespread use of mobile devices that are pervasive,
personal and ubiquitous, that are frequently employed for accurate
target localization [17,18]. As depicted in Fig. 5, signal metrics are
combined with RF technologies and positioning methods in the existing
literature. A comprehensive survey of scientific papers was conducted,
resulting in the selection of 16,077 relevant articles from the state-of-art
digital libraries. These articles specifically concern to RF technologies
applied within indoor positioning systems. It is noteworthy that only
a small subset of the existing papers, are focused around the Angle of
Arrival (AoA) metric for user localization and adopting triangulation
techniques.

For instance, in [19], authors examine the precision of AoA local-
ization with just two anchors. This study introduces the concept of the
mbiguity area for assessing localization precision based on AoA estima-

tion errors at anchor nodes. However, it solely provides mathematical
formulations to evaluate the user’s precision area without presenting a
localization algorithm. In contrast, our research employs four anchors
in a real-world setting, introducing a method to further diminish un-
ertainty areas and enhance traditional triangulation-based algorithms.
n [20], an improved pseudolinear estimator (IPLE) using azimuth and

elevation angles is proposed. However, the IPLE is not an unbiased
estimator. To address this, an improved weighted instrumental variable
estimator (IWIV) is developed. In [21], authors derive pseudolinear
equations and apply the weighted least-squares (WLS) technique and
a bias-reduced solution based on WLS (WLS-BR). Nonetheless, these
solutions are computationally intensive. Therefore, [22] introduces an
iterative AoA localization method to reduce complexity. Such work
mphasizes convergence and performance in simulation scenarios, but



F. Furfari et al. Ad Hoc Networks 166 (2025) 103691 
Fig. 4. Limits of the AoA-based localization: we report 4 critical conditions.
Fig. 5. Alluvial diagram showing the relationship between Radio Technologies, Signal Metrics and Positioning Methods (DFL stands for Device-Free Localization). Data are extracted
from Scopus digital library.
lacks experimental validation with real-world data or practical im-
plementation, limiting its real-world applicability. Lastly, in [23,24],
authors propose an eigenspace solution for source localization using
modified polar representation (MPR).

While the aforementioned studies are primarily theoretical or
simulation-based, only few works assess localization algorithms
4 
through real-world experiments. In [25], authors introduce a sce-
nario featuring two fixed receiver anchors using Software Defined
Radios (SDR) to replicate Constant Tone Extension (CTE) packets. They
achieve an average positioning error of approximately 85 cm across
20 locations. In [10], an innovative hybrid approach combines both
Angle of Arrival (AoA) and Received Signal Strength Indicator (RSSI)
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data from Bluetooth signals to estimate the transmitter’s location. This
xperiment is conducted in a real 25 × 15 m laboratory environment
ith four receiving anchors, resulting in an average sub-meter error
f about 70 cm, calculated from just eight locations using a barycenter

method. Additionally, in [26], position error estimates are made in both
indoor and outdoor settings. In indoor tests, two anchors are placed in
a small 5 × 5 m room with 2-m spaced locations. The study achieves a
mean error of approximately 36.5 cm across just four locations. In [27],
authors evaluate outdoor localization error performance, reporting a
localization error of 22 cm, although only at one specific position. This
single point of data is insufficient to draw generalized conclusions for
indoor environments. Lastly, authors in [28] assess positioning error

ith the barycenter method within a smaller 4.8 × 4.8 m area, yielding
 70 cm error, though it does not account for the user’s posture in a
tatic scenario.

More recent works address the adoption of AoA-based technique
combined with outlier filtering, anomaly detection and anchor selection
strategies with the goal of optimizing the position estimation. Authors
of [29] evaluates AoA estimation accuracy in multipath environments
nd proposes a weighted AoA-based localization method. An approxi-
ate method for assessing AoA accuracy is developed due to practical

imitations in available receiver information. Simulations show that
he proposed weighted approach reduces median localization error by
0% compared to unweighted methods. In [30] authors present an
SSI-based indoor localization system using Wi-Fi infrastructure and

ntroduces a new continuous-feature-scaling model for the k-nearest
eighbor algorithm. The gridless scheme eliminates the need for divid-
ng RSSI space into intervals, improving accuracy and avoiding issues
ith weight selection at boundaries. Experimental results demonstrate

he method’s superior performance, achieving localization errors of
.34 m and 1.72 m in different indoor environments. Still based on
utlier detection, the work presented in [31] addresses the nonlin-
ar challenges in indoor position estimation using Angle of Arrival
AoA) measurements. The paper analyzes the impact of deployment
eometry through analytical methods and Monte-Carlo simulations. To
vercome limitations in single and multi-anchor setups, a multi-anchor
olution with outlier rejection is proposed, accounting for the model’s
onlinearity. The method approximates the node’s position probability
istribution using an unscented transformation of AoA estimates, with
 majority voting scheme to eliminate outliers. Bayesian inference is
hen applied to fuse the data, and real-world tests using Bluetooth
emonstrate the approach’s practicality, robustness, and accuracy.

In [32] authors presents a real-time indoor localization system using
ommodity WiFi infrastructure, addressing the unresolved challenge of
ccurate localization. The system introduces a non-parametric metric
or AoA accuracy, a co-localization algorithm leveraging relationships
mong multiple APs, and strategies to reduce computational com-
lexity. Experiments demonstrate the system’s superior performance,
chieving a 4-degree median AoA estimation error and 30 cm lo-
alization median error. In [33] authors adopt an outlier filtering
pproach. In particular, the work introduces a novel outlier-robust
ilter for nonlinear dynamical systems, designed for measurements from
ndependent sensors. The method modifies the measurement model
nd applies Variational Bayes theory and general Gaussian filtering,
electively rejecting corrupted data. Simulations with varying sensor
umbers show that the proposed filter is more computationally effi-
ient than similar methods, while maintaining comparable estimation
uality. Real-time indoor localization experiments using UWB sen-
ors confirm the practical effectiveness of the approach. A different

approach consists in using the factor graphs as adopted in [34,35].
In [34] authors present a unified framework for high-accuracy in-
door localization, integrating ranging and fingerprinting techniques for
he Internet of Things (IoT) applications. The framework uses a non-
arametric belief propagation algorithm to achieve accurate position

stimation with moderate computational complexity, while minimizing t

5 
crowdsourcing efforts for fingerprinting databases. A likelihood-ratio-
based method enhances robustness by detecting ranging outliers, and
a low-complexity serial scheduling scheme enables real-time localiza-
tion. Experimental results using a hybrid ultrawide bandwidth and
Wi-Fi system show the proposed method achieves submeter accuracy.
n [35] authors present a tightly coupled fusion platform for indoor

smartphone localization, integrating Wi-Fi RTT, RSS, and data-driven
pedestrian dead reckoning (DPDR) using factor graph optimization
(FGO). The proposed system, incorporating magnetic information (MI),
tracks pedestrians at 20 Hz while supporting various smartphone usage
poses. Experimental comparisons show that the platform achieves an
average positioning accuracy of 0.39 m, improving the accuracy of
extended and adaptive robust Kalman filters by 45.83% and 27.78%,
respectively.

Compared to existing state-of-the-art approaches, the algorithms
ntroduced in this paper are assessed within a more realistic scenario
or two main reasons:

• we adopt realistic and open data collected with an accurate data
collection campaign [13];

• we test our algorithms by considering the impact of human body
to the resulting performance.

Emphasizing the importance of reproducibility in our evaluation we
draw from [36,37] as valuable guidelines to design a consistent, ac-
curate, and robust data collection process.

4. Indoor localization through confidence regions

4.1. Confidence regions

In this section, we introduce the concept of Confidence Region, a
opological region exploitable to improve the accuracy of a set of indoor
ocalization algorithms.

Given a pair of anchors, namely A1 and A2, and a target 𝑇 in the
environment, since the random variables associated with the error in
the AoA measurement are independent and of the same type, the joint
Confidence Region (CR) can be obtained as the Cartesian product of
the confidence intervals of each variable. In a graphical representation,
boundary directions can be associated with the bounds of the confi-
dence interval of each variable or anchor. By intersecting the boundary
irections for each anchor a polygon is obtained whose area represents

the uncertainty of the joint measurement. We show in Fig. 6 a graphical
represented of CRs for two targets: 𝑇1 and 𝑇2. In the figure, CRs are
epresented as red-closed polygons resulting from the intersection of

the dotted lines. The existence of a CR gives rise to the possibility of
restricting the target’s position. In particular, we observe that given
a CR, the max uncertainty for a given target is always bound by the
orresponding CR’s width.

The example reported in Fig. 6 shows two interesting situations in
which targets 𝑇1 and 𝑇2 are at different distance from anchors 𝐴1 and
𝐴2. In the case of 𝑇1, its CR’s area is smaller then the 𝑇2, as the area
of a confidence region depends on how close the target is with respect
to anchors. As a result, the localization error of for 𝑇1 is always lower
than that of 𝑇2.

4.2. Indoor localization algorithms

We now introduce three algorithms exploiting the geometrical prop-
erties of the confidence regions and designed to reduce the localization
rror, namely All-in Region, All-in Circle and Conditional All-in Circle.

The target position can be estimated according to equations re-
ported in Section 2.2. More specifically, a basic approach consists of
computing the geometric barycenter (or centroid), of the intersections
obtained from the linear system reported Eq. (1). The result of such
ystem returns a set of intersection points, i.e. given 4 anchors 𝐴1 ⋯𝐴4,
he system in Eq. (1) results with 6 points: anchor 𝐴 intersects with
1
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Fig. 6. Red polygons show a graphical representation of the Confidence Region
obtained by intersecting anchor’s boundary directions.

𝐴2, 𝐴3, 𝐴4, anchor 𝐴2 intersects with 𝐴3, 𝐴4 and anchor 𝐴3 intersects
with 𝐴4.

However, we observe that exploiting all the intersections is not
always advantageous, as shown with the critical conditions reported
Figs. 4(c) and 4(d). In these two cases, the error in specific areas is
amplified, altering the computation of the centroid used as approx-
mation of the target’s position. A possible solution, is to exclude

from the estimation of the target’s position, those intersection points
falling outside the environment. Nevertheless, such filtering does not
completely remove any possible error, even large ones, that can project
he anchor’s intersections far from the actual target’s location.

The first algorithm we propose is named All-in Region and it is
described in Algorithm 1. Given 𝑛 > 1 the number of anchors, we define
𝐼 the set of intersection points of 𝑛 anchors, where |𝐼| = 𝑇𝑛 = 𝑛⋅(𝑛− 1)∕2,
and 𝜖 is the mean AoA-error expressed in degrees on the azimuth
estimated by anchors.

Algorithm 1: All-in Region
Data: 𝐼 = { 𝑝𝑖| 𝑝𝑖 ∈ R2, 0 < 𝑖 ≤ 𝑇𝑛}
Result: 𝑏 ∈ R2

𝑏 = compute barycenter < 𝐼 >
𝑝𝑜𝑙 𝑦𝑔 𝑜𝑛 = compute CR < 𝜖 , 𝑏 >
if (|𝐼| > 𝑠 ∧ (∃𝑝 ∈ 𝐼 |𝑝 ∉ 𝑝𝑜𝑙 𝑦𝑔 𝑜𝑛)) then

𝑝 = 𝑝𝑖 | 𝑚𝑎𝑥𝑖(‖𝑏 − 𝑝𝑖‖) ;
return All-in Region < (𝐼 − {𝑝}) >;

else
return(𝑏);

end

The algorithm originates from following observation: it tries to
xclude those intersection points that strongly alter the centroid used
o estimate the target’s location. The proposed algorithm relies on the
oncept of Confidence Region previously introduced: if the position
easurement is accurate, then all the intersection points that contribute

to compute the centroid should lie within the CR associated with the
centroid. Therefore, the first step of All-in Region is to compute the
resulting centroid and then the CR. Then the algorithm checks that
all the intersection points fall within the CR. If they are all included,
hen it means that measurements provided by anchors are accurate and
eviated from the true position of the estimated mean error. In this
ase, the algorithm terminates returning the centroid as the estimated
arget’s position. Differently, in case some of the points fall outside the
R, then the algorithm may choose excluding the one that is farthest

rom the centroid position and recursively, it repeats this procedure
ith the remaining set of intersection points. At this point, a new
 C

6 
centroid and the corresponding CR is re-calculated. The recursion stops
with two conditions:

• when either all the intersection points fall within the CR region;
• if only one intersection point exists.

Indeed, even a single intersection point can be considered as a
alid estimation of the target’s position, since it is calculated from the
zimuth directions of two anchors, which is the minimum requirement
or estimating a position. We show in Fig. 7 the iterative process of All-
in Region to estimate the target’s position, based on real data available
n the dataset [13]. The actual target’s position is (840, 240). Iteration
a in Fig. 7 shows the ground truth as a red point and the confidence
region as red polygon obtained by using 6 intersection points. The
stimated position is shown as a pink-colored point, corresponding
o the centroid of the confidence region. As a result after the first
teration, the estimated position is 88 cm away from the actual position.
uring iteration b, All-in Region drops the intersection point labeled 13,
riginating from the intersection of directions from anchors 1 and 3. A

new centroid is computed with the corresponding confidence region,
nd the obtained error decreases to 63 cm. However, there are still
ntersection points falling outside the confidence region. Therefore, the
lgorithm iterates again by excluding intersection point 14. The new
onfidence region and its centroid, which is now 64 cm away from
he ground truth (iteration c). Finally, the algorithm iterates again
y excluding intersection point 12 as reported with iteration d which
epresents the final iteration of the algorithm. In this last case, all
he remaining intersection points fall within the confidence region
ssociated with the centroid, which is now 35 cm away from the ground

truth.
The computational cost of All-in Region is mainly determined by the

perations of intersecting polygons to determine the confidence region,
nd by verifying whether an intersection point belongs to a confidence
egion. Various computer graphics algorithms can be used, such as
he Weiler–Atherton clipping algorithm [38] and the winding number

algorithm, which have complexities of 𝑂(𝑛 ⋅ 𝑙 𝑜𝑔(𝑛)) and 𝑂(𝑙 𝑜𝑔(𝑛)), re-
spectively. In our case, the number of sides or vertices (𝑛) will never
be too high, and the cost is generally low. However, the challenge
of reducing computational costs remains, as position estimation in
AoA-based systems is typically performed on the server side, and the
algorithm needs to scale with the number of localizations performed
per second. One possible solution is to perform the computational cost
offline, meaning that confidence region polygons can be calculated
beforehand and stored along with the coordinates of the point on
a map. Alternatively, instead of storing the polygon, its maximum
amplitude can be recorded, and the polygon can be approximated with
a circle.

This last observation leads us to an improved version of All-in Region
with a lower computational cost. The key-observation is to approximate
the shape of the confidence regions with a circle of radius 𝑅. The All-in
Circle algorithm is reported in 2.

Algorithm 2: All-in Circle
Data: 𝐼 = { 𝑝𝑖| 𝑝𝑖 ∈ R2, 0 < 𝑖 ≤ 𝑇𝑛}
Result: 𝑏 ∈ R2

𝑏 = compute barycenter < 𝐼 >
if (|𝐼| > 𝑠 ∧ (∃𝑝 ∈ 𝐼 | (‖𝑏 − 𝑝‖ > 𝑅))) then

𝑝 = 𝑝𝑖 | 𝑚𝑎𝑥𝑖(‖𝑏 − 𝑝𝑖‖) ;
return All-in Circle with < (𝐼 − {𝑝}) >;

else
return(𝑏);

end

Finally, we introduce the last algorithm, namely Conditional All-in
ircle. The key idea is to consider that not all anchors are equally
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Fig. 7. All-in Region algorithm’s steps for estimating position at coordinates (840, 240).
Fig. 8. Direction of the excluded points.
important to build a confidence region. The Conditional All-in Circle
algorithm is equal to All-in Circle except from the size of the initial
set of intersection points 𝐼 . One simple rule that can be applied is to
dynamically exclude the anchors further from the target. In fact, at the
same angle the distant anchors subtend a larger area than that already
restricted by anchors closer to the target. More details on how the
anchors contribute differently to the determination of the confidence
region are provided in Section 5.

In the previous example the target under consideration is located
on the right side of a 12 m wide room. The furthest anchor is Anchor
1, which is on the opposite side of the room. Fig. 8 again shows the
initial and final stage of the previous iteration process, highlighting
the excluded points 12, 13, 14 all belonging to the direction estimated by
Anchor 1. Fig. 8 (a) represents the direction estimated by anchor 1. The
box on the right highlights the directions of the rest of anchors which
are closer to the ground truth. Therefore, if those anchors that are more
likely to introduce errors are excluded in advance, the computation is
simplified.

5. Experimental settings and results

We will now outline the experiments conducted to assess the ef-
fectiveness of the algorithms presented in Section 4.2. Initially, we
introduce a simulation tool specifically designed to assess the per-
formance of the algorithms with the related placement of anchors
within an indoor setting. This simulation offers an initial insight into
7 
anchor positioning, helping us in the selection of an actual dataset.
Subsequently, we detail the dataset chosen for our study and present
the resultant findings.

5.1. Optimal anchor’s layout

The simulation tool allows for the arbitrary placement of anchors
and the calculation of resultant confidence regions. To achieve this, the
simulator is configured to replicate a 12 × 6 m environment equipped
with 4 anchors situated along the perimeter. The simulator implements
Eq. (1), one for each of the 4 anchors, yielding 6 distinct linear systems
capable of determining 6 points of intersection. The confidence regions
are then derived as the intersections of various polygons generated
by the linear systems representing boundary directions. The bound-
ary directions depend on the average angular error assumed for the
anchors.

The simulator provides a set of metrics useful to evaluate any
possible layout. In particular, it provides area of the confidence region,
maximum and minimum localization error, and the number of sides
of the polygon. Furthermore, when given a set of Angle of Arrival
(AoA) measurements, the simulator executes the algorithms outlined
in Section 4.2 to estimate the target’s position. In Fig. 9 we present
21 distinct confidence regions derived using the method previously
described. Anchors are numbered from 1 to 4 and depicted as blue box,
and are positioned at the midpoint of the room’s walls. The resulting
confidence regions exhibit varying shapes of increasing complexity,
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Fig. 9. Confidence regions at different positions of a room obtained with 4 anchors.
Table 1
Simulation results of the localization error obtained with corner or mid layouts.

Az. Err Mean err. Min err. Max err. Anchor’s layout

5◦ 0.82 0.52 1.28 corner

uniform 0.59 0.40 1.08 mid

10◦ 1.70 1.06 2.51 corner

uniform 1.20 0.85 1.95 mid

ranging from triangles to octagons. The centroid of each polygon serves
as the target position for which these regions have been computed.
The numbers shown on sides of the polygons in Fig. 9 indicate the
contributing anchor responsible for defining that particular side of the
polygon.

It is noteworthy that in the center of the room, the confidence region
adopts an octagonal shape, a result of the combined influence of all
four anchors. Conversely, moving to the left, the next region takes
on a hexagonal shape, determined by three anchors. Finally, in the
upper left corner of Fig. 9, we observe a quadrilateral shape defined
by only two anchors. Notably, anchor 3, situated on the right-side
wall, becomes less informative for positions exceeding half the room’s
width. The boundary directions of anchor 3, beyond a distance of 6
m, become too broad to further narrow down the areas derived from
the intersections of the other boundary directions. It is important to
emphasize that even for the quadrilateral highlighted in the upper left
corner, the contribution of anchor 4 is no longer necessary.

Through an analysis of the confidence regions and the average error
resulting from placing anchors in different zones within the room,
we can assess which configuration is optimal for minimizing position
estimation errors. To this end, Fig. 10 illustrates the localization error
generated by two anchor layouts: the corner layout and the mid-
layout. In both layouts, we assume a uniform azimuth error of 5◦.
A summary of the performance for these two layouts is provided in
Table 1, which includes the calculation of the mean positioning error
based on azimuth error and anchor arrangement. From the results,
it is clear the theoretical advantage of using the mid-layout, where
anchors are deployed on the middle of the walls. Following the results
obtained with the simulation process, we selected the mid-layout to
deploy anchors in the testing environment.

It is important to note that the results obtained are equivalent to
applying geometric dilution of precision (GDOP) procedures [39] to
the configurations examined. Specifically, the figures can be derived by
calculating the horizontal dilution of precision (HDOP), which focuses
on the XY plane and uses the trace of the 2-dimensional Jacobian
matrix. However, this evaluation does not account for experimental
measurements and environmental factors. For a detailed analysis of the
impact of angle estimation errors, please refer to Section 6.1.
8 
5.2. The experimental dataset

We conducted experiments using data collected in a prior
study [13]. It is important to note that the dataset is publicly available.2
The testing environment is a wide indoor room, approximately covering
an area of 110 m2, with no obstructions inside. Four anchor nodes
are strategically positioned within the room based on the mid-layout
configuration (see Section 5.1). These anchor nodes are mounted on
tripod heads at a height of 2.3 m from the ground. The floor is tiled
with 60 × 60 cm tiles.

For our hardware setup, we utilized equipment provided by ublox,
specifically the XPLR-AOA kit adhering to the Bluetooth 5.1 specifi-
cation. This kit comprises both anchor nodes and tags. The anchor
nodes are compact boards measuring 11.5 × 11.5 cm and are equipped
with an array of 5 square-shaped C211 antennas and the NINA-B411
BLE module.3 These anchor nodes also feature a USB I/O port and are
connected to a Raspberry PI board.

As for the tags, they are powered by the NINA-B406 chipset4 and
receive power through a USB port. The tags broadcast BLE beacons at
various intervals, including 1, 10, and 50 Hz, and with varying power
emissions ranging from −40dBm to 8dBm, as depicted in Fig. 11.

The dataset provides data collected in 4 testing scenario: calibration,
static, mobility, and proximity. For the purpose of this work, we analyze
data available with the calibration and static scenarios. Concerning
the calibration scenario, as reported in Fig. 12, data are collected by
employing four anchors and a single tag that is affixed to a tripod
and placed in 119 distinct positions within the testing area. This
calibration setup is designed to facilitate the examination of how Angle
of Arrival (AoA) and Received Signal Strength (RSS) change under
stable and consistently replicable circumstances. The 119 positions are
evenly distributed throughout the entirety of the testing environment.
Concerning the static scenario, data are gathered from four anchors and
one tag, which is worn by an individual in 36 distinct locations spaced
1.20 m. The 36 positions used in the static scenario are a subset of 119
selected in the calibration scenario and are indicated with the green
color in Fig. 12. The tag is attached to a lanyard around the person’s
neck (1.13 m from the ground). Data collection is performed with the
individual facing North, South, East, and West in order to facilitate the
examination of how body positioning affects the collected data. The
calibration and static scenario provides us about 800.000 samples for
each anchor.

2 https://zenodo.org/record/7759557
3 https://www.u-blox.com/en/docs/UBX-20035327
4 https://www.u-blox.com/en/docs/UBX-19049405

https://zenodo.org/record/7759557
https://www.u-blox.com/en/docs/UBX-20035327
https://www.u-blox.com/en/docs/UBX-19049405
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Fig. 10. Error heatmap in a setting with anchors placed in the corners (a) and in the middle of walls (b).
Fig. 11. Ublox anchor mounted on a graduated gimbal and tag.
5.3. Results

In this section, we present the outcomes achieved through the
implementation of the proposed algorithms (see Section 4.2), culmi-
nating in an overview of the observed trend in azimuthal errors in our
experiments. For each algorithm, we compute the 90th, 75th, and 50th
percentiles of the localization error obtained as the Euclidean distance
from the actual positions, namely the ground truth. Additionally, we
utilize heatmaps to visualize the spatial distribution of these errors
and employ Cumulative Distribution Functions (CDFs) to facilitate
comparisons between the algorithms.
9 
We compare the results of 5 algorithms:

• Pure Barycenter : a base-line algorithm that makes use of all the
available intersection points;

• No Outlier : a base-line algorithm that eliminates the intersections
that fall outside the room;

• All-in Region: the proposed algorithm reported in Section 4.2. We
varied the azimuthal error impacting the size of the confidence
regions, ranging from a minimum of 5◦ to a maximum of 15◦,
and the best results are obtained for an error equal to 13◦.
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Fig. 12. Points used with the Calibration scenario (all points) and with the Static scenario (green points).
o

Table 2
Localization error for the 5 algorithms obtained with the Calibration dataset.

Algorithm 90th 75th 50th Algorithm settings

Pure Barycenter 3.81 2.44 1.28 All intersections

NoOutlier 2.23 1.50 0.99 Only intersections inside room

All-in Region 1.97 1.43 0.90 Azimuth err. 13◦, s = 1

All-in Circle 2.00 1.30 0.84 Radius 110 cm , s = 1

Cond. All-in Circle 1.80 1.30 0.75 Filtering far anchors (A1,A3)

Regarding the stop condition of the iteration process, we set the
stop condition at a single intersection.

• All-in Circle: the proposed algorithm reported in Section 4.2. We
varied the radius of the circle from 60 cm up to 2 m and the best
results are obtained for a radius equal to 110 cm.

• Conditional All-in Circle: the proposed algorithm reported in Sec-
tion 4.2. We filtered Anchor 1 and 3

Concerning the Calibration dataset, Table 2 reports the localization
error’s statistics (expressed in meters) for the five algorithms. Notably,
the Conditional All-in Circle algorithm exhibits superior performance,
with a 50th percentile localization error of 75 cm. In contrast, the Pure
arycenter algorithm yields a 50th percentile error of 1.28 m and a 90th

percentile error of 3.81 m. Fig. 13 displays the localization error as an
heatmap. For the shake of simplicity, we remove All-in Region due to
ts similarity to the All-in Circle.

To assess the performance further, we provide Cumulative Distribu-
ion Functions (CDFs) for the algorithms in Fig. 14. From the figure,
t is possible to observe performance improvement of Conditional All-in
Circle with respect to the three percentiles, 50th, 75th and 90th. Please
note that the Pure Barycenter CDF has been excluded from the graph to
avoid the necessity of applying a logarithmic scale.

We now assess the performance of the five algorithms using the
Static dataset. In this case, the orientation of the target varies. It is
worth noting that the orientation has a notable impact on the stabil-
ty of Angle of Arrival (AoA) estimation in the azimuthal plane. In
ontrast to the Calibration dataset, where the estimated AoA remains
elatively consistent, the Static dataset exhibits stability in only 60%
f the samples, while the remaining 40% vary within a range of 5◦

o 15◦. The worst results are observed when the target is oriented
o the South (as shown in Table 3), while the best performance is

achieved when the target faces North. Table 3 presents the performance
of the five algorithms across four different orientations, while Fig. 15
provides a heatmap representation of localization errors. The heatmap
is obtained by only comparing the performance between the least and
most optimal algorithms. We also compute the CDF of the localization
error by comparing the performance of the algorithms, as reported in
Fig. 16. From the figure, we observe that also with the Static dataset,
10 
Table 3
Localization error for the 5 algorithms obtained with the Static dataset.

Body orientation Algorithm 90th 75th 50th

East

Pure Barycenter 5.76 2.32 1.09

NoOutlier 2.09 1.58 0.94

All-in Region 1.98 1.28 0.89

All-in Circle 2.07 1.33 0.88

Cond. All-inCircle 1.87 1.31 0.88

South

Pure Barycenter 5.64 3.29 1.88

NoOutlier 2.61 2.18 1.73

All-in Region 3.01 2.49 1.52

All-in Circle 3.01 2.34 1.30

Cond. All-in Circle 2.30 1.79 1.23

West

Pure Barycenter 4.56 2.56 1.69

NoOutlier 2.24 1.73 1.29

All-in Region 2.43 1.67 0.95

All-in Circle 2.41 1.57 0.97

Cond. All-in Circle 1.75 1.27 0.92

North

Pure Barycenter 4.70 2.24 1.50

NoOutlier 2.46 1.73 1.15

All-in Region 2.60 1.33 0.94

All-in Circle 2.59 1.39 0.89

Cond. All-in Circle 1.80 1.12 0.74

Conditional All-in Circle outperforms the other algorithms in all the
rientations.

From the obtained results, it becomes evident that the Pure Barycen-
ter algorithm, which utilizes all possible intersection points, performs
the poorest. In contrast, the algorithm that removes intersections falling
outside the room shows a significant error reduction when a straight-
forward filter is applied. Among the proposed algorithms, namely All-in
Region, All-in Circle and Conditional All-in Circle they generally outper-
form NoOutlier. However, All-in Region comes at a higher computational
cost and more complex implementation compared to the others. Its All-
in Circle variant is lighter yet equally effective. The primary advantage
of such algorithm is its ability to eliminate both inaccurately projected
data outside the environment and internal data resulting from erro-
neous estimates due to environmental noise. Therefore, when defining
the indoor environment’s perimeter is challenging, All-in Circle repre-
sents the best choice. Nevertheless, it does not consistently improve
every estimate over the NoOutlier algorithm. In simple terms, if the
algorithm provides an accurate estimate based on the barycenter of
two intersections outside its confidence region, it might still reject
one of them, resulting in an increase in error rather than a decrease.
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Fig. 13. Heatmap of the localization error obtained with the Calibration dataset.
Fig. 14. CDF of the algorithms based on the Calibration dataset.

The best outcomes were achieved with the last algorithm variant:
Conditional All-in Circle. with this variant, the decision to use anchors
is conditioned on their actual contribution to defining the confidence
regions, based on the characteristics of the regions themselves. While,
initially, we assumed a uniform distribution of a 5◦ error in estimating
azimuthal angles, it is observed that the best settings for the algorithms’
parameters 𝜖 and 𝑅 are an average error of 13◦ for the azimuth and an
equivalent radius of 110 cm.

Finally, we present the Table 4 that compares the percentile errors
of the traditional LLS and WLLS algorithms with the proposed solution.
Starting from the centroid calculated on all possible intersections of the
directions yields a suboptimal solution compared to the LLS method,
which serves as the lower limit to surpass. The optimal solution ob-
tained with the WLLS method represents the upper bound, as it utilizes
statistical information that our approach does not. The table shows
encouraging results, as in all cases, the proposed method either matches
or outperforms the LLS solution. In scenarios where the anchors were
not always in line of sight, the algorithm provided even better results
than the WLLS solution. Only in the EAST orientation did the median
11 
Table 4
Comparison with traditional methods.

Methods comparison

Dataset Method Localization error [cm]

90th 75th 50th

Calibration dataset
LLS 194 138 94

WLLS 198 129 77

Cond. All-In 180 130 75

NLoS datasets

East
LLS 193 144 71

WLLS 193 128 72

Cond. All-In 187 131 88

North
LLS 258 186 126

WLLS 245 193 101

Cond. All-In 180 112 74

West
LLS 220 162 113

WLLS 182 158 97

Cond. All-In 175 127 92

South
LLS 265 221 168

WLLS 251 202 157

Cond. All-In 230 179 123

error fail to outperform the LLS method, but in this instance, the WLLS
method also did not show any improvement.

6. Discussion

We now discuss two relevant issues that significantly affect the
performance of the proposed algorithms. We study in Section 6.1 how
the AoA’s error varies with respect to the measurement angle. In
Section 6.2 we discuss the theoretical limits of the proposed algorithms
with a benchmark comparison.

6.1. Modeling the AoA’s error

We now present the absolute errors in azimuthal angles obtained
from our previous data collection campaign, as detailed in [13]. In this
study, we start with the optimistic assumption that the average Angle
of Arrival (AoA) error is set to 5◦, as reported by the manufacturer’s
datasheet. However, it is important to note that the actual instrumental
error may not be uniform, and environmental factors must also be
considered. In Fig. 17, we illustrate the measured error along the
sampling directions, which span from −76◦ to +76◦ for the anchor
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Fig. 15. Heatmap of the localization error obtained with the Static dataset comparing best and worst algorithm.
positioned on the longer side of the room. Data points are interpolated
using a ninth-degree polynomial (blue plot), revealing that the error
varies depending on the observation angle of the target. Within a field
of view of 90◦ (FoV-90), that is an angular range from −45◦ to +45◦,
the azimuth error remains below 10◦. However, once this range is
exceeded, the AoA error increases to as much as 40◦.

To elucidate the limits of assuming a uniform AoA error, we present
in Fig. 18 the CDFs of the theoretical localization error. This error is
determined by calculating, at each point, the width of the Confidence
Regions. The regions are generated under the assumption of a uniform
average error of 5◦, 10◦, 15◦. In the figure the CDFs are compared
with the NoOutLier and Conditional All-in Circle algorithms in addition
to a third a posteriori algorithm called Best Combination that will
be introduced in the next section. The plotting is obtained from the
Calibration dataset. From the figure, we observe that up to the 75th
percentile Cond.All-in Circle behaves like the CDF based on an angular
error of 10◦ (purple plots) while NoOutLier is closer to the CDF with
an angular error of 15◦ (light blue plots). Finally, the CDF based on
angular error of 5◦ is comparable to the Best Combination algorithm
(black-dashed line).

6.2. Theoretical limits of the proposed algorithms

Despite the performance improvements obtained with the proposed
algorithms, several issues remain unanswered. In particular, three re-
search questions still require further investigation: What is the optimal
12 
number of anchor’s intersections to consider during the algorithm’s
recursion? Furthermore, how can we measure the actual improvement
achieved by these algorithms compared to the straightforward yet
effective NoOutlier algorithm? Moreover, is it possible to enhance the
algorithm further, perhaps by performing additional selection among
various intersections?

To address the aforementioned questions, we evaluated the per-
formance of an ideal ’a posteriori’ algorithm. The adopted approach
assumes the full knowledge of the target’s ground truth (the actual
location for every measurement point) and it determines the best the
combination of intersections whose barycenter minimizes the error.
This approach involves calculating all possible combinations of inter-
sections and their barycenters, allowing us to assess the quality of the
measurements made and the effectiveness of the proposed algorithms.

The number of potential barycenters equals the sum of simple
combinations of 𝑠 intersections, equivalent to the number of partitions
of a set with 𝑠 elements, minus the empty set:
𝑠
∑

𝑘=1

(

𝑠
𝑘

)

= 2𝑠 − 1;

with 𝑠 = 6 intersections, we have 63 distinct combinations. As result,
for each of the 119 positions in the Calibration dataset, we calculated
63 barycenters, computed the Euclidean error relative to the ground
truth, and organized the results. By selecting the minimum error across
all positions, we can establish, given a measurement, the lower bound
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Fig. 16. CDF of best/worst algorithms based on the Static dataset.
Fig. 17. Analysis of the azimuth angle.
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of any algorithm, as depicted in Fig. 18 with the CDF Best Combination.
dditionally, by sorting the errors in descending order, for each posi-

ion, we determined the 10th, 25th and 50th percentile of the errors,
hus creating a performance scale for the algorithms.

The scale of such ideal algorithms is illustrated in Fig. 19. The
otted plots represents the best performance on the left to the median
ne on the right side. The figure also shows the CDFs of the NoOut-
ier and Conditional All-in Circle algorithms. The first one aligns with
he median error CDF (solid and dotted light blue plots), while the
roposed algorithm aligns with the 25th percentile (solid and dotted
urple plots). Thus, we can say that the improvement of Conditional
ll-in Circle with respect NoOutlier is about a quartile.

Back to Fig. 19, it is worth noting that Best Combination CDF, up to
he 75th percentile, resembles the theoretical CDF for azimuthal errors
f 5◦. This suggests that a certain number of measurements with errors
13 
below 5◦ were indeed recorded. However, these measurements con-
stitute only a percentage, and as observed previously, errors increase
rapidly outside an angular range of 90◦.

The post-evaluation curves also provides valuable insights into the
number of intersections used to compute the barycenters. Table 5
illustrates for each curve the percentage of barycenters calculated using
a single intersection, all the way up to the maximum of 6 intersections.

It is noticeable that the curve representing the lower bound of the
erformance has the highest percentage of barycenters derived from
 single intersection. As performance deteriorates, the utilization of
arycenters formed by multiple intersections increases. Consequently,
t is reasonable to iterate the All-in algorithms until reaching the
ermination condition of only one intersection. However, it is important
o note that the algorithm does not necessarily converge to the optimal

solution among the six available intersections. This is precisely why the
exclusion of intersections generated by anchors located too far away
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Fig. 18. Performance comparison of a uniform AoA error (5◦, 10◦, 15◦) with respect
to real-world measurements.

Fig. 19. Comparing the performance scale: from the lower bound to the proposed
lgorithms.

Table 5
Percentages of the number of intersections used in a posteriori position estimation.

A posteriori Number of intersections

Algs 1 2 3 4 5 6

Best Combination 46% 32% 16% 3% 3% 0%
10th Best Comb. 13% 36% 36% 14% 0% 0%
25th Best Comb. 9% 22% 25% 28% 13% 3%
50th Best Comb. 9% 15% 23% 22% 19% 12%

reduces the likelihood of selecting a suboptimal combination and yields
mproved results.

Finally, Table 6 presents an outlook of the problem’s magnitude.
s the number of anchors varies, intersections increase following the
equence of triangular numbers, i.e. 𝑂(𝑛2), while the number of pos-
ible combinations grows at more than an exponential rate. It will be
 c

14 
Table 6
Problem size as the number of anchors varies.

Problem size

#Anchors 𝑂(𝑛) 2 3 4 5 6 7 8
#Intersections 𝑂(𝑛2) 1 3 6 10 15 21 28
#Combinations 𝑂(2(𝑛2 )) 1 7 63 1023 32.767 2.097.151 268.435.455

interesting to assess how the distribution of combinations in Table 5
changes with the increase in the number of anchors/intersections.

7. Conclusions

Localizing users within indoor environments represents a fundamen-
tal component of intelligent environments. This capability is crucial
for comprehending user contexts and adapting to changes in the sur-
rounding environment. Under this respect, several techniques can be
adopt to estimate the user’s position, ranging from RSS, AoA and ToF.
In this work, we focus on the use of Angle of Arrival to design and
evaluate a set of algorithms for indoor localization. We discuss the
limitations of the traditional triangulation-based approach and intro-
duce a novel method guided by the uncertainty of the measurements,
namely the Confidence Region. Additionally, we propose optimized
ersion of the algorithms with reduced computational costs. We com-
are the performance of the proposed algorithms with an experimental

dataset [13] collected at realistic conditions. From our results, it is
vident the performance improvement of those algorithms leveraging
onfidence region concept and to this end, we have also identified
n effective method for comparing and evaluating the performance of
lgorithms through a posteriori combinatorial analysis. Furthermore,
e also present a simulation tool useful to determine the optimal
nchors’ layout. Having a simulator that provides insights into both the
lacement of anchors and their impact on position estimation is pivotal
or any study.

Our goal is to explore the potential of the Direction Finding spec-
fication to develop indoor localization algorithms and test their per-
ormance in real-world settings. Our results reveal three key findings:
1) The angle of arrival error varies significantly with the measure-
ent angle. Specifically, beyond the FoV-90, accuracy decreases at
eripheral angles between the tag and the antenna, which negatively

impacts the performance of the algorithms. (2) The estimation of target
locations based on confidence regions has proven effective. We found
that anchors that do not contribute to reducing uncertainty should be
excluded from the estimation process, as they may negatively impact
the accuracy of the target’s location, and (3) The algorithm is effec-
tive, even when starting from a suboptimal solution that considers
all possible direction intersections, and remains robust when the tag’s
orientation is modified, maintaining line of sight with only one anchor
at a time.

Based on these findings, we believe that AoA techniques provided by
the Direction Finding specification are a viable technology for indoor
settings. The results we have obtained indicate significant potential
for enhancing localization accuracy. Following this consideration, we
foresee several future research directions.

Firstly, the proposed algorithms can be compared with clustering
algorithms such as K-Means and DBSCAN, which, although designed for
large datasets, can select a cluster of closest intersections. Additionally,
machine learning techniques based on neural networks should be tested
to identify patterns in the distribution of combinations presented in
Table 5. This could be further enhanced by incorporating the elevation
angle information, which was excluded in this study. Secondly, it is im-
portant to consider the disruptions present in real indoor environments.

s the number of targets increases, signal packet losses and noise are
ikely to increase, opening to possible scalability challenges. We also
lan to expand the dataset we published with a new data collection
ampaign based on anchors equipped with 8-element URA (Uniform
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Distributed Array) antennas. Such anchors are designed to improve the
accuracy of AoA estimation also when the tag is positioned on periph-
ral areas with respect to the anchor. Our goal is deploying an extended
nfrastructure of anchors covering a wide indoor area for a variety of
ests in a daily working environment characterized by multiple target’s
sers. One final consideration is the possibility of integrating BT5.1
irection Finding technology with smart devices. While this technology

s expected to improve soon, there are limitations regarding the size
f the antenna array. These limitations may reduce the feasibility of
eploying multiple antennas on a smart device. Therefore, we find it
deal to use BT5.1 with a permanent infrastructure, featuring anchors
eployed in strategic locations.

Characterizing complex electromagnetic environments is a challeng-
ng task due to the variability introduced by several factors, such as
nterference from multiple sources of electromagnetic radiation, the
resence of obstacles, and the reflection and attenuation of signals.
hile obstacles caused by fixed furniture can be managed through

sensor network calibration techniques to improve performance, those
caused by the presence of people are much more difficult to handle.
In our experiments, the tag worn by a single person was consistently
in line of sight with only one of the four installed anchors at a time.
Under these conditions, the percentage of errors in angle estimation
doubled compared to the calibration scenario, where all anchors were
always in sight. In the scenarios considered, it was observed that
optimal methods based on statistical data can become inefficient and
are often outperformed by techniques that aim to exclude outliers.
Further investigation is required to evaluate the effects in crowded
environments. In the current scenario, the body of a single person
ttenuates the signal toward anchors that are not in line of sight and
nhances the reception of reflected signals with greater power. In a
rowded environment, all signals may be equally attenuated, making
echniques based on the angle of arrival potentially more effective than
hose relying on signal strength.

In real-world, densely populated scenarios, such as museums, we
believe that addressing all possible disturbances may require the inte-
ration of these devices with complementary sensors to mitigate the

inaccuracies of RF-based techniques. More generally, we consider it
crucial to combine heterogeneous sensing information, such as inertial
sensors, using filtering mechanisms like Particle filtering. In previous
scenarios, inertial sensors play a crucial role in preserving the target’s
direction. Their simultaneous adoption could potentially enhance the
performance of an indoor localization system with moving targets, thus
mitigating the limitations of relying solely on a single technology.
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Table A.7
List of all the abbreviations used in the paper.

Abbreviation Definition

AoA Angle of Arrival
AoD Angle of Departure
CDF Cumulative Distribution Function
CIR Carrier-to-Interference Ratio
CR Confidence Region
CSI Channel State Information
CTE Constant Tone Extension
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DF Direction Finding
DFL Device-Free Localization
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
FoV Field of View
GDOP Geometric Dilution of Precision
HDOP Horizontal Dilution of Precision
IoT Internet of Things
IPLE Improved Pseudo-Linear Estimator
IQ In-Phase and Quadrature
IWIV Improved Weighted Instrumental Variable Estimator
LLS Linear Least-Squares
LoS Line of Sight
MPR Modified Polar Representation
MUSIC Multiple Signal Classification
NLoS Non line of Sight
PDoA Phase Difference of Arrival
PDU Protocol Data Unit
RF Radio-Frequency
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
SDR Software Defined Radio
ToF Time of Flight
ULA Uniform Linear Array
URA Uniform Rectangular Array
UWB Ultra Wide Band
WLLS Weighted Linear Least-Squares
WLS Weighted Least-Squares
WLS-BR Weighted Least-Squares Bias-Reduced

Appendix. Abbreviations

In this section, we report Table A.7 which lists all the abbreviations
used in the paper.

Data availability

The dataset is available to the research community.
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