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Abstract—The present work is dedicated to a weakly-
compressible multi-fluid SPH model where a diffusive operator
is used in the Volumetric Strain Rate equation in order to
remove instabilities from the pressure field. The present model
is obtained through a combination of other exiting models [1]–
[6]. The new proposed scheme is validated through numerous
well-known benchmarks showing that we are able to recover
the results already present in the literature but improving the
solution of the pressure field.

I. Introduction

The problem of simulating multi-phase flows has been
the subject of many researches in the recent years due to
the growing industrial demands, namely in the naval and
aeronautical sectors. However, due to multiple physical and
numerical constraints, the derivation of robust models is not
straightforward. This is even more the case in the SPH context,
as it is relatively a new numerical method compared to other
theoretically well-established methods (FEM, VOF, etc.).

In 2003, Colagrossi and Landrini [1] derived the first SPH
multi-fluid model able to treat density discontinuities in the
fluid domain. In order to remove nonphysical high-frequencies
of the pressure field, they used a periodic density filtering
which, however, introduced numerical instabilities close to the
free-surface for long time simulations (i.e. large number of
time iterations). Español and Revenga [2] presented an SPH-
DPD scheme where the particle volumes are evaluated through
kernel summation; these volumes were called thermodynamic
volumes, being non-coincident with the geometric ones. This
approach was used by Hu and Adams [3] in 2006 for another
multi-fluid SPH model. Conversely to [1], in the latter the
density field is directly evaluated through the ratio between the
particle masses and their thermodynamic volumes without the
use of a continuity equation integrated in time. However, this
SPH model cannot be used if a free-surface is present since the
thermodynamic volumes cannot be evaluated in its proximity
because of the kernel truncation. To circumvent this issue, in
2009 Grenier et al. [4] [5] proposed a multiphase model for
interfacial and free-surface flows. They use a Volumetric Strain
Rate equation for the time evolution of the thermodynamic
volumes, while the density field is evaluated by a Shepard
correction. The use of the Shepard kernel for the density field
is, however, not sufficient to eliminate the instability of the
pressure field at high wave numbers. In order to improve this
SPH model in the present work we propose the use of the
diffusive term introduced in the δ-SPH scheme by [6]. Since in

[4] the continuity equation is expressed for the thermodynamic
volumes, the diffusive term has to be modeled in a different
way with respect to [6].

Therefore, the present paper is structured as follows. First,
the thought process behind the derivation of the model is
presented. Then, results of several test cases in both single-
phase and multi-phase configurations will be showcased,
highlighting the capabilities of the model in simulating
interfacial flows, with or without the presence of a free-surface.

II. Description of the proposed multi-fluid δ-SPH model

In the following two ways of derivation of the multi-
fluid-δ-SPH model are presented. The first one is using the
model developed by Español and Revenga [2]. The second
one comes from the works of [1] and [4]. We show that the
two formulations provide equations which are very similar and
give results quite close each other.

A. Derivation using evaluation of particles volumes by direct
kernel summation

In Español and Revenga (2003) [2] the DPD-SPH models
are derived estimating the volume Vi of a generic ith particle
as:

Vi =
1∑

j

Wi j

(1)

It is important to note that Vi is not the geometric volume
of particle i, the sum

∑
j

V j does not coincide with the total

volume of the domain VT . However, if a large number of
particles is used, the equality between

∑
j

V j and geometric

volume VT is expected to be verified since the kernel function
W is normalized to unity.

Because of the difference between Vi and the the geometric
volume occupied by the particle i, in Español and Revenga
(2003) Vi are name “thermodynamic volumes”. It follows,
that in all the SPH models the particles volumes are
“thermodynamic” and not geometrical volumes.

Based on this approximation, the density of particle i is
defined as:

ρi = mi

∑
j

Wi j (2)

This approximation handles density discontinuities by
preventing neighbouring particles masses from contributing
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to the evaluation of the particle densities, especially in the
presence of other phases around.

Next, we need to derive the momentum equation. We write
the Lagrangian L of a generic particles system as:

L =
∑

j

m j

u2
j

2
− m jU(t, x j) − m je(ρ j, s j) (3)

where U is a generic energy potential per unit of mass, and e is
the internal energy related to the particle-particle interaction,
supposed to be a function of the density and entropy fields.
The dynamics of the system is described by:

d
dt

(
∂L

∂ui

)
−
∂L

∂ri
= 0 (4)

where dissipative and boundary forces are not taken into
consideration. Further details on these aspects are presented
in Colagrossi et al. [7]. The system of ordinary differential
equations needs to be closed. Following the first law of
thermodynamics, the pressure pi is obtained through the
variations of the specific internal energy as a consequence of
the variations of the density field :

pi = ρ2
i
∂ei

∂ρi

∣∣∣∣∣
s

(5)

In the scope of the present work, we suppose that the
entropy is constant since we are not concerned with
the irreversible thermodynamic exchanges between particles.
Therefore, substituting (3) in (4) and using (5) we get:

mi
dui

dt
− mi f i +

∑
j

m j
p j

ρ2
j

∂ρ j

∂ri
= 0 (6)

where f i = −∂U/∂ri is a generic force field, such as gravity.
Then, using (2) we get our momentum equation:

mi
dui

dt
= −

∑
j

(piV2
i + p jV2

j )∇iWi j + mi f i (7)

When a free-surface is present in the fluid domain the
equation (1) yields wrong volumes near the free-surface due
to the truncation of the kernel support, which in turn results
in erroneous densities and pressures.

Thus, in the present context of multi-fluids with free-
surfaces, we circumvent this free-surface issue by writing the
time derivative of (1) as follows:

Vi

∑
j

Wi j = 1⇒
dVi

dt

∑
j

Wi j + Vi

d
∑

j
Wi j

dt
= 0

⇒
dVi

dt
1
Vi

= −Vi

∑
j

dWi j

dt

which yields the following expression:
dVi

dt
= V2

i

∑
j

(u j − ui) · ∇Wi j (8)

It important to underline that the use of (8) implies a choice
on the initial conditions. Usually at t = 0 the particles are

positioned in a regular way on the domain (see emphe.g.
[8]) and therefore, at least for this initial instant, the particle
volumes can be initialize with the geometrical volumes. This
is not case when equation (1) is used.

Once the particles volumes are evaluated through the time
integration of (8), the density field needs to be evaluated.
Again in presence of a free-surface also equation (2) cannot
be used, and following [1] the simple relation:

ρi(t) =
mi

Vi(t)
mi = ρi(t = 0)Vi(t = 0) (9)

is used, where the particles masses are set by the initial
conditions and remain constant during the time evolution. A
different choice is made in the Grenier et al. [4] model, as
explained in the next subsection II-B.

Once the density field is evaluated the pressure is obtained
through the use of a stiff equation of state:

pi =
ρ0χc2

0χ

γχ

[(
ρi

ρ0χ

)γχ
− 1

]
+ pb (10)

where γχ is the polytropic coefficient of phase χ, and pb is a
background pressure constant in all the fluid domain.

B. Derivation using the Volumetric Strain Rate equation

Differently from Espanol and Revenga [2], in [4] and [5]
the Volumetric Strain Rate equation is directly used to evaluate
the particles volumes:

dV
dt

= V Div(u) ⇒
dVi

dt
= Vi

∑
j

(u j − ui) · ∇Wi j V j (11)

In this equation the velocity divergence is approximated
within the SPH framework as in [1]:

〈Div(u)〉i =
∑

j

(u j − ui) · ∇Wi j V j (12)

This SPH model differs from other SPH models where a
continuity equation for the density field is used. Similarly to
Espanol and Revenga [2] the particles volumes are derived
and density is successively evaluated. In reality in the Grenier
et al. model the velocity divergence relied on a normalizing
integral Γ which is not used here, since it was found to have
negligible effect on the results. Beside this, eq. (11) is quite
similar to the equation (8), the only difference being a volume
V j which is replaced by a volume Vi. This change, however,
has a limited effect since in the present model the particles
have always similar volumes (while densities and masses can
be quite different in the multi-fluid context).

Once the particle volumes are evaluated by the time
integration of (11), in the Grenier et al. model [4] a Shepard
interpolation of the particles masses is used for evaluating the
density field:

ρi =
∑

j

m j WS
i j , WS

i j :=
Wi j∑

k Wik Vk

mi = ρi(t = 0)Vi(t = 0)
(13)
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Again the particles masses are evaluated by the initial
conditions and then they remain fixed in time (ensuring
intrinsically the mass conservation). Note that the Shepard
kernel WS requires the knowledge of the particles volumes
Vk. As reported in [4], it is important to underline that since
the definition (13) is used, the direct link mi = ρiVi is not
strictly verified in this model. As described above, once the
density is evaluated, the pressure is given in the different fluid
phases by the equation of state (II-A).

Using the divergence operator (12) the corresponding
pressure gradient derived through energy considerations (see
[9]) is:

〈∇p〉i =
∑

j

(p j + pi)∇Wi j V j (14)

which differs from the one in (II-A); the latter can be rewritten
as:

〈∇p〉i =
∑

j

(V2
j p j + V2

i pi

ViV j

)
∇Wi jV j (15)

Again the two equations are not so different considering the
regular and almost homogeneous particle volume distributions
adopted in these SPH models.

Similarly to what already discussed above, thanks to the use
of equations (11) and (15), also this model is able to simulate
interfacial flows in the presence of a free-surface.

Regarding the Grenier et al. model, this model was also
limited to low Reynolds number simulations, otherwise the
pressure fields became irregular as the Monaghan/Morris
viscous operators fail to properly stabilize the scheme. Even
in the single-phase simulations when the viscosity level is
reduced the Grenier et al. model did not yield satisfactory
results.

For this reason we want to extend the δ-SPH diffusive terms
of Antuono et al. [6] in our multi-phase context, resulting in
pressure fields with no high-frequency oscillations.

C. The multi-fluid δ-SPH model

For a reminder the δ-SPH scheme reads:

dρi

dt
= −ρi

∑
j

(u j − ui) · ∇Wi jV j + δhc0

∑
j

ψ ji · ∇Wi jV j

ρi
dui

dt
= −

∑
j

(p j + pi)∇Wi jV j + ρi f i + αhc0ρ0

∑
j

πi j∇Wi jV j

dri

dt
= ui; pi = pi(ρi, ρ0, c0, γ)

(16)
where 

ψ ji = 2(ρ j − ρi)
r ji

|ri j|
2 − (∇Lρi + ∇Lρ j)

πi j =
ui j · ri j

|ri j|
2

(17)

and ∇Lρi is the renormalized density gradient [10] defined as:

∇Lρi =
∑

j

(ρ j − ρi)Li∇Wi jV j

Li =

[∑
j

(r j − ri) ⊗ ∇Wi jV j

]−1 (18)

The main problem to extend the δ-SPH scheme’s to the
multi-fluid SPH framework is that the continuity equation has
be replaced by the Volumetric Strain Rate equation making
the adaptation of the diffusion terms not trivial.

An “intuitive” way to adapt the ψ ji term is to simply rewrite
it in terms of particles volumes:

ψ ji = 2(V j − Vi)
r ji

|r ji|
2 (19)

The equivalent terms related to ∇Lρ are not more necessary
since the density has a linear hydrostatic component while this
is not the case when looking the volumes spatial distribution
(conversely to the particles masses). However, this method
proved unsuccessful in practice and the reason is yet to be
understood.

Instead, we rewrite ψ ji term as follows:

ψ ji = Vi

[(
ρ j

ρi
− 1

)
r ji

|r ji|
2 −

1
ρi

(
∇Lρi + ∇Lρ j

)]
(20)

To sum up, the complete ODEs for the particles system of
the proposed model, written for a generic ith particle of phase
χ, are:

dVi

dt
= Vi

∑
j

(u j − ui) · ∇Wi jV j − δ h c0χ

∑
j∈χ

ψ ji · ∇Wi jV j

ρi =
∑

j

m j WS
i j

pi =
ρ0χc2

0χ

γχ

[ (
ρi

ρ0χ

)γχ
− 1

]
ρi

dui

dt
= −

∑
j

(pi + p j)∇Wi jV j + ρ f i +

+α h c0χ ρ0,i

∑
j∈χ

πi j∇Wi jV j

dri

dt
= ui

(21)
The parameter δ is set equal to 0.1 for all the simulations. Note
that the sums of the diffusive terms for both the Volumetric
Strain Rate equation and momentum equation are made only
over particles of the same phase as particle i. This is motivated
by the fact that we do not want to alter the explicit treatment of
the density discontinuities by allowing a diffusion mechanism
across the interface between the phases.

III. Validation

The proposed model was validated through 3 classic test
cases: a hydrostatic problem, an oscillating ellipse and a dam-
break. These simulations have the advantages of being easy
to implement and with well-known experimental data and/or
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analytical solutions. In order to highlight the capabilities
of the model, each simulation was run in single-phase and
multi-phase configurations. In order to impose the weakly-
compressibility of the model, the artificial sound speed c0 is
chosen to satisfy the following:

c0 ≥ 10 max
(
Umax,

√
pmax

ρ0

)
(22)

where Umax and pmax are the maximum expected pressure and
velocity. In multi-phase cases, the artificial sound speed of the
lighter phase cl was chosen according to the Colagrossi et al.
[1] formula:

cl = ch
√
γl ρ0h/(γh ρ0l) (23)

where ch is the artificial sound speed of the heavier phase,
computed via (22). Finally, the time steps are computed as
follows:

∆t = CFL
2h

cmax
(24)

where h is the smoothing length. Using a 4th order Runge-
Kutta scheme for time integration the CFL number can be set
equal to 0.75.

A. Long-time evolution for the hydrostatic test-case

For the single-phase hydrostatic problem, a two-dimensional
tank is half-filled with water at rest. For the air-water
simulation, the other half is filled with air. Here, the
background pressure was set to pb = 0.1pmax, otherwise we
observe a nonphysical void at the interface between the phases
as shown in Figure (1), due to the occurrence of negative
pressures in the interface zone.

Fig. 1: Example of the nonphysical void between air (red) and
water (blue).

The long-time evolution of the hydrostatic cases was
monitored up to 300 seconds. Figure (2) shows the initial
and final pressure profiles. The correct hydrostatic solution is
retrieved for both single-phase and multi-phase configurations.
The particles generally stay on the initial Cartesian grid,
although a small perturbation of particles is observed just
underneath the free-surface. Figure (3) shows the kinetic
energy evolution. It rapidly decreases towards zero, showing
good stability of the model. The kinetic energy of the air-
water simulation is two-order of magnitude less than its

Fig. 2: Initial and final instants of the hydrostatic simulations.
The black solid line denotes the interface between air and
water.

Fig. 3: Evolution of the kinetic energy for the water-only and
air-water hydrostatic cases.
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Fig. 4: Evolution of the a single-phase oscillating drop at
different times (displayed in clockwise order). The the dashed
lines represent the analytical solution analytical solution.

single-phase counterpart. This is due to the addition of a
background pressure in the multi-phase case, which induces
more numerical diffusion.

B. Oscillating drop: single and two-phases

1) Single-phase case: We consider a 2D fluid bubble
evolving in a quadratic potential 1/2Ω2(x2 + y2). The fluid is
inviscid (α = 0), and the radius of the disk is R. The velocity
field is assumed to have the following form:

u = A(t)x

v = −A(t)y
(25)

and we set A(0) = Ω. Following the study of Monaghan and
Rafiee [11], under these conditions the drop should evolve
periodically as an oscillating ellipse. Figure (4) presents the
initial and deformed shapes of the fluid bubble. The free-
surface evolution of the ellipses in comparison with the
analytical solution is satisfactory. This is further illustrated
in Figure (5), where the predicted evolution of the ellipse
semi-axis a(t) is in very good agreement with its analytical
counterpart.

A convergence study was made in order to monitor the
mechanical energy. Figure (6) plots the evolution of the
normalized mechanical energy for 3 discretizations. Similarly
to Antuono et al. [12], for increasing numbers of particles,
smaller dissipations of the mechanical energy occur due to
the presence of the diffusive term in the continuity equation.

2) Multi-phase case: This time we consider two initial
concentric circular bubbles of fluids Inner and Outer. The
heavier fluid occupies the inner circular region of radius R/2,
while the lighter fluid occupies the region between the outer
circle of radius R and the inner circle. Both fluids evolve in
the quadratic potential 1/2Ω2(x2 + y2), and we keep A(0) = Ω.

Fig. 5: Comparison between the predicted evolution of the
semi-axis a(t) and the analytical solution.

Fig. 6: Time history of the normalized mechanical energy
variation for different discretizations.

Note that unlike [11], in the current simulation no damping
technique was needed to initialize the pressure field. Figure
(7) illustrates the initial configuration of the problem, with
a density ratio ρinner/ρouter = 100. Figure (8) shows the
evolution of the outer ellipse’s semi-axis a(t) for different
density ratios. As predicted by the analytical solution, the
motion of a(t) is unaffected by the density ratio. The pressure

Fig. 7: Initial state of the concentric circular bubbles. The solid
black line denotes the interface between the fluids.
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Fig. 8: Outer ellipse semi-axis evolution for a density ratio of
2 (left) and 100 (right) vs the incompressible solution. The
axis evolution does not vary with the density ratio.

Fig. 9: Top:Pressure measured at the center of the inner bubble
for different density ratios. Bottom: Evolution of the system’s
kinetic energy for different density ratios

at the center of the inner bubble is plotted in Figure (9). A
small perturbation at the end of the first half-period occurs
due to the compressibility of the model, but all in all, it
is clear that the current model’s computed pressure follows

Fig. 10: Top: Pressure field in the inner and outer bubbles.

closely the incompressible solution. Overall, the model yields
satisfactory pressure fields in both the inner and outer phases,
as shown in Figure (10). The kinetic energies are plotted in
bottom plot of Figure (9) for different density ratios. Once
again, there is a very good agreement between the computed
and incompressible solutions of the problem, showcasing the
satisfactory accuracy of the proposed model.

C. Dam Break flow: single and two-phases

The third test case is a dam-break impacting a vertical wall
as described in [1]. The initial problem is illustrated in Figure
(11), where P1 is a pressure probe. Snapshots of the dam-break
flow evolution in the single-phase configuration are shown in
Figure (12). The model clearly handles well the presence of
the free-surface. Also, thanks to the addition of the diffusive
terms in the present model, no spurious oscillations of pressure
are observed. This is the main improvement upon [4] as also
illustrated in Figure (13), which highlights the differences in
the resulting pressure fields obtained with the proposed model
and the Grenier et al. model. In particular it is possible to

Fig. 11: Initial configuration of the multi-phase dam-break
problem. The black solid line denotes the interface between
the phases.
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Fig. 12: Snapshots of the single-phase dam-break flow at different times.

Fig. 13: Snapshot of the dam-break flow at t(g/H)1/2 = 9, using the Grenier et al. model (top) and the current model (bottom).

Fig. 14: Snapshots of the multi-phase dam-break flow at different times.

observe that the Grenier et al. model suffers from local isolated
pressure discontinuity here which are formed during impacts
and remain unaltered during the flow evolution.

Another simulation of the same dam-break flow was run,
this time in a multi-phase configuration. The adopted density
ratio is ρwater/ρair = 1000. Figure (14) shows the dam-break
evolution and the pressure field in the water phase. The latter
is in very good agreement with its single-phase equivalent,
as the pressure levels inside the water are almost identical
in both cases up to the cavity closure, after which the air
cushioning effects become relevant (see third plot of Figure 14)

and the two flow evolutions do not behave anymore in the same
manner. This is confirmed looking at the pressure measured
at the probe P1 as shown in Figure (15). Both models agree
very well up to around t(g/H)1/2 = 6.0, which corresponds to
the first cavity closure. Then the two-phase model predicts a
pressure oscillation due to the entrapped air bubble which is
not predicted by the single-phase simulation as this cavity is
void. The latter collapses in a flat impact around t(g/H)1/2 =

8.0 producing a transfer of energy from mechanical energy to
internal one, in the form of travelling acoustic waves which
are visible in bottom plot of Figure 12 (see also [13] for a
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Fig. 15: Time history of the pressure at the probe P1.

detailed discussion about this phenomenon).

IV. Conclusion and Perspectives

A weakly-compressible SPH model was derived and
successfully simulated single-phase and multi-phase flows in
the presence of a free-surface. The accuracy and robustness
of the model was highlighted through three test cases, and
the comparison of its results with the analytical solutions
present in the literature yielded satisfactory results. On top
of its versatility, the proposed model has the advantage of
computing pressure fields with no high-frequency oscillations
thanks to the adaptation of the diffusive terms of Antuono
et al.’s δ-SPH scheme [6]. This advantage would prove very
useful for the simulation of multi-phase cases where accurate
predictions of the pressure loads is crucial, such as ditching
problems. In the future, this model can be improved by
including surface tension and viscosity effects, by increasing
its accuracy through the adaptation of a shifting technique and
by extending its scope to three-dimensional flows.
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