engineering
proceedings

Proceeding Paper

Exploring the Correlation between Thermal Diffusivity and
Ultimate Tensile Strength in Usibor® 1500 through Laser
Thermography *

Giuseppe Dell’Avvocato 1*

, Paolo Bison 2, Giovanni Ferrarini 2, Maria Emanuela Palmieri !, Davide Palumbo 10,

Luigi Tricarico ! and Umberto Galietti !

check for
updates

Citation: Dell’ Avvocato, G.; Bison, P.;
Ferrarini, G.; Palmieri, M.E.;
Palumbo, D.; Tricarico, L.; Galietti, U.
Exploring the Correlation between
Thermal Diffusivity and Ultimate
Tensile Strength in Usibor® 1500
through Laser Thermography. Eng.
Proc. 2023, 51, 1. https://doi.org/
10.3390/ engproc2023051001

Academic Editors: Gianluca

Cadelano and Davide Moroni

Published: 25 October 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy;

mariaemanuela.palmieri@poliba.it (M.E.P.); davide.palumbo@poliba.it (D.P.); luigi.tricarico@poliba.it (L.T.);

umberto.galietti@poliba.it (U.G.)

2 Institute of Construction Technologies (CNR-ITC), National Research Council of Italy, 35127 Padua, Italy;
bison@itc.cnr.it (P.B.); ferrarini@itc.cnr.it (G.E.)

*  Correspondence: giuseppe.dellavvocato@poliba.it; Tel.: +39-3496050595

Presented at the 17th International Workshop on Advanced Infrared Technology and Applications,

Venice, Italy, 10-13 September 2023.

Abstract: This paper presents a non-destructive laser thermography (LT) procedure for estimating
Usibor® 1500 ultimate tensile strength (UTS) based on thermal diffusivity measurements. The key
innovation lies in the revealed inverse relationship between thermal diffusivity («) and UTS, high-
lighting its potential for estimating mechanical properties in a non-destructive way. The experimental
phase involved analyzing fifteen specimens using a 960 nm CW laser source and a thermal camera
to measure thermal diffusivity. The results demonstrate a clear correlation between « and UTS,
providing valuable material characterization insights and demonstrating promising applications in
mechanical design.

Keywords: thermal diffusivity; laser thermography; Usibor®1500; ultimate tensile strength; hardness;
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1. Introduction

One of the critical requirements in mechanical design is the modification of the me-
chanical properties of steels according to several operating conditions. In this regard, heat
treatments play a crucial role in altering the microstructure of steels to achieve desired
mechanical strength characteristics. However, assessing the success of these treatments on
components typically requires destructive or semi-destructive testing, which significantly
compromises the integrity of the component itself.

Active thermography, which is already widely employed for process monitoring [1,2],
non-destructive testing (NDT) [3-5] and material characterization [6-9], could offer an
alternative to current inspection methods to overcome their limitations. In fact, considering
the inverse correlation between hardness and thermal diffusivity, thermal measurements of
« can provide an assessment of the mechanical properties of steels.

This study represents a further advance compared to previous work [10], aiming to
develop a preliminary LT experimental procedure for estimating the UTS in boron steels
based on @« measurements.

2. Materials and Methods

As reported in other research works [8,10,11], « is closely related to the microstructure
of steels and, therefore, to their hardness. Hence, it can be used as an index to detect
variations in hardness. Thermal diffusivity measurement is typically performed using the
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transient plane source (TPS) method [12], but this method is unsuitable for rapid application
for components. On the contrary, various thermographic methods offer great potential for
industrial applications due to their rapid measurement times and versatile setups [6,7,13].

Among the different methods available in the literature [6,7,13], this study focused
on laser spot thermography [9,14]. This method has the significant advantage of enabling
the measurement of « along the thickness or on the surface of the component. It involves
heating the component’s surface with a thermal pulse and evaluating the temporal temper-
ature response of the circular laser spot using a thermal camera. Laser spot thermography
was chosen for this study due to its reflection setup and the analysis’s simplicity, making it
more suitable for industrial applications.

2.1. Specimens

Fifteen specimens, obtained through the Gleeble® 3180 physical simulator, were
analyzed to replicate the thermo-mechanical process occurring during hot forming [15]. By
optimizing the specimen [16], five different levels of bainite and martensite percentages
were obtained, summarized in Table 1. Only the nominal percentage in an ~10 mm area
at the center of the specimen, as highlighted in Figure 1, was investigated. For each level,
three specimens were produced to evaluate process reproducibility. According to the
manufacturer’s data, the Usibor® 1500 has an Al-Si coating of a ~30 pm, which was not
removed during the heat treatment and therefore present on all analyzed specimens.

Table 1. Description of the percentages of martensite and bainite present in specimens.

A D B E C
Bainite 0% 18% 44% 85% 100%
Martensite 100% 82% 56% 15% 0%

Figure 1. One of the tested specimens. The red square indicates the area with the nominal phase.

2.2. Experimental Setup and Data Analysis

The central region of each specimen was heated using a 1064 nm NdYag laser source
with a circular top-hat spot ~6 mm in diameter. The laser operates in CW during the pump
lamp ignition period of 300 us, which could be approximated as a pulse for the considered
model without significantly affecting the measurement. Heating and cooling were recorded
using a FLIR 6000sc MW thermal camera calibrated from —10 °C to 55 °C, with a framerate
of 1 kHz and spatial resolution of 0.26 mm/pxl, for 2 s.

Considering the limited inspection area and the confirmed material isotropy through-
out the central volume of the specimen, only the measurement of « in the thickness direction
was considered. Five repetitions were performed for each specimen to ensure statistical
significance for individual test measurements. To compare the results, a fixed time win-
dow and ROI (Region of Interest) were established for all tests. This approach allows for
calculating uncertainty bands for each inspected level, considering not only the replicates
across different specimens but also the repetitions within each specimen. The results were
compared with the mechanical test results obtained in a previous study [15,16], wherein
specimens were obtained using the same process and subsequently subjected to uniaxial
tensile tests.

3. Results

In Figure 2, the graphs display the « values obtained for each inspected nominal phase
percentage. It can be observed that an increase in the bainitic phase corresponds to an
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increase in «. The uncertainty bands (95%) for each measurement are sometimes extensive
and partially overlap with the diffusivity measurement for the next level. However, when
examining individual measurements and their respective uncertainties for each specimen,
differences between the specimens resulting in this dispersion are noticeable. The sum-
marized table also presents values of hardness for each phase percentage obtained from a
previous study using specimens derived from the same process and laboratory, but only
three values for UTS [15,16].
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Figure 2. Behavior of «, hardness Vickers and UTS as a function of bainite percentages.

4. Discussion

The first aspect that must be discussed is the extension of the uncertainty for thermal
diffusivity measurements for each percentage. Considering that the percentage value being
considered is the predicted nominal value for the process, this dispersion could also be
attributed to the imperfect repeatability of the production process, which can only be
verified through metallographic analyses of the phase percentages present.

Figure 2 shows the correlation among the hardness, the UTS obtained from previous
works [15,16] and the « values. It can be observed that there is an inverse correlation
between the « values and the derived UTS values. Therefore, a preliminary empirical
relationship can be established to estimate the UTS of boron steel based on & measurements.
However, this relationship is considered preliminary as it is necessary to perform tensile
tests directly on the inspected specimens to evaluate this relationship and verify the phase
percentages present in the inspection area through traditional controls.

Another aspect that should be considered is that all measurements were obtained con-
sidering the presence of the Al-Si coating, which is usually present for Usibor® 1500 sheets.
In the case where the derived relationship is applied to the material without a coating, it
should be adjusted accordingly, although the respective differences between the different
phases should remain constant.

5. Conclusions

In conclusion, an NDT preliminary procedure based on LT to estimate the UTS of
boron steels was proposed in the presented work.

The analysis of # measurements revealed a clear relationship between the phase
percentages and «. An increase in the bainitic phase resulted in higher «. These findings
highlight the possibility of estimating the phase percentage in boron steel through LT.

However, it is essential to note the presence of uncertainty bands in the measurements,
indicating possible variation among specimens. This dispersion could be attributed to the
imperfect repeatability of the production process, which should be further investigated
through metallographic analyses.

The correlation between a and UTS revealed an inverse relationship. A preliminary
empirical relationship was proposed, which suggests the potential of estimating the UTS of
steel based on & measurements. However, further validation through traditional controls is
required to assess the accuracy of this relationship and verify the phase percentages within
the inspection area.
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Considering the presence of Al-Si coating on Usibor® 1500 sheets, it is important
to note that adjustments may be necessary when applying the derived relationship to
materials without a coating. Additionally, the relative differences between the different
phases should remain consistent even without the coating.

In summary, these findings contribute to the understanding of phase composition’s ef-
fects on « and its correlation with UTS, paving the way for further research and applications
in material mechanical characterization.
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