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Abstract. High-quality quantum-state and entanglement transfer can be
achieved in an unmodulated spin bus operating in the ballistic regime, which
occurs when the endpoint qubits A and B are nonperturbatively coupled to the
chain by a suitable exchange interaction j0. Indeed, the transition amplitude
characterizing the transfer quality exhibits a maximum for a finite optimal value
j

opt
0 (N ), where N is the channel length. We show that j

opt
0 (N ) scales as N−1/6 for

large N and that it ensures a high-quality entanglement transfer even in the limit
of arbitrarily long channels, almost independently of the channel initialization.
For instance, for any chain length the average quantum-state transmission fidelity
exceeds 90% and decreases very little in a broad neighbourhood of j

opt
0 (N ). We

emphasize that, taking the reverse point of view, should j0 be experimentally
constrained, high-quality transfer can still be obtained by adjusting the channel
length to its optimal value.
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1. Introduction

Quantum state transfer between distant qubits (say, A and B) is a fundamental tool for
processing quantum information. The task of covering relatively large distances between the
elements of a quantum computer, much larger than the qubit interaction range, can be achieved
by means of a suitable communication channel connecting qubits A and B.

Spin chains are among the most studied channel prototypes [1]. In particular, the
S = 1/2 XY model has been widely employed as a tool for testing and analysing quantum
communication protocols. For such a communication channel to be experimentally feasible,
one could be led to consider systems with uniform intrachannel interactions [2–9] and whose
operation does not require peculiar initialization procedures, although other proposals have
recently been put forward [10–13]. On the other hand, the quantum-transfer capabilities of
homogeneous spin channels have not yet been fully explored in many respects. For instance,
it is a common belief that the longer the chain, the worse the transmission fidelity [1, 2, 14, 15]
as an effect of dispersion, and chains up to only a few tenths of spins are often considered.
Another class of approaches exploits the possibility of varying the extremal coupling strengths
in time [16] and these types of questions have also been studied for networks [17].

This work is devoted to the study of the ballistic regime, where transmission can be
depicted [7, 18, 19] in terms of a travelling wavepacket carrying information about the state
of the endpoint qubit A, eventually yielding the state reconstruction at the opposite endpoint
qubit B thanks to the overall system’s mirror symmetry [10–12, 20]. The ballistic regime
differs from that arising in the limit of very weak endpoint couplings [3, 5, 6, 21, 22] where
(almost) perfect state transfer occurs at very long times as a result of a Rabi-like population
transfer involving only two or three single-particle modes. Understanding the basic mechanism
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Figure 1. The endpoints of a quantum channel Ŵ are coupled to the qubits A and
B, via the interaction j0; qubit A can be entangled with an external qubit C.

of ballistic transfer, where the number of involved single-particle modes will be shown to be of
the order of N 2/3, allows us to devise an optimal value of the endpoint interactions for any N ,
and vice versa. Remarkably, the corresponding transmission quality, as witnessed by the state
and the entanglement fidelity, does not decrease to zero when the channel becomes very long,
but remains surprisingly high.

We consider the setup illustrated in figure 1: the channel connecting the qubits A and B is
a one-dimensional (1D) array of N localized S = 1/2 spins with exchange interactions of X X

Heisenberg type and a possible external magnetic field applied along the z-direction. This gives
the total Hamiltonian the following structure:

H= −
N−1
∑

i=1

(Sx
i Sx

i+1 + S
y

i S
y

i+1)− h

N
∑

i=1

Sz
i − j0

∑

i=0,N

(Sx
i Sx

i+1+S
y

i S
y

i+1)− h0(S
z
0+Sz

N+1), (1)

where the qubits A and B sit at the endpoint sites 0 and N + 1 of a 1D discrete lattice on whose
sites 1, 2, . . . , N the spin chain is set. The exchange interaction (chosen as energy unit) and the
magnetic field h are homogeneous along the chain, and an overall mirror symmetry is assumed,
implying the endpoint coupling j0 and field h0 to be the same for both ends. The N spins
constituting the X X channel are collectively indicated by Ŵ. We will focus our attention on how
the state of the qubit B evolves under the influence of the chain Ŵ, and depending on the initial
state of the qubit A; the latter is possibly entangled with an ancillary qubit C. The results of the
analysis are used to gather insights into quantum-information transmission through the chain so
as to characterize the dynamical evolution of the overall system and to maximize the quality of
the quantum-state transfer.

Even though the overall scheme could also be used to realize tasks other than quantum
information transfer, via the dynamical correlations that the chain induces between A and
B [23], our approach is specifically tailored to studying transfer processes along the chain:
the qubit B or the qubit pair BC is considered as the target system, depending on whether the
quantum state of the qubit A or that of the qubit pair AC is to be transferred, respectively.

In section 2, the formalism used to study the dynamical evolution of the composite system
is introduced and we derive the corresponding time-dependent expressions for the quantities
used to estimate the quality of the quantum-state and entanglement transfer processes. In
section 3, the proposed formalism is applied to the X X model described by (1). In section 4,
we put forward an analytical framework in order to improve the understanding of the conditions
inducing optimal ballistic dynamics. The resulting high-quality transfer processes along the
spin chain are analysed in section 5. The conclusions drawn are presented in section 6, where
comments about possible implementations of the procedure are also given. Relevant details of
calculations can be found in the appendices.
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2. Dynamics and transfer quality

2.1. Dynamics

In this paper, we will essentially focus on the dynamics of the qubit B as described by its
time-dependent density operator ρB(t). Referring to the specific setup described in figure 1 we
prepare the overall system A ∪ Ŵ ∪ B in the initial state ρ tot = ρA ⊗ ρŴ ⊗ ρB and let it evolve
into e−iHtρ tot eiHt , where H is the total Hamiltonian (1), entailing that B evolves according to
ρB(t)= TrA ∪Ŵ[e−iHtρ tot eiHt ]. Since ρ tot has a fully separable structure, ρB(t) can be expressed
as a linear function of the input density matrix for the qubit A, ρA(0):

ρB(t)= Et ρ
A(0), (2)

where the quantum operation Et is a trace-preserving, completely positive, convex-linear map
(see, e.g., [24]). Actually, an initial state structure such as ρA ⊗ ρŴB would equally work for the
explicit determination of Et : the separability between ρB and ρŴ is adopted just in view of the
assumed physical separability of the systems playing the role of sender, medium and receiver.
It can be easily shown that the effect of the linear map can be represented in terms of a 4 × 4
time-dependent matrix

Tµν(t)= Tr[ζ †
µ Et ζν], (3)

where {ζµ} is an orthonormal basis in the Hilbert space of 2 × 2 matrices endowed with the
Hilbert–Schmidt trace product, Tr[ζ †

µζν] = δµν . We use indices µ, ν, λ running from 1 to 4,
understanding summation over any repeated index, e.g. δµµ = 4. As the initial state of the qubit
A does not enter the expression of Tµν(t), this procedure lies in the framework of general
tomographic approaches.

Let us now consider the time evolution of the quantum state describing the qubit pair C ∪ B
when the total system is initially prepared in the state ρ tot = ρCA ⊗ ρŴ ⊗ ρB. It can be shown that
Tµν(t) is the only ingredient needed for deriving not only the dynamics of the qubit B, but also
that of the qubit pair C ∪ B, provided the pair C ∪ A was prepared separately from the rest of
the system, and C is noninteracting [25]. In particular, if C and A are initially prepared in one
of the Bell states, say (|00〉 + |11〉)/

√
2, it is

ρCA
Bell = 1

2 ζµ ⊗ ζµ (4)

and hence

ρCB
Bell(t)= 1

2 Tνµ(t) ζµ ⊗ ζν. (5)

When both the total Hamiltonian and the initial state ρŴ ⊗ ρB are symmetric under rotations
around the z-axis, it is

Tµ2 = T2µ = T22 δµ2, Tµ3 = T3µ = T33 δµ3, (6)

and only three matrix elements, say T11, T22 and T44, need to be determined.

2.2. Quality of transfer processes

In order to study the quality of the transfer processes mediated by the spin chain, we specifically
consider the entanglement transfer from C ∪ A to C ∪ B when the former spin pair is initially
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prepared in a Bell state (4). The entanglement fidelity

F
Bell
ent (t)= 1

4 Tµµ(t) (7)

measures the quality of entanglement transmission, i.e. how close the state of C ∪ B at time t is
to the initial state of C ∪ A, while the entanglement of the pair C ∪ B is measured by

C
Bell
CB (t)= 1

2 C[Tνµ(t) ζµ ⊗ ζν], (8)

where C[ρ] is the concurrence [26] between two qubits in the state ρ. Note that (5), (7) and (8)
are independent of which Bell state is chosen, since different Bell states are connected to
(|00〉 + |11〉) /

√
2 by unitary operations on C, which is isolated.

Another relevant tool for evaluating the quality of the transfer processes is the fidelity of
transmission from A to B, which reads FAB(t)≡Tr[ρA†

ρB(t)] provided that ρA is a pure state.
If A is initially prepared in the generic state |ψθϕ〉 = cos θ

2 |0〉 + eiϕ sin θ

2 |1〉, the fidelity can be
averaged over all possible initial pure states by integrating over the Bloch sphere, resulting in
the average fidelity

FAB(t)= 1
3 + 1

6 Tµµ(t), (9)

which can be compared with (7) to obtain the relation FAB(t)= 1
3 + 2

3 F
Bell
ent (t) [27, 28]. It is

worth noting that a high average fidelity could still allow for states that are poorly (or even not
at all) transferred, while the ultimate goal is the transmission of any state: one can then consider
the minimum fidelity Fmin

AB
(t), derived by minimizing with respect to |ψθϕ〉, a straightforward

task in the presence of z-rotation symmetry (6).

3. The X X model

3.1. Dynamical evolution

In this section, we specifically consider the Hamiltonian (1). The system A ∪Ŵ ∪ B is prepared
in the state ρ tot = ρA ⊗ ρŴ ⊗ ρB where ρŴ is any state invariant under rotations around the
z-axis and ρB = b1ζ1 + b4ζ4: this choice fulfils the requisite of U (1) symmetry of ρŴ ⊗ ρB

leading to (6). Referring to the usual Jordan–Wigner transformation, we cast (1) in the fermionic
quadratic form

H=
N+1
∑

i, j=0

c
†
i�i j c j =

N+2
∑

n=1

ωn c†
ncn, (10)

where {ci , c
†
i } are fermionic operators whose nearest-neighbour interaction is described by

the (N + 2)× (N + 2) tridiagonal mirror-symmetric matrix �= {�i j} (see appendix A); an
orthogonal transformation O = {Oni} diagonalizes � and hence H [29, 30]. The trivial time
evolution of the cn’s entails a time-dependent transformation

ci(t)=
N+1
∑

i=0

Ui j(t) c j , (11)

where

Ui j(t)=
∑

n

OniOnj e
−iωn t . (12)
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Provided that (6) hold, we find that

T11(t)= |u(t)|2 + v(t),

T44(t)= 1 − v(t), (13)

T22(t)= − p〈σ z
N+1〉 u(t)eiα(t),

where

u(t)= |UN+1,0(t)|, α(t)= arg[UN+1,0(t)], (14)

v(t)= |UN+1,N+1(t)|2
〈σ z

N+1〉 + 1

2
+ CN+1(t), (15)

Ci(t)=
N

∑

j, j ′=1

U ∗
i j(t)Ui j ′(t)Tr[ρŴc

†
j c j ′], (16)

with p = Tr[PρŴ], and P = exp(iπ
∑N

i=1 c
†
i ci)≡

∏N

i=1(−σ
z
i ) is the chain parity operator, which

is a constant of motion. The dynamics of the qubit B and of the qubit pair C ∪ B follow from
the above expressions. The time evolution of the magnetization along the chain can also be
straightforwardly obtained:

〈σ z
i (t)〉 = |Ui0(t)|2〈σ z

0 〉 + |Ui,N+1(t)|2〈σ z
N+1〉 + G i(t), (17)

where G i(t)= 2Ci(t)+ |UN+1,0|2 + |UN+1,N+1|2 − 1.

3.2. Fidelities and concurrence

We again consider the system ruled by the Hamiltonian (1) in the setup described above, so
that (6) hold. Using (13) we find the entanglement fidelity and the average transmission fidelity
of pure states

F
Bell
ent (t)= 1

4 + 1
4u2(t)− 1

2 p cosα 〈σ z
N+1〉 u(t), (18)

F
pure

AB
(t)= 1

2 + 1
6u2(t)− 1

3 p cosα 〈σ z
N+1〉 u(t), (19)

as well as the concurrence

C
Bell
CB (t)= max{0, C0}, (20)

where

C0 = |p〈σ z
N+1〉| u(t)−

√

v(t)[1 − u2(t)− v(t)]. (21)

From the above formulae it appears that the choice of the initial state ρŴ ⊗ ρB plays an important
role [31]: in particular, in order to get the largest concurrence it must be

p〈σ z
N+1〉 = ±1, (22)

meaning that ρŴ is an eigenstate of P and the qubit B is initially in a polarized state, ρB = ζ1 or
ρB = ζ4; as for the initial state of the channel, the choices range, for example, from its ground
state to a fully polarized state. Such a limitation in the choice of the initial state might be
overcome by applying a two-qubit encoding and decoding on states ρA and ρB, respectively
[22, 32]. Similarly, for the transmission fidelity to be largest, the condition

−p〈σ z
N+1〉 cosα = 1 (23)
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must hold. Note that the lhs of (23) follows from the rotation around the z-axis undergone by
the state during the transmission and can be treated by choosing a proper magnetic field [2] or
the parity of N , as well as by applying a counter-rotation on the qubit B [31].

The above analysis shows that, once condition (23) is fulfilled, the quality of the state and
entanglement transfer mainly depends on u(t) and increases with it.

4. Optimal dynamics

4.1. Transition amplitude

We now have the tools for determining the conditions for a dynamical evolution that corresponds
to the best quality of the transmission processes. In appendix A, the algebraic problem of
diagonalizing the X X Hamiltonian in the case of nonuniform mirror-symmetric endpoint
interactions (A.1) is analytically solved. The eigenvalues of the matrix � can be written as

ωk = −h − cos k, (24)

in terms of the pseudo-wavevector k, which takes N + 2 discrete values kn in the interval (0, π):
from (A.15) and (A.16) it follows that these values obey

kn =
π n + 2ϕkn

N+3
(n = 1, . . . , N+2), (25)

with

ϕk = k − cot−1
(cot k

1

)

∈ (−π

2 ,
π

2 ), (26)

1=
j2
0

2 − j2
0

, (27)

where we have set h0 = h. From the above equations it follows that the k’s correspond to the
equispaced values πn/(N + 3), slightly shifted towards π/2 of a quantity that is smaller than
π/(N + 3), so that their order is preserved: therefore k can be used as an alternative index for n,
understanding that it takes the values kn, as done in (24). According to the conclusions of the
previous section, we focus on the transition amplitude (12) and (14), which explicitly reads

UN+1,0(t)≡ u(t) eiα(t) = −
∑

n

ρ(kn) ei(πn−ωkn t), (28)

where, after (A.21), it is

ρ(k)=
1

N+3−2ϕ′
k

1(1+1)

12 + cot2 k
, (29)

and mirror symmetry is exploited according to (A.3): the transition amplitude above is a
superposition of phase factors with normalized weights,

∑

n ρ(kn)= 1, entailing u(t) 6 1, with
equality holding when all phases are equal. The distribution ρ(k) is peaked at k = k0 = π/2 and
its width is characterized by the parameter 1 (27) so that the smaller j0 the narrower ρ(k).

As u(t) essentially measures the state-transfer quality, the condition for maximizing it at
some time t∗, i.e. u(t∗)≃ 1, is that all phases πn −ωkn

t∗ are almost equal to each other. Assume
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Figure 2. Value of u(t∗,1) as a function of 1 for different wire lengths N . t∗

is obtained numerically by maximizing (28) around t ≃ N + 3. These curves are
very well fitted by the function u(1)= uopt − c[ln(1/1opt)]2, with c ranging
from ∼0.17 (low N ) to ∼0.21 (large N ).

for a moment that the k’s be equispaced values, as in (A.8), and that the dispersion relation be
linear, ωk = vk; then (28) would read

u(t)=

∣

∣

∣

∣

∣

∑

n

ρ(kn) eiπn(1−t/t∗)

∣

∣

∣

∣

∣

, (30)

with t∗ = (N + 3)/v, so that u(t∗)=
∑

n ρ(kn)= 1, i.e. all modes give a coherent contribution
and entail perfect transfer. On the other hand, in our case ωk is nonlinear in k, and the kn are
not equally spaced due to the phase shifts (26) entering (25), so generally the different modes
undergo dispersion and lose coherence.

4.2. Transfer regimes

The dependence of1 upon j0 reveals the possibility of identifying different dynamical regimes,
characterized by a qualitatively different distribution ρ(k) (29) and hence, as for the transfer
processes, different behaviour of the transition amplitude u(t). For extremely small j0 the
distribution ρ(k) can be so thin that (for even N ) only two opposite small eigenvalues come into
play, say differing by δω, and perfect transmission will be attained at a large time t = π(δω)−1

(for odd N there is a third vanishing eigenvalue at k = π/2 and still two identical spacings δω
do matter). This is the Rabi-like regime also mentioned in the introduction section.

A different regime is observed when j0 is increased: a few more eigenvalues come into play
and it may occur, in a seemingly random way, that their spacings are (almost) commensurate
with each other, i.e. they can be approximated as fractions with the same denominator K ,
yielding phase coherence at t

K
= πK . By recording the maximum of u(t) over a fixed large

time interval T , as j0 is varied (see [3]), a rapid and chaotic variation is observed. This regime
is clearly useless for the purpose of quantum communication.

As j0 further increases, the ballistic regime eventually manifests itself: ρ(k) involves so
many modes that commensurability is practically impossible, and more regular behaviour with
short transmission time t∗ ∼ N sets in. The ballistic regime is characterized by relatively large
values of u(t∗,1), which is the quantity plotted in figure 2, reporting numerical results for

New Journal of Physics 13 (2011) 123006 (http://www.njp.org/)

http://www.njp.org/


9

Table 1. Optimal values1opt and the corresponding j
opt
0 and u(t∗,1opt) (see text

for details) for different N .

N + 2 1opt j
opt
0 u(t∗,1opt)

25 0.243 0.625 0.968
51 0.181 0.554 0.949

101 0.138 0.493 0.932
251 0.098 0.422 0.913
501 0.075 0.374 0.900

1 001 0.058 0.332 0.890
2 501 0.042 0.284 0.879
5 001 0.033 0.252 0.873

10 001 0.026 0.224 0.868
25 001 0.0188 0.192 0.862
50 001 0.0148 0.171 0.859

100 001 0.0117 0.152 0.857
250 001 0.0086 0.1303 0.854
500 001 0.0068 0.1160 0.853

increasing chain lengths. It appears that each curve shows a maximum for a particular optimal

value of 1=1opt(N ) or, equivalently, of j0 = j
opt
0 (N ): such maxima are remarkably stable

for very high N and yield a very high transmission quality. In table 1, we report some of the
optimal values 1opt(N ) and j

opt
0 (N ) for a wide interval of chain lengths. This last ‘ballistic-

transfer’ regime is the one we are interested in, since it has three strong advantages: firstly, the
transmission time t∗ ∼ N is the shortest attainable; secondly, the maximum value u(t∗,1opt)

of u(t∗,1) is such that one can achieve very good state transfer, e.g. the corresponding
transmission fidelity is far beyond the classical threshold, even for very long chains; thirdly,
it is not necessary to fine-tune j0 to j

opt
0 , since from the data set reported in figure 2 it can be

estimated that the relative loss in amplitude is uopt − u( j
opt
0 ± δ j0)≃ 0.8(δ j0/j

opt
0 )2, e.g. a 15%

mismatch in j0 results in a loss of less than 2% in the transition amplitude.
The above analysis gives a physical interpretation of what is observed in figure 3 of [3],

where the Rabi-like, intermediate and ballistic regimes emerge.
A qualitative picture of the ballistic regime can be obtained by viewing the transition

amplitude (28) as a wavepacket with N + 2 components. It can be evaluated by progressively
adding the contributions from symmetric eigenvalues, i.e. for odd N summing between
(N + 1)/2 ∓ ℓ, for ℓ= 0, 1, . . . , (N + 1)/2. This yields the partial sum uℓ(t

∗) shown in figure 3,
together with the corresponding frequency and density. One can see that the amplitude increases
only over the modes of the linear-frequency zone, i.e. where frequencies are equally spaced,
indicating that only those wavepacket components whose frequency lies in such a zone play a
role in the transmission process.

4.3. Ballistic regime and optimal values

From the above reasoning, since the modes contributing to the amplitude lie in a range of sizes
1 around k0, in order to get high-quality transfer processes it is necessary that the corresponding
frequencies be almost equally spaced, meaning that ωkn

is approximately linear in n. Actually,

New Journal of Physics 13 (2011) 123006 (http://www.njp.org/)

http://www.njp.org/


10

Figure 3. Partial sum of the amplitude uℓ(t
∗) versus ℓ for N + 2 = 51 and

j0 = 0.58, together with the corresponding frequency and density.

ωk has an inflection point in k0: its nonlinearity is of the third order in k − k0 and the modes
close to k0 satisfy the required condition. However, from the phase shifts (26) a further cubic
term arises, which depends on1. As1 varies with j0, the latter can be chosen so as to eliminate
the cubic terms, yielding a wide interval with almost constant frequency spacing. The latter can
be expressed just as the derivative of ωkn

with respect to n, ∂nωkn
= sin k∂nk. The last term is

evaluated from (25) and (26),

∂nk =
π + 2ϕ′

k∂nk

N+3
=

π

N+3 − 2ϕ′
k

, (31)

ϕ′
k = −

1−1
1

+
(1−12) cos2 k

1[12 + (1−12) cos2 k]
, (32)

so that

∂nωkn
=

π sin k

N+3 − 2ϕ′
k

=
π

t∗

[

1 +
(

2
1−12

t∗13
−

1

2

)

cos2k + O(cos4k)
]

, (33)

where t∗ = N + 3 + 2 (1 −1)/1 is the arrival time. It follows that one can minimize the
nonlinearity of ωkn

by setting the width to the value 10 satisfying

10 =
[ 4

t∗ (1−12
0)

]1/3
−→
N≫1

22/3 N−1/3, (34)

and j0 ≃ 25/6 N−1/6 for large N . Therefore the main mechanism that produces an optimal
ballistic transmission is that of varying the endpoint exchange parameter to the value j0 that
‘linearizes’ the dispersion relation. Actually, if the corresponding 10 =1( j0) is such that ρ(k)
exceeds the region of linearity, further gain arises by lowering j0 so as to tighten the relevant
modes towards k0. However, at the same time, ωkn

becomes less linear and the trade-off between
these two effects explains why a maximum is observed. This is apparent in figure 4, where for
different values of 1 the shapes of ∂nωk can be compared with the excitation density ρ(k): for
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Figure 4. The ‘group velocity’ vk ≡ [(N + 3)/π ]∂nωkn
and ρ(k) versus k for

different values of 1. The thicker curves correspond to 10 = 0.3944 (34) that
gives the flat behaviour at k0 and to 1opt ≃ 0.1825.

1=10 the density still has important wings in the nonlinear zone, so the optimal value 1opt

turns out to be smaller.
The dynamics in the ballistic regime is best illustrated by the time evolution of

the magnetization (17) along the chain, plotted in figure 5 when the initial state is |↑〉⊗
|↓↓ · · · ↓〉 ⊗ |↑〉. The initial magnetizations at the endpoints generate two travelling wave-
packets: for nonoptimal coupling ( j0 = 1, upper panel) they change their shape and quickly
straggle along the chain; for optimal coupling ( j0 = j

opt
0 , lower panel) they travel with minimal

dispersion. This confirms that the coherence is best preserved when the optimal ballistic
dynamics is induced: in the next section we show that such dynamics do in fact correspond
to high values of the quality estimators for the state and entanglement transfer.

5. Information transmission exploiting optimal dynamics

The requirement (23) means that the state is not rotated by the dynamics when it arrives on site
B, although during the evolution it may undergo a rotation around the z-axis. In [23], it has
been shown that α = −π

2 (N+1) at the transmission time t∗. Therefore, also without applying
a counter-rotation on qubit B [31], condition (23) can be fulfilled by choosing N = 4M ± 1,
where the sign ± is given by (22) and thus depends on the initial state of the chain. In the
following, we assume that conditions (22) and (23) are always satisfied.

Let us consider for the moment that Ŵ and B are initially in the fully polarized state
|↓↓ · · · ↓〉 ⊗ |↓〉. In that case v(t)≡ 0 and the transmission fidelities (18) and (19), as well as
the concurrence (20), only depend on, and monotonically increase with, u(t). The best attainable
information-transfer quality corresponds therefore to the maximum amplitude uopt ≡u(t∗,1opt).
In figure 6 and table 1 we report these values together with the corresponding optimal 1opt as a
function of the chain length N in a logarithmic scale; the inset shows that 1opt obeys the same
power-law behaviour predicted in (34) for 10. Figure 6 also shows that for larger and larger
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Figure 5. Dynamics of the magnetization σ z
i (t) at time t and site i when

(a) j0 =1 and (b) j0 = j
opt
0 . The initial state of the whole system is |↑〉⊗

|↓↓ · · ·↓〉 ⊗ |↑〉 and the length of the chain is N + 2 = 250.

N the maximal amplitude uopt does not decrease towards zero, but rather tends to a constant
value of about 0.85, which is surprisingly high, as, e.g., it corresponds to an average fidelity
FAB(t

∗)& 0.9. This can indeed be proven: we show in appendix B that in the limit of N → ∞
the optimized amplitude tends to uopt = 0.8469. Basically, this tells us that it is possible to
transmit quantum states with very good quality also over macroscopic distances. From (B.14)
we can derive the asymptotic behaviour of the optimal coupling

j
opt
0 ≃ 1.030 N−1/6. (35)

In the optimal ballistic case, the channel initialization is not crucial, as different initial states
satisfying (22) give rise to almost the same dynamics as discussed at the end of section 3.2. In
fact, the term CN+1(t) entering (15) essentially embodies the effect of channel initialization and
it is expected to be small at t∗. This is apparent in figure 7, where for j0 = j

opt
0 , CN+1(t

∗) stays
well below 0.1 for N as long as 1000.
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Figure 6. Behaviour of the maximum attainable amplitude uopt and (inset) of the
corresponding optimal value of1opt versus logarithm of the chain length N . The
horizontal dashed line is the infinite N limit of uopt.
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Figure 7. CN+1(t
∗) for different initial states of the chain (ground state, anti-

ferromagnetic Neél state and series of singlets [31]) when j0 = j
opt
0 and j0 = 1.

The results for a series of singlets are numerically indistinguishable from those
with the Neél state.

The transmitted entanglement, as measured by the concurrence (20), is shown in figure 8
as a function of j0 and t , with the channel initially prepared in its ground state. As expected,
the peak of the transmitted concurrence is observed for j0 = j

opt
0 ; away from j

opt
0 the quality of

transmission falls down because u(t∗) decreases and, accordingly, v(t∗) is allowed to increase.
In fact, in the nonoptimal ballistic case the quality of entanglement transfer does depend on the
initial state of the channel [31, 33]; for instance, when j0 = 1 and the chain is initially in its
ground state, the contribution of the overlap terms Tr[ρŴc

†
j c j ′] in (16) is not quenched by the

dynamical prefactors, and higher values of CN+1(t
∗) (see figure 7) inhibit the transmission of

entanglement even if u(t∗) 6= 0.
The effect of the optimization of j0 is clearly evident in the time behaviour, reported

in figure 9, of the minimum fidelity Fmin
AB
(t): its peak for j

opt
0 occurs at the arrival time
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Figure 8. Evolution of the concurrence CBell
CB versus j0 and t . The length of the

chain is N + 2 = 250.
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Figure 9. Minimum fidelity versus time for different values of j0. The length of
the chain is N + 2 = 251 and j

opt
0 = 0.422.

t∗ = N + 3 + s with a time delay s that agrees with the asymptotic value s ≃ 2.29 N 1/3 derived
in appendix B. The ‘reading time’, i.e. the time interval during which the qubit B remains in the
transferred quantum state, is tR ≃1−1, as the same figure also shows; note that, in the optimal
case, tR increases with N according to the asymptotic behaviour tR ≃ 1.89 N 1/3.

6. Conclusions

In this paper, we have shown that high-quality quantum state and entanglement transfer between
two qubits A and B is obtained through a uniform X X channel of arbitrary length N by a proper
choice of the interaction j0 between the channel and the qubits. The value of such interaction
is found to control the transfer regime of the channel, which varies, as j0 increases, from the
Rabi-like one, characterized by a very long transmission time, to an intermediate regime, which
turns useless for the purpose of quantum communication and finally becomes ballistic for j0 of
the order of the intrachannel interaction.

New Journal of Physics 13 (2011) 123006 (http://www.njp.org/)

http://www.njp.org/


15

In order to get coherent transfer in the ballistic regime, it is desirable that the k-density of
the travelling wavepacket generated by Alice’s initialized qubit A be narrow and concentrated
in the linear zone of the dispersion relation, i.e. with equispaced frequencies. As the parameter
j0 controls both the width of the k-density and the spacings of the frequencies entering the
dynamics, one can improve the transmission quality up to a best balance obtained for an optimal
value jopt(N ), which for large N behaves as jopt(N )≃ 1.03 N−1/6. Remarkably, we found that
for such a choice the quantum-state-transfer quality indicators are very high and, indeed, have
a lower bound for N → ∞ that still lets quantum-information tasks be efficiently performed:
e.g. the average fidelity of state transmission is larger than 90%. Moreover, as remarked in
section 4.2, a fine-tuning of j0 (and/or N ) is not required, since even a relatively large mismatch
from the optimal value does not affect significantly the quality of transmission.

The ballistic regime ensures fast transmission on a time scale of the order of N , at variance
with the Rabi-like regime, and in the optimal case the reading time increases as N 1/3. It is also
to be noted that, if experimental settings constrain to a given value j

exp
0 , one can still optimize

the chain length in such a way that j
exp
0 = j

opt
0 (N ). The only requirement on the initial state of

the receiving qubit B and of the spin bus is to possess U (1) symmetry, a condition that can
be fulfilled by several configurations concerning the spin bus, ranging from the fully polarized
state to the highly entangled ground state. If a large magnetic field can be switched on during the
initialization procedure (in order to fully polarize the channel) and switched off as soon as the
transmission starts, then from our analytical treatment it emerges that temperature is not a major
issue as far as the dynamical evolution of the channel is concerned, although low temperatures
are obviously necessary to protect the qubits from phase and amplitude damping due to the
solid-state environment. To judge if the proposed scheme identifies a reasonable experimental
framework, let us estimate the magnitude of the involved physical quantities. Consider a solid-
state implementation with lattice spacing of about 10 Å and intrachain exchange J ≃ 102 K.
A quantum state will then be transferred with fidelity 90% along a channel of length 1 cm
(N ≃ 107) using j0 ≃ 1.03 N−1/6 J ≃ 7.0 K, with transmission time t = N h̄/(kB J )≃ 0.75µs
and reading time tR ≃ 1.9 N 1/3 h̄/(kB J )≃ 0.03 ns.
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Appendix A. Quasi-uniform tridiagonal matrices

The matrix � appearing in (10) can be written as �= −h − 1
2M, where

M(x, y)=





















x y

y 0 1
1 0 1

. . .
. . .

. . .

1 0 1
1 0 y

y x





















(A.1)
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is a square tridiagonal matrix of dimension M = N + 2, and x = 2(h0 − h) and y = j0. This real
symmetric matrix is diagonalized by an orthogonal matrix O(x, y),

M
∑

i, j=1

OkiMi jOk′j = λk δkk′, (A.2)

and it is known that (i) if y 6= 0 the eigenvalues are nondegenerate [34] and (ii) the eigenvectors
corresponding to the eigenvalues ordered in descending order are alternately symmetric and
skew symmetric [35], i.e.

Oki = ± Ok,M+1−i . (A.3)

The eigenvalues are the roots of the associated characteristic polynomial

χ
M
(λ; x, y)≡ det[λ−M(x, y)]. (A.4)

In the fully uniform case the characteristic polynomial is η
M
(λ)≡ χ

M
(λ; 0, 1) and one

easily obtains the recursion relation

η
M

= λ η
M−1 − η

M−2, (A.5)

which can be solved in terms of Chebyshev polynomials of the second kind,

η
M

=
sin(M+1)k

sin k
, (A.6)

where

λ≡ 2 cos k, (A.7)

so the eigenvalues ofM(0, 1) correspond to M discrete values of k,

k =
π n

M+1
(n = 1, . . . ,M); (A.8)

the corresponding eigenvectors are

Oki(0, 1)=
√

2
M+1 sin ki . (A.9)

The general determinant (A.4) can be expressed in terms of η
M

’s by expanding it in the first
and then in the last column,

χ
M

= (λ2−2xλ+x2) η
M−2 − 2y2(λ−x) η

M−3 + y4 η
M−4, (A.10)

and using (A.5) one can eliminate the explicit appearances of λ,

χ
M

= η
M

− 2x η
M−1 + x2 η

M−2 + (1−y2)[2 η
M−2−2x η

M−3+(1−y2) η
M−4]. (A.11)

By rewriting (A.6) as sin k η
M

= Im[ei(M+1)k] and defining

z2 ≡ 1 − y2, z2
k ≡ z2 e−2ik, xk ≡ x e−ik, (A.12)

uk ≡ 1 − xk + z2
k = e−ik{[(2−y2) cos k − x] + i y2 sin k}, (A.13)

equation (A.11) takes the form

sin k χ
M
(k)= Im{ei(M+1)k u2

k}. (A.14)
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The secular equation Im{ei(M+1)ku2
k} = 0 entails that when k corresponds to an eigenvalue

the quantity in braces is real and equal to either ±|uk|2; setting uk ≡ |uk| e−iϕk it turns into
sin[(M + 1)k − 2ϕk] = 0, with the phase shifts

ϕk = k − tan−1 y2 sin k

(2−y2) cos k − x
, (A.15)

so the M eigenvalues correspond to

kn =
π n + 2ϕkn

M+1
, (n = 1, . . . ,M). (A.16)

We are interested in the squared components of the first column of the diagonalizing matrix
Oki , which can be expressed as [34]

O
2
k1 =

ξ
M−1(λk)

∂λχM
(λk)

= −
2 sin k ξ

M−1(k)

∂kχM
(k)

, (A.17)

where k assumes the values (A.16) and ξ
M−1(λ; x, y) is the characteristic polynomial associated

with the first minor matrixM(11) that, expanded in the last column and using (A.5), reads

ξ
M−1 ≡ det[λ−M(11)(x, y)] = (λ− x) η

M−2 − y2 η
M−3

= η
M−1− x η

M−2+ (1−y2) η
M−3 . (A.18)

Then the numerator of (A.17) is

sin k ξ
M−1 = Im{eiMkuk}, (A.19)

while from (A.14) one has

sin k ∂kχM
(k)= (M+1)Re{ei(M+1)ku2

k} + 2 Im{ei(M+1)k uku′
k}

= ei(M+1)ku2
k(M+1 + 2 Im{u′

k/uk})
= ei(M+1)ku2

k(M+1 − 2ϕ′
k); (A.20)

indeed, the argument of Re is real and u′
k/uk = ∂k ln uk = ∂k|uk| − iϕ′

k . Hence, (A.17) becomes

O
2
k1 =

2

M+1−2ϕ′
k

y2 sin2k

[(2−y2) cos k − x]2 + y4 sin2k
. (A.21)

Note that for x = 0 this expression is in agreement with [3] and that the term with ϕ′
k becomes

irrelevant for large M . In the most common case x < 2 − y2, the maximum k0 of O2
k1 is located

at

k0 = cos−1 x

2−y2
, (A.22)

and the corresponding ‘eigenvalue’ is

λ0 = 2 cos k0 =
2x

2−y2
(A.23)

so that the ‘energy’ of the k0 mode increases linearly with x . Expanding O2
k1 around k0, the

leading behaviour is found to be a Lorentzian,

O
2
k1 ≃

2

M+1

y2

y4 + [(2−y2)2 − x2](k − k0)2
, (A.24)
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whose half-width at half maximum (HWHM) is given by

1≃
y2

√

(2−y2)2 − x2
. (A.25)

When x and y are small, k0 ≃ (π − x)/2 and 1≃ y2/2, so x rules the position of the peak,
while y determines its width.

Appendix B. Large-N limit of the amplitude

The transition amplitude (28) in the case of odd N = 2M − 1 reads

u(t)=
M

∑

m=−M

1(1 +1)

N+3 + 2ϕ′
qm

ei(πm−t sin qm)

12 + tan2 qm

, (B.1)

where the summation has been made symmetric through the change of variable q = π/2 − k.
The shift equation (25) turns into

π m = (N+3) qm + 2ϕqm
, (B.2)

with

ϕq = tan−1 tan q

1
− q. (B.3)

In the limit N → ∞ one can write the sum as an integral setting
∑

m

1

N+3 + 2ϕ′
qm

(· · ·) −→
∫

dq

π
(· · ·). (B.4)

As we are interested in the region of the optimal value of 1∼ N−1/3 → 0, we have

u∞(t)= lim
N→∞

1

∫ π
2

− π
2

dq

π

ei[(N+3)q+2ϕq−t sin q]

12 + tan2 q
. (B.5)

Writing the arrival time as t = N + 3 + s, where s is the arrival delay, one has then

u∞(t)= lim
t→∞

1

∫ π
2

− π
2

dq

π

ei[t (q− sin q)−sq+2ϕq ]

12 + tan2 q
. (B.6)

The relevant q’s are of the order of 1∼ N−1/3 → 0, so we change to q =1x , with x of the
order of 1; keeping the leading terms for 1→ 0,

t (q − sin q)−→
t13

6
x3, (B.7)

ϕq −→ tan−1 x, (B.8)

1 dq

12 + tan2 q
−→

dx

1 + x2
, (B.9)

and defining the rescaled counterparts of the arrival time t ≃ N and of the delay s ∼ N 1/3,

τ ≡
13

6
t, σ ≡1s; (B.10)
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the final asymptotic expression is

u∞(τ, σ )=
∫ ∞

−∞

dx

π

ei(τ x3−σ x+2 tan−1 x)

1 + x2
, (B.11)

which can also be rewritten in the form of a simple summation of phases by introducing the
variable z = tan−1 x ,

u∞(τ, σ )=
2

π

∫ π
2

0
dz cos(τ tan3 z − σ tan z + 2z). (B.12)

As in the finite-N case, one has to maximize u∞(τ, σ ) by finding the optimal values of σ and
τ . For τ = 0 it is easy to evaluate (B.11) analytically,

u∞(0, σ )= 2 e−σσ ; (B.13)

it is maximal for σ = 1, giving u(0, 1)= 2 e−1 ≃ 0.736, to be regarded as a lower bound to
the overall maximum of u∞(τ, σ ). The overall maximization has been performed numerically
using (B.12). It turns out that the maximum corresponds to σ = 1.2152 and τ = 0.024 83,
and amounts to u∞(0.024 83, 1.215 2)= 0.846 90, in agreement with the behaviour shown in
figure 6. The resulting scaling, from (B.10), tells that asymptotically

1≃ 0.530 N−1/3, s ≃ 2.29 N 1/3. (B.14)
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[3] Wójcik A, Łuczak T, Kurzyński P, Grudka A, Gdala T and Bednarska M 2005 Unmodulated spin chains as

universal quantum wires Phys. Rev. A 72 034303
[4] Apollaro T J G and Plastina F 2006 Entanglement localization by a single defect in a spin chain Phys. Rev.

A 74 062316
[5] Campos Venuti L, Giampaolo S M, Illuminati F and Zanardi P 2007 Long-distance entanglement and quantum

teleportation in X X spin chains Phys. Rev. A 76 052328
[6] Giampaolo S M and Illuminati F 2010 Long-distance entanglement in many-body atomic and optical systems

New J. Phys. 12 025019
[7] Banchi L, Apollaro T J G, Cuccoli A, Vaia R and Verrucchi P 2010 Optimal dynamics for quantum-state and

entanglement transfer through homogeneous quantum systems Phys. Rev. A 82 052321
[8] Ramanathan C, Cappellaro P, Viola L and Cory D G 2011 Dynamics of magnetization transport in a one-

dimensional spin system New J. Phys. 13 103015
[9] Zwick A and Osenda O 2011 Quantum state transfer in a X X chain with impurities J. Phys. A: Math. Theor.

44 105302
[10] Christandl M, Datta N, Dorlas T C, Ekert A, Kay A and Landahl A J 2005 Perfect transfer of arbitrary states

in quantum spin networks Phys. Rev. A 71 032312
[11] Karbach P and Stolze J 2005 Spin chains as perfect quantum state mirrors Phys. Rev. A 72 030301
[12] Di Franco C, Paternostro M and Kim M S 2008 Perfect state transfer on a spin chain without state initialization

Phys. Rev. Lett. 101 230502
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[32] Markiewicz M and Wieśniak M 2009 Perfect state transfer without state initialization and remote

collaboration Phys. Rev. A 79 054304
[33] Bayat A and Bose S 2010 Information-transferring ability of the different phases of a finite X X Z spin chain

Phys. Rev. A 81 012304
[34] Parlett B N 1998 The Symmetric Eigenvalue Problem (Philadelphia, PA: SIAM)
[35] Cantoni A and Butler P 1976 Eigenvalues and eigenvectors of symmetric centrosymmetric matrices Linear

Algebra Appl. 13 275

New Journal of Physics 13 (2011) 123006 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevA.82.022332
http://dx.doi.org/10.1103/PhysRevA.79.042330
http://dx.doi.org/10.1103/PhysRevA.82.042322
http://dx.doi.org/10.1103/PhysRevA.69.052315
http://arxiv.org/abs/1102.2427
http://dx.doi.org/10.1103/PhysRevA.71.032310
http://dx.doi.org/10.1103/PhysRevA.78.022325
http://dx.doi.org/10.1103/PhysRevLett.106.040505
http://dx.doi.org/10.1103/PhysRevLett.106.140501
http://dx.doi.org/10.1103/PhysRevA.76.042316
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1016/S0375-9601(02)01272-0
http://dx.doi.org/10.1103/PhysRevA.60.1888
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1103/PhysRevB.75.014439
http://dx.doi.org/10.1103/PhysRevA.83.062328
http://dx.doi.org/10.1103/PhysRevA.79.054304
http://dx.doi.org/10.1103/PhysRevA.81.012304
http://dx.doi.org/10.1016/0024-3795(76)90101-4
http://www.njp.org/

