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Abstract

We present a class of models where both the primordial inflation
and the late times de Sitter phase are driven by simple phenomeno-
logical agegraphic potentials. In this context, a possible new scenario
for a smooth exit from inflation to the radiation era is discussed by
resorting the kination (stiff) era but without the inefficient radiation
production mechanism of these models. This is done by considering
rapidly decreasing expressions for V (t) soon after inflation. We show
that the parameters of our models can reproduce the scalar spectral
parameter ns predicted by Planck data in particular for models with
concave potentials. Finally, according to the recent BICEP2 data, all
our models allow a huge amount of primordial gravitational waves.

PACS. 98.80.-k, 98.80.Cq, 98.80.Es, 98.80.Jk

1 Introduction

Many experimental observations during the past decade (see [1, 2, 3]) are
in agreement with the hypothesis of a present day accelerating universe.
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In the standard ΛCDM cosmological model, an accelerating universe sce-
nario invokes the presence of the so-called dark energy expressed in terms
of a cosmological constant Λ representing about 70% of the present universe
matter-energy. However, the physical origin of this constant is still ob-
scure. Moreover, the physical mechanism leading to a small Λ that begins
to dominate only recently still remains mysterious. In view of the fact that a
cosmological constant is the most simple solution of the Klein-Gordon equa-
tion for a scalar field φ, it seemed reasonable to consider a time-varying field,
named quintessence field, to describe a running cosmological constant driven
by some potential V (φ) (see for example [4, 5, 6, 7]). This quintessence field
produces a late times cosmological constant by means of a mechanism very
closed to the one leading to primordial inflation. i.e. a slowly rolling scalar
field (see for example [8, 9, 10]). These models admit a tracker solution
which partially alleviates the coincidence problem. An unsolved problem in
these models is fine-tuning, i.e the fact that the energy density for Λ is so
small compared to typical particle physics scales. Moreover, it is unclear
how to obtain a smooth transition, after the inflationary epoch, to the radi-
ation era, since the typical density of quintessence field is at least two orders
smaller than the background density. Only in recent times the quintessence
field should begin to dominate and thus mimic a cosmological constant. As a
result, what is practically absent in the literature of modern cosmology is an
unified view in which a smooth transition from the inflationary epoch to the
radiation era up to dark energy era is obtained. An interesting alternative
proposal to alleviate this lack is to link primordial inflation to dark energy.
Initially [11, 12, 13], this has been considered in the context of anthropic se-
lection effects. More recently, in [14] it was shown that primordial quantum
fluctuations of an almost massless scalar field during the primordial inflation
could explain the present quasi-de Sitter phase. Another interesting paper
along this line is [15]. Here, the actual accelerating phase is obtained from
primordial inflation by using the renormalization group equation to obtain
the rate of change of the density of the vacuum energy as dictated by the
usual approach of quantum field theory in curved spacetimes. The model
also predicts a transition to the radiation era. However, a description in
terms of an effective action together with the dynamics of φ is still missing.
In this paper, we follow this interesting line of research, but use a different
approach. In particular, we attempt to obtain a unified description of the
whole history of the universe starting from the inflationary epoch by means
of phenomenological potentials, but initially expressed in term of the cosmic
time t. In particular, we are interested in possible alternative mechanisms
allowing a graceful exit from inflation together with a transition to the radi-
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ation era. This paper is organized as follows. In section 2 we write down the
relevant equations together with a presentation of our approach. In section
3 we study a particular model leading to the inflationary epoch. In section 4
we analyze the problem of a smooth exit from the inflation, while in section
5 we study the universal tracker de Sitter solution of our models. In section
6 we study the dynamics of our model. In section 7 we analyze our models
in light of Planck data and present a study for a more general class of po-
tentials allowing concave potentials. In section 8 we study the possibility to
introduce a running cosmological constant. Finally, section 9 is devoted to
some conclusions.

2 Preliminaries

To start with, we consider the line element appropriate for a Friedmann
cosmology with constant spatial curvature k:

ds2 = −c2dt2 + a2(t)
dr2

(1− kr2)
+ a2(t)dΩ2. (1)

The relevant Einstein’s field equations representing a cosmological perfect
fluid with pressure p(t) and energy density ρ(t) together with an homoge-
neous and isotropic scalar field φ with pressure pφ and energy density ρφ
and with a potential V (φ) are:

a2,t
a2

+ k
c2

a2
=

8

3
πG (ρ+ ρφ) , (2)

a,t,t
a

= −4πG

3c2
[

c2ρ+ 3p+ c2ρφ + 3pφ
]

, (3)

φ,t,t
c2

+ 3H
φ,t
c2

+
dV

dφ
= 0, (4)

ρφ =
φ2,t
2c4

+
V (φ)

c2
, pφ =

φ2,t
2c2

− V (φ). (5)

In the usual approach to describe inflation one introduces a simple expression
for V (φ). The most popular expression driving an inflationary primordial
era is V (φ) ∼ 1

2m
2φ2, though such potential is practically ruled out by the

recent Planck data [16]. However, the very recent BICEP2 data [17] are in
tension with Planck one concerning the value of the index r measuring the
primordial B-mode polarization(see section 6).
In any case, irrespective of the potential used, the mechanism driving the
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exit from inflation up to the formation of usual matter is not yet well es-
tablished. To this purpose, we take a different point of view by introducing
’phenomenological’ potentials in terms of the cosmic time t, i.e. agegraphic
potentials. Also in [18] the authors consider particular expressions for V (t)
arising from a variational equation for the potential φ(t) leading to a par-
ticular form for a(t). In particular, the expressions for V (t) in [18] allowing
a transition to the usual Friedmann regime are the ones with V (t) ∼ 1/t2.
However, the transition occurs when t → ∞, so it is not clear as to obtain
a rapid transition in order to be in agreement with nucleosynthesis. As a
result, we need of an expression for V (t) quickly decaying after inflation.
Moreover, the potential V (t) in order to satisfy Planck constraints must be
nearly flat during inflation. The aim of this paper is to explore explicit
expressions for V (t) that are in agreement with Planck and BICEP2 data
allowing a graceful exit from inflation to the radiation era without invoking
the usual reheating mechanism with an oscillating scalar field and avoiding
the inefficient particle creation due to the gravitational field. Our approach
does not belong to the mainstream of the cosmological models, where a
physically motivated potential V (φ) is introducted. However, we point out
that by considering the potential V (t) in terms of the cosmic time permit us
to follow directly the chronology of the universe. Often in the literature the
transition to the radiation dominated era is obtained asymptotically and
it is not clear how to obtain a transition to the radiation era just before
nucleosynthesis. Moreover, the recent Bicep2 experiment indicates that the
inflation with a single scalar field is again well posed but also that, thanks
to the high running spectral index, the inflation can be well depicted by
an effective expression of V (t(φ)) that is not fixed in terms of φ. As an
example, at the beginning of the inflation, we can have an effective po-
tential V (φ) ∼ φ, i.e. the starting of the inflation is related to the axion
monodromy potential, but after the de Sitter inflationary expansion we can
have V (φ) ∼ φ4. Once a suitable expression for V (t) is obtained, we can
reconstruct the usual expression V (φ) in the diferent cosmological epochs.
As we will show in this paper, a rapidly decreasing potential V (t) allows a
negligible fraction of radiation present soon after the inflation to dominate
the universe. For this purpose, we are interested in expressions for V (t) that
are quickly decreasing soon after inflation. We set the potentials

V (t) = kφ + Iφe
−

(t+kT )n

Tn , n ≥ 1 (6)

where kφ, Iφ, T, k are constant parameters with n a positive integer and k ≥ 0
of the order of unity or less. The form of the potential is not at all arbitrary:
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it must be chosen so that Planck constraints are satisfied, is nearly flat during
the primordial inflationary era and with a fast dacaying after inflation. The
constant kφ will be the future cosmological constant. Moreover, since we
start with the inflationary epoch, we neglect the curvature term. Obviously,
the idea to add a negligible constant or a quintessence potential to the
inflationary potential is not the novelty of this approach (see for example
[19] or [20]). In practice, the dark energy can be see as a small term kφ in
the classical potential V (t(φ)) generated by the primordial field survived up
to dark matter era.
Concerning quantum fluctuations, as shown in [14], a quantum fluctuation
can be frozen by the Hubble damping after inflation and thus produce a
quintessence field. In [20] a small constant relic of primordial inflation is also
considered. Moreover, in [15], by using renormalization group techniques, a
negligible constant correction to the vacuum energy during inflation becomes
the actual cosmological constant. This shows that the idea that a small relic
of early inflation becomes the actual cosmological constant is supported in
the literature.

At this point, it is essential to stress that, in order to obtain physically
reasonable models, we must look for monotonically decreasing expressions
for φ in terms of t. In this way, we have a well defined expression for V
in terms of φ, i.e. V (φ) = V (t(φ)). As a result, we can always regain the
usual expression V (φ) which is important for a physical comprension of the
inflationary mechanism.
In the next sections, we motivate the choice (6) together with a more general
class of potentials discussed in section 6.

3 Inflationary era

To start with, we firstly consider a particular simple class of (6) allowing
simple computations:

V (t) = kφ + Iφe
− t

T , Iφ >> kφ. (7)

Inflation is expected to begin at early times ti with ti ∼ 10−36 s (in our
setting t = 0) and end to te with te ∼ (10−33, 10−32) s. We set to t = 0 the
starting of primordial inflationary era. Moreover, we take V,φ = V,t(φ,t)

−1,
that is certainly true for φ monotonically decreasing. In this phase, the field
equations are totally dominated by the scalar potential V (t(φ)).
To obtain the primordial inflationary epoch, the following usual conditions
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must hold:

|φ,t,t|
c2

<<

{

3H(t)
|φ,t|
c2

, |V,t||(φ,t)−1|
}

,
φ2,t
2c2

<< V (t). (8)

The parameter T is expected to be of the order of the end of the inflationary
epoch te or greater. Hence, the following condition holds during the quasi-de
Sitter inflationary phase:

t

T
< 1. (9)

Obviously, the approximation of this section will be more and more efficient
provided that t << T . In this case we have with good approximation a quasi
de Sitter phase. Although in this section we perform the calculation with
the potential (7), similar computations hold for the more general potentials
(6).
As a title of example, by setting t/T ∼ 1/10 and T ∼ 10te during inflation,
the end of the de Sitter inflationary epoch occurs when the potential is not
more strictly constant and its variation is greater than 10%.
Under these assumptions, equation (4) for the potential (7) becomes:

φ2,t =
c3Iφe

− t
T

T
√

24πGV (t)
. (10)

In (10) we have two possible roots. For physical purposes, we choose the
one that is monotonically decreasing (φ,t < 0) expression for φ. Hence, we
have a well defined expression for V in terms of φ, i.e. V (φ) = V (t(φ)). By
means of the condition (9), after a Taylor expansion of (10) we obtain:

φ = φ0 −At+Bt2 + o(t2/T 2), (11)

A =

√
26

3
4 c

3
2
√

Iφ

12
√

T
√

πG(kφ + Iφ)
, (12)

B =

√
6(Iφ + 2kφ)

√√
24
√

Iφc
3
2

96T (kφ + Iφ)
√

T
√

πG(kφ + Iφ)
, (13)

where φ0 is the initial value for φ. It is easy to see that inequalities (8) are
satisfied for:

T >> TI ≃
c

10
√

πG(kφ + Iφ)
. (14)
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Inequality (14) will be studied in the next section. In this way, our particular
model can reproduce inflation with an Hubble flow HI given by:

HI ≃
1

c

√

8

3
πG(kφ + Iφ). (15)

As a consequence, inequality (14) becomes:

T >> TI ≃
√
8

10
√
3HI

. (16)

Finally, by denoting with N the e-folds number, we obtain the approximate
formula:

te ≥
N

HI
. (17)

For the reasoning above, te denotes the end of the phase where HI is practi-
cally constant. However, the accelerated expansion lasts for a few small time
after te. Hence, to solve the flatness problem, N in (17) can be less than 60.
It should be noticed that all the physical conditions above are independent
of the initial value of φ, i.e φ0. This is interesting since fine-tuning for φ0
is avoided. Since in our approach we use a kind of inverse method, to a
better understanding of the inflationary mechanism, we need to reconstruct
the potential in the usual field theory form, i.e. V (φ). In the case under
consideration, and also for the generalizations of section 6, what is relevant
during inflation is the behaviour (11) up to the first term with respect to t,
i.e. φ = φ0 − At + o(1). The term ∼ t2/T 2 is relevant for the calculation
of the spectral index ηV (see section 6). After solving with respect to the
cosmic time we obtain, during the initial (de Sitter) inflationary epoch, the
following Taylor expansion:

V (φ) = V0 +
Iφ
TA

(φ− φ0) + o(φ− φ0), V0 = kφ + Iφ. (18)

The effective part of the reconstructed potential, at the beginning of the in-
flation (t ≃ 0), the potential V (t(φ)) is linear with respect to φ with excellent
approximation. The leading term in (18) recalls the one of axion monodromy
potentials but with higher order corrections. These corrections become more
and more relevant when approaching the end of the inflation. In this way
we have a time varying expression for V in terms of φ, while in the usual
approach this behaviour is fixed. Moreover, as shown in this section, the
initial value φ0 is irrelevant for the inflationary mechanism to work. Hence
we could set φ0 = 0. Otherwise, we can choose φ0 = (ATV0)/Iφ ∼ AT and
thus we regain the usual expression for the potential in axion monodromy
models for chaotic inflation at t ≃ 0.
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4 From inflation up to recombination

Also in this section and in section 5 we use for practical computations the
simple potential (7), but the conclusions also apply to the more general
one (6). First of all, kφ must be identified with the actual cosmological
constant, i.e. kφ = Λc4/(8πG). Concerning the ratio between the infla-
tionary cosmological constant ΛI ∼ Iφ and the value of Λ , we are unable
to reliably calculate the expected vacuum energy. In practice, only the-
oretical estimates of various contributions to the vacuum energy density
in quantum field theory are at our disposal. From these estimations we
have that ΛI/Λ ∼ (1040, 10120). Since H2

I ∼ Iφ and H2
0 ≃ kφ ∼ Λ, we

have ΛI/Λ = Iφ/kφ ∼ (1040, 10120) and HI/H0 ∼ (1020, 1060). Moreover,
conditions (15) and (16) imply that T >> tP , being tP the Planck time.
Hence, for the ratio Iφ/kφ the range Iφ/kφ ≥∼ 10100 seems most viable
since a smaller value would imply a rather unrealistic value for T . In fact,
it is expected that the scalar field φ drives the inflationary epoch at early
times and not when radiation forms, before nucleosynthesis. In the range
Iφ/kφ ≥∼ 10100, also a small time of the order of T ∼ 10−32s, 10−31s works.
In practice, T can be chosen of the order of (1, 102)te. With these esti-
mates, as an example, for t >∼ 10−28s we have that V (t) = kφ(1 + o(1)).
This means that the potential (7) (and (6) obviously), after the time t ∼ te
rapidly converges to the value kφ. However, this does not imply that φ
becomes rapidly constant, i.e our models converge rapidly to the standard
cosmological constant scenario. This happens if and only if during inflation,
in addiction to the conditions (8), we have φ2,t ∼ c2kφ. But this situation is
not interesting since we have not a way to obtain a smooth transition from
inflationary era to the usual matter era in a natural simple way. The oppo-
site condition during inflation (i.e. φ2,t >> c2kφ, but << c2V (t)), is obtained
for T << (1050, 1060)t0, with t0 the actual age of the universe. Obviously
this condition is satisfied in our case. Hence, we have a scenario such that
also after the inflation φ is monotonically decreasing, but much less rapidly
with respect to V (t(φ)). As a result, after a very short transition epoch
(t ∼ 10−28s by using T ∼ 10−31s) the relevant equation for φ becomes:

φ,t [φ,t,t + 3Hφ,t] = 0 + o(1). (19)

Hence, shortly after the inflation, it is justified to consider the following
expansion for φ: φ = φ0(1 + o(1)), where φo is solution of the homogeneous
part of equation (19) and the terms o(1) ∼ Iφ/Te

−t/T (for the potential (7))
and are exponentially small. By setting φ2,t = ψ, the equation (19), after the
inflation and before that the term kφ begins to dominates with respect to
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the kinetic one φ2,t in H(t) (i.e. at the late times de Sitter phase), becomes:

1

2
ψ,t +

ψ
3
2

c2

√
12πG = 0. (20)

Note that during inflation, when V dominated on the term φ,t, equation
(19) is homogeneus with respect to ψ(t) with the second member given by
Iφ/Te

−t/T by using (7). Hence, the field φ started to receive contributions
from the homogeneous part plus the particular solution of the non homo-
geneous one. These inhomogeneous contributions must be zero as T → 0.
This fact also motivates the reasonings leading to equation (20), soon after
inflation.
The solution for (20) look as follows: φ = B−c2/(

√
12πG) ln[(t/c2)

√
12πG−

C], where B,C are integration constants. For our purposes and without loss
of generality we can set C = 0 (this can be done for example by a simple con-
stant shift in the time.). Hence we have that the density of the scalar field ρφ
at the stiff era is ρφ = 1/(24πGt2), i.e. it scales as ordinary matter in a power

low dominated cosmology with a(t) ∼ t
1
3 . Note that with this solution, the

conditions φ2,t >> c2{2kφ, V (t(φ))} and Hφ2,t >> c2|V,t|, |φ,tφ,t,t| >> c2|V,t|
are satisfied at early epochs after inflation up to dark matter era and garan-
tee the correctness of the approximation leading to equation (20).
Thanks to the condition chosen, this solution is equivalent to ordinary mat-
ter with a stiff equation of state, i.e. pφ = c2ρφ and with the typical be-
haviour {ρφ, pφ} ∼ 1/t2 of ordinary hot big bang cosmology. Note that the
equation of state pφ = c2γφρφ for the scalar field, just before the stiff dom-
inated era (leading to the approximate equation (20)) and after the pure
inflationary epoch (γφ ≃ −1), runs very quickly from the value γφ ≃ −1
soon after the inflation up to the stiff value γφ ≃ 1. This implies that in a
very short time, the factor γφ assumed all the values between [−1, 1] and as
a result ordinary matter and radiation has been created during this short
transition phase. Hence, a possible scenario is that a fraction of radiation
created soon after inflation (t ∈ (T, 103T )), or just present during inflation
but negligible with respect to ρφ, was in thermal equilibrium when a quasi-
stable stiff era (ρφ∼1/t2) is reached.
In particular, during this post inflationary epoch, we can have the decoupling
φ → φ1 + χ, where χ is a light field such that |φ1| >> |χ| and φ2,t >> χ2

,t.
Another viable possibility is that a negligible amount of radiation, depicted
by χ, has been present soon after primordial inflation together with the in-
flationary potential φ.
In [21] has been shown that light scalar fields can drive the last stage of
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inflation by means of dominant quantum fluctuations proportional to some
positive power of φ0 and eventually create a new inflationary phase. Fortu-
nately, these arguments are not applicable in our context for several reasons.
First of all, in our scenario the light field χ comes into action when the equa-
tion of state for ρφ, pφ is not inflationary, i.e. γφ ≥ −1/3. Moreover, the
initial value φ0 is inessential to begin inflation and thus can be set to zero
in our framework.
As a result, after the ’stiff’ era, we may have a universe composed of two
perfect fluids: an ordinary one that follows the standard hot big bang cos-
mology (χ) and a scalar field component (φ1) with a stiff equation of state
decaying more rapidly with respect to ordinary matter up to dominate the
universe a late epoch with a de Sitter inflationary epoch.
After this ’decoupling’, the ordinary matter decays as ∼ 1/t2, while ρ1 and
p1 decay following equation (19), but now with H(t) ∼ α/t.
Note that reheating scenarios without oscillations of φ can be traced back to
(for example) the papers [22, 23, 24]. In particular, the mechanism to create
matter with a non oscillating field, whose kinetic part is much greater than
the potential V (φ), has been named ’kination’ in [24]. In this picture, the
conventional reheating mechanism is substituted by quantum field effects
in curved spacetimes similar to the Hawking radiation formation, provided
that a huge cosmological expansion H(t) arises. A criticism to this approach
can be found in [25], where a non oscillating scalar field φ can suffer for a
lack of efficient mechanisms to describe the reheating phase after the in-
flation, exception made for the preheating scenarios, although for sufficient
huge values for H(t) this mechanism could be efficient too (see [24]).
However, the mechanism described above concerning our models can be
eventually added to the ’curvaton’ mechanism during kination. In our ap-
proach, the parameter T permit us to fix the time transition to the stiff
era. Hence, in the scenario we have proposed, a fraction of radiation (to-
gether with other kinds of particles) created during the transition to the stiff
era (φ21,t ∼ c2V (t(φ1))) or just present during inflation, can be thermalized
during the stiff era well before nucleosynthesis. After this decoupling, the
density ρ1 looks as ρ1 ∼ a−6(t), while the radiation after the decoupling of
φ follows the usual big bang scenario. To be more quantitative, consider the
time evolution of the ordinary radiation energy ρr during the stiff era:

ρr,t + 3Hρr(1 + γr) = 0, γr =
1

3
, H =

1

3t
. (21)

As a result, by denoting with ρir the initial fraction of the radiation (created
just before the stiff era) at the beginning of the stiff era t = ti we have for
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(21) the solution ρr = ρir(ti/t)
4/3. For ρφ during the stiff era we have (see

reasonings below equation (20)) ρφ = 1/(24πGt2). Hence, for the ratio ρφ/ρr
we obtain

ρφ
ρr

=
ρiφ
ρir

(

ti
t

)
2
3

. (22)

Equation (22) shows that by setting ρiφ >> ρir, after a short time well
before nucleosynthesis, the radiation becomes dominant with respect to stiff
matter. As an example, by setting ti = 10−27s and ρiφ ∼ 103ρir, at the time
t ∼ 103ti, radiation becomes the ∼ 10% of the whole matter content of the
universe. Moreover, for ρiφ ∼ 105ρir at t ∼ 106ti (∼ 10−21s), we have again
that radiation becomes the ∼ 10% of the stiff matter. As a consequence, a
negligible fraction of radiation created soon before the stiff era (or present
during inflation) can dominates the universe by a very short time. Hence,
stiff era quickly ends and radiation era with H = 1/2t starts well before
nucleosynthesis. Also note that a fraction of baryonic matter can survive at
the stiff era with the same mechanism depicted above. These simple com-
putations show that the depicted mechanism allowing a smooth exit from
inflation can be physically viable with the potentials (6). At the recombi-
nation up to low redshifts of the order of some units, we have, from (19),
ρ1 ∼ k2/t4, with k an integration constant. By equation (2), we obtain the
leading correction to the behaviour of H, i.e. H(t) = α/t+β/t3+o(1), β > 0
both for (7) (6). For the scale factor a(t) we obtain, after integrating (2),

a(t) ∼ t
2
3 e−

β

2t2 +o(1). These corrections are small ensuring certainly a small
deviation from the standard ΛCDM scenario at least from recombination
epoch. Hence we expect agreement with the usual constraints (Supernovae
Type Ia, CMB..). After recombination φ21,t/c

2 becomes so small to be com-
parable with kφ, and as a consequence the cosmological constant born at
primordial inflation begins to dominate. It should be noted that, thanks to
these corrections, after recombination our models are not coincident with
the concordance one. More consistent deviations can be obtained by consid-
ering a time variable term instead of kφ in (7). We stress that the scenario
discussed above is only a possibility. More precise quantum calculations are
essential to take this hypothetical scenario as sound. In any case, We believe
that the interesting physical fact is the existence of early times, shortly after
inflation, such that {ρφ, pφ} ∼ 1/t2 allowing a creation in a short period of
radiation and baryonic matter, since this can allow a possible smooth tran-
sition to the usual hot big bang scenario. The important mathematical fact
is that for a quickly decaying potential the equation for φ becomes homo-
geneous, and as a result soon after inflation φ has a power law expression.
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Another realistic possibility is that a certain amount of radiation can be
created soon before inflation due to black hole evaporation (see for example
[26]) and dominate the universe after inflation with the mechanism depicted
above.

5 Late times de Sitter era

The important condition that must be satisfied in order to have a late time
tracker de Sitter era is:

V,t = o(φ,t), for t→ ∞. (23)

Under this condition, the leading terms at t→ ∞ for equation (4) by using
(7) is:

φ,t,t +
1

c

√

24πGkφ φ,t = 0, (24)

with solution
φ = B1 +B2e

− 1
c

√
24πGkφt, (25)

with B1, B2 two arbitrary constants. Condition (23) is fulfilled for

T <
1

c
√
3Λ
. (26)

From equation (16) we see that (26) is fulfilled if and only if c
√
Λ << HI .

Hence, thanks to the previous section estimates and to the present day very
small value of the cosmological constant, condition (26) is obviously verified
and a de Sitter inflationary phase emerges independently on the physical
parameters of the model. This means that a late times de Sitter phase is a
tracker solution for our model. Finally, note that also at the present time t0
the term kφ in the potential (6) can dominate on the kinetic one, provided
that the rather reasonable assumption on B2 > 0 is imposed:

B2 <<
c2e(c/2

√
3Λ t0)

√
12πG

. (27)

In fact, we look for a monotonically decreasing φ, and certainly condition
(27) can be satisfied for t << t0 after recombination. Only when the dust
density of the universe ρd is of the order of ρd ∼ kφ/c

2, the universe starts
to accelerate.
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6 Reconstruction of the potential and dynamics of

the scalar field

For sake of simplicity in this section we study the features of our potential
(7), but similar arguments follow for the one (6). To start with, thanks to
(2) and (4) and after setting φ2,t/c

2 = K(t) we have:

K,t

2
+K

√

24πG

(

ρm +
K

2c2
+
V

c2

)

=
Iφ
T
e−

t
T , (28)

where ρm denotes the usual matter-energy content of the universe. For the
reasonings of the section 4, we may suppose that this quantity is completely
negligible up to the kination era. Starting from the kination epoch, also a
small fraction of radiation can quickly dominate the matter-energy content
of the universe. Hence, during inflation up to kination we can set ρm = 0.
During the primordial inflation, with the slow roll approximation we have
the expansions (11) and (18). Note that in this approximation, the equation
(28) can be integrated. The resultant solution is rather cumbersome, but the
main properties of the primordial de Sitter era are depicted by the following
effective expression for the potential V (φ):

V (φ) = kφ + Iφ +
Iφ
AT

(φ− φ0) + Iφ

[

B

TA3
+

1

2A2T 2

]

(φ− φ0)
2 + o(1). (29)

As pointed in section 3, at the starting of the early inflationary epoch, the
effective potential (29) is practically linear in the field φ. During this fase,
the kinetic term K(t) is monotonically decreasing (see the expansion (11)
and below) and K(t) << V (t),K(t) >> kφ. At the end of inflation, when
φ2,t/c

2 ∼ V (t), the behaviour of V (φ) becomes more complicated with respect
to the behaviour (29), but K is again monotonically decreasing with V (t)
dropping rapidly to the value kφ. It is important to note that also at the
kination era, i.e. when φ2,t/c

2 >> V (t), equation (28) implies that K,t < 0.
Since the right hand side of (28) is certainly negligible from the kination era,
this implies that from inflation up to late times the kinetic term is always
monotonically decreasing.
At the kination era (K >> V, ρm << K/c2, t ≥ tik), equation (28) can be
integrated and the potential can be put in the form:

V (φ) = kφ + Iφe
−

tik
T

Q(φ), Q(φ) = e−
√

12πG

c2
(φ−φik). (30)

Note that to obtain expression (30), for sake of simplicity, an integration
constant, namely Kik has been used to have K ∼ 1/t2 during kination era.
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Also note that the potential (30) is rapidly converging to kφ. In fact φ−φik ≤
0 and tipically (see the reasonings at section 4) tik/T ≥∼ 1000. Hence soon
after the begin of the kination era, the small radiation present in ρr begins
to dominate on K and radiation era begins well before nucleosynthesis. For
completeness, we can give the expression fo t(φ) during the radiation era:

V (φ) = kφ + Iφe
−

t(φ)
T , t(φ) =

1
[

φ−φir

2c
√
Kirt

3
2
ir

+ 1

t
1
2
ir

]2 . (31)

Starting from the radiation era and up to decoupling, the potential V plays
no role in the universe dynamics, that is well depicted by the usual hot big
bang scenario. However, a non vanishing K is always present leading to
corrections of the usual scenario that could be detectable. Also in this case
we give the expression for t(φ) during the dark matter era, after decoupling:

V (φ) = kφ + Iφe
−

t(φ)
T , t(φ) =

1
φ−φim

c
√
Kimt2im

+ 1
tim

. (32)

This situation changes when K/c2 ∼ ρm < kφ/c
2 ≃ V (φ)/c2. There, a

new inflation arises leading to the current acceleration of the universe. The
potential during the late times inflationary epoch is given by (see section 5):

V (φ) = kφ+Iφ

(

φ− φ∞
B2

)
c

T
√

24πGkφ , φ−φ∞ > 0, B2 > 0, (φ−φ∞)/B2 < 1.

(33)
The term depending on φ in (33) is completely negligible with respect to kφ.
In this way, we have reconstructed the expression for V (φ) at the cosmo-
logical era: during inflation (formula (29)), during kination (formula (30),
during radiation era (formula (31)), during dark matter era (formula (32))
and finally at the late times de Sitter era (formula (33)).
Note that, similarly to the potential proposed in [19], we can also obtain an
approximate (but qualitatively equivalent to the one with V expressed as a
time function) description of our model with V given in terms of φ. To this
purpose, we must match the expressions (29)-(33) by imposing the continu-
ity of V together with the first derivative of V (φ), i.e. V,φ(φ) at the various
cosmological era. This is done in the appendix where, to obtain a better
reconstruction, a transition zone between the end of primordial inflation and
the begin of kination is introduced. Summarizing, the important ingredients
are: the monotonically decreasing behaviour for K(t); the rapidly converg-
ing behaviour for V (t) to kφ soon after inflation; the fact that K(t) decreases
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after inflation much less quickly with respect to V (t).
Equations (11)-(13) show that during inflation up to t ≤ T , K is mono-
tonically decreasing, but the ratio V/K remains practically constant during
thid time. For t > T , the potential V (t) rapidly converges to kφ and then
the second member of (28) becomes rapidly converging to 0 and then K
contuinues to be monotonically decreasing for all times. As a numerical
example, consider T = 10−33s and a huge inflation near the Planck scale
with Iφ ∼ 10107Kg/(ms2). During the inflation up to t ∼ T , we have that
V ≃ Iφ. After a time t ≃ 3.22 102T , we have that V (t) becomes of the
order of unity (1Kg/ms2). After a time t ≃ 3.32 102T , we have practically
V (t) ≃ kφ. Hence, after a very short time after T , the behaviour of K
is completely detrminated by the left hand side of (28), while the role of
V ≃ kφ on the dynamics of the universe is completely negligible. Hence,
K assumes a power law behaviour (see the discussion after equation (20)).
Only after recombination (see section 5), when K < kφ a new inflationary
era emerges. To appreciate this rapid variation of the dynamic soon after
t = T , consider equation (28) with K = q(t)V . Typically, at the begin of
the inflation we have that q0 ∈ [10−10, 10−3], it depending on the value of
Iφ. Since K is chosen monotonically decreasing, from (28) we have

q

√

1 +
q

2
> q0F (t), F (t) =

Iφe
− t

T

V (t)

√

kφ + Iφ
V (t)

. (34)

Note that during the inflationary epoch up to t ≃ T , the function q(t) is
practically constant and also F (t) is, with F (t) ≃ 1 with obviously q << 1.
The situation quickly changes for t > T . As a numerical example, consider
again T = 10−33s. Up to t ≤ T , F (t) is of the order of the unity (F (t) ≃ 1.7
for t = T ). But for t = 10T we have F (t) ≃ 148, while for t = 102T we
found F (t) ∼ e50. As a consequence, in a very short time after t = T ,
q(t) enormously increases from values q << 1 up to very huge values and
at t = 102T the kinetic term K becomes at least ∼ q0e

100/3 times greater
than V and kination begins. These examples are sufficient to illustrate the
fate of K in the rapid transition from inflation to kination era. As shown
in the discussion after equation (22), a negligible fraction of radiation at
the kination era quickly leads to a radiation era well before nucleosynthesis
(as well known radiation expands much more rapidly with respect to stiff
matter). From the reasonings above it is evident that the delicate point is the
transition from inflation to kination. To this purpose, we have numerically
integrated equation (28) from inflation up to kination. In fig. 1 we have
considered the cases with T = 10−33s, T = 10−32s and Iφ/kφ = 10117,
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Iφ/kφ = 10104. The time is expressed in Planck units. From fig. 1 we see
that in both cases when t ≃ 10T we have K = V . After this time, the
potential V very quickly converges to kφ and K >> V and as a consequence
kination era begins soon after t ≃ 10T . At the kination V ≃ kφ and the
reasonings above take place. The integration confirms the essential fact that
K (and φ) are monotonically decreasing for all times since starting from the
kination era the right hand side of equation (28) is completely negligible. In
fig. 2 we have plotted the ration V/K.
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Figure 1: In figure the behaviour of logV (t) and logK(t) vs. log(t/sec) (t is
the time). The figure shows plots corresponding to the following choices of
parameters: (α = 10104; T = 10−32 sec) and (α = 10117; T = 10−33 sec). It
also shows the corresponding times log(t1/sec) = −30.89 and log(t2/sec) =
−31.42 for which V (t) = K(t) for both the choices of parameters.

7 Planck and BICEP2 data

The recent Planck results [16] posed serious constraints to the inflationary
scenario, ruling out popular models (V ∼ φp, p ≥ 2). The particular model
given by (7) predicts a small positive value for the slow-roll parameter ηV ≃
3/(4THI), while Planck data favor potentials with V,φ,φ < 0. Nevertheless,
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Figure 2: log(V (t)/K(t) vs. log(t/sec) (t is the time). The figure shows two
plots of log(V (t)/K(t)) corresponding to the following choices of parameters:
(α = 10104; T = 10−32 sec) and (α = 10117; T = 10−33 sec). It also
shows the plot y = 0 and the corresponding times log(t1/sec) = −30.89 and
log(t2/sec) = −31.42 for which log(V (t)/K(t)) = 0 for both the choices of
parameters.

our particular model can be tested against Planck constraints for running
spectral index ns. For the scalar spectrum parameter ns and the tensor
spectral index r during the beginning of the inflation we obtain:

ns ≃ 1− 3

2THI
, ǫV ≃ 1

2THI
, r ≃ 16ǫV . (35)

The Planck constraint, i.e. ns ∈ [0.955, 0.967], can be satisfied in the running
case, where r < 0.26 (otherwise r < 0.11), but with a value for ns ∼ 0.97.
By setting T ≃ 10−32s, Iφ/kφ ∼ 10102 we have r ≃ 0.16. More precisely, we
have to set 1/(THI) ≃ 0.02. The same result can be obtained by setting T ∼
10−33s and Iφ/kφ ∼ 10104. Moreover, all the conditions raised in the paper
are satisfied since T/TI ≃ 320 (see (16)) and with te ∈∼ (10−34, 10−32)s.
The particular model (7) predicts a huge amount of gravitational waves.
This is at odd for Planck, but is good for BICEP2. The BICEP2 result [17]
strongly suggest a running scalar spectrum index ns with r in the range r ∈
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[0.15, 0.27] with the central value r = 0.2. Note that, by setting 1/(THI) =
0.025, we obtain r = 0.2 and ns = 0.9625, in perfect agreement with the
value of Planck esperiment. If Bicep2 data where confirmed, then our simple
model is able to allow a correct amount of scalar to tensor perturbations
together with the central value for ns predicted by Planck.

To obtain a negative value for ηV together with a smaller amount of
gravitational waves within Planck data, we must consider the potential (6)
with a suitable k > 0 and n > 1. As a title of example, we consider
explicitally the case with n = 3. During the de Sitter inflationary phase, for
t << T , we can thus neglect kφ with respect to Iφ. We have:

φ,t ≃ − k
√
2

4e
k3

4

c
3
2

√ √
24 Iφ

T
√

πGIφ
, φ,t,t ≃

(−4 + 3k3)
√
2

16e
k3

4

c
3
2

√ √
24 Iφ

T 3
√

πGIφ
. (36)

The conditions (8) are satisdied by a condition similar to (14); i.e. with
k ∈ (0, 1) we have

T >>
(4− 3k3)

√
8

4k
√
3HI

. (37)

During inflation, in the de Sitter like phase (t << T ), By denoting H2
I ≃

8πGIφ/(3c
2), for the indices we thus obtain:

ǫV ≃ 3k2e
k3

2

2THI
,

ηV ≃ e
k3

2

4kTHI

(

9k3 − 4
)

,

ns ≃ 1− e
k3

2

THI

[

9k2

2
+

2

k

]

. (38)

From (38) we see that ηV < 0 if and only if k < (4/9)1/3. As a title of
example, for k = 1/2 we have, by setting e1/16/(THI) ≃ 0.0074 (which is
always possible for the reasonings below equation (35)), ǫV ≃ 0.0028, r ≃
0.04, ηV ≃ −0.01, and as a result we obtain the best fit Planck value ns ≃
0.962. Generally, in order to satisfy the Planck constraints, for fixed T and n
(> 1), a smaller value for k implies a greater value for HI . To this purpose,
note that k cannot be arbitrary small. The transition to the stiff era also
arises for (6) in a very short time after the early inflationary epoch one given
by (7) for n > 1. Also in this case, according to BICEP2, we can easily
obtain a value for r ≃ 0.2. Also for the potentials (6), we can reconstruct

18



the effective potential during the initial phase of inflation (t/T << 1). Once
again, we obtain as a dominant effective part during these very early times
a behaviour similar to (18) with V (t(φ)) ∼ φ + const. In particular, for
t ≃ 0, the potential V (t(φ)) with good approximation is linear with respect
to φ. Hence, our inflationary potentials can mimic axion monodromy models
at the beginning of the inflation suggesting that the starting mechanism for
inflation could be in our case related to the one of these models motivated by
chaotic inflation. In particular, this is a general properties for exponentially
time decaying potentials given by (6), with an expansion during inflation at
t ≃ 0 given by:

V (φ) = V0 + V1(φ− φ0) + V2(φ− φ0)
2 + higher orders, V1, V2 ∈ R. (39)

With the flowing of the time during inflation, the nonlinear terms neghligi-
ble at t ≃ 0, become more and more relevant. These examples show how
with the present approach we can obtain a good agreement with Planck and
BICEP data and at the same time a possible simple mechanism explaining
the matter formation in the early universe together with a unification be-
tween dark energy and an early de Sitter phase by a single potential. In
particular, the existence of stiff matter in the early universe can be useful
to explain the abundance of heavy elements in our universe.

8 Building late times running dark energy

Concerning the issue related to the small value of the cosmological constant,
it can be alleviated by introducing a running cosmological constant in (6.)

As an example, in (6) we could take kφ → kφ(t/τ)
ne−

t
τ , τ ∼ t0, n ≥ 0,

where t0 is the present day cosmic time. In this way we obtain a late times
’quintessence’-like field with an effective cosmological constant running to
zero at late times. Also in this case, the physics up to the recombination is
practically left unchanged with respect to the one given by (6). However, a
more physically motivated possibility, which seems the most natural in our
context, is the one given in terms of the so called agegraphic dark energy
[27, 28]. This kind of holographic dark energy is motivated by applying
arguments of quantum mechanics and general relativity. The energy density
is given by:

ρq =
3F 2

8πGt2
, (40)

where the positive constant F (F > 1 to have a current accelerated universe)
takes into account quantum effects in curved spacetimes. Unfortunately, the
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expression (40) cannot have a matter-dominated phase if F < 1 and without
an interaction with the dark matter, as shown in [29]. In [29] this problem
has been solved by considering the conformal time η instead of t. However,
in our context, it seems more natural to solve this issue by considering, as
suggested in [29], the potential:

V (t) =
3F 2c2

8πG(t+ τ)2
+ Iφe

−
(t+kT )n

Tn , n ≥ 1 F > 1, (41)

where the cut-off τ is greater than the recombination time and less than the
time where cosmic structures form. In this manner, the agegraphic term is
certainly negligible with respect to the exponential one in the early inflation-
ary phase, and also in the kination and the radiation era since there Ωq << 1.
Hence, all the reasonings of the sections 2,3,4 and formulas (38), (39) are
left unchanged. For the late times de Sitter phase, the agegraphic dark en-
ergy can mimic the cosmological constant (see [29]). As correctly argued in
[29], the expression (40) has been originary motivated by a ’gedanken exper-
imenten’ concerning distances measurement with light-clocks in Minkowski
spacetime. However, in the early universe the cosmological expansion affects
the possible localizing measure (see [30, 31] in the context of non commuta-
tive geometry). Only when the value of the cosmic flow is sufficiently small,
the Minkoskian limits can be obtained, as shown in [31]. As a consequence
the radiation dominated scenario discussed in section 4 remains valid and
the problem of the small value of kφ is alleviated. Moreover, note that it is
not clear as to obtain a primordial inflationary epoch together with the tran-
sition to the radiation era in the usual ageographic context, i.e. without the
exponential term in (41). To be more quantitative, from (41), the condition
such that the agegraphic term is completely negligible during primordial
inflation is

τ >>
F

HI
, t < τ, (42)

in practice τ >> te. Moreover, we must have a small Hubble flow in order
to have a physical motivation for the Minkowskian expression (40). To this
purpose, it is interesting to note that, as shown in [31], for a flat Friedmann
spacetime, rather less limitations arise for the uncertainty of a coordinate
with respect to the Minkowskian case due to the role of a huge Hubble flow
H. Another possibility to take into account the role of the Hubble flow
according to the reasoning above is to take a time variable F (t):

V (t) =
3F 2(t)c2

8πG(t+ ti)
2 + Iφe

−
(t+kT )n

Tn , n ≥ 1 F > 0 (43)
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where the time ti is a time of the order of the begin of the primordial inflation
in the usual timing of the primordial inflation. This time is due to the fact
that in this paper the start of the inflation is fixed at t = 0.
Hence, the condition (42) during the primordial inflation becomes:

F (t) << tiHI , t ≤ te, (44)

In order to allow the dark matter to dominate, after recombination the func-
tion F (t) must be chosen of the order of unity. After the recombination, the
role of the Hubble flow in gedanken measurements becomes negligible and
Minkowskian expression (40) is regained. It should be stressed that the
new agegraphic potentials expressed in terms of the conformal time η (see
[28, 29]) are ’phenomenological’. In fact, the use of a conformal time instead
of the age of the universe t in (40) is motivated by phenomenological pur-
poses. Since η =

∫

dt/a(t), the original derivation for the metric fluctuations
in Minkowski spacetime due to the presence of clock devices can be done in
terms of the conformal time η, but its expression is not obtained by merely
substituing t with η in (40). Hence, the naive use of the expression (40) with
t → η loses its original motivation. In our context, both the terms kφ and
the one of this section can be see as representing small fluctuations during
the primordial inflation survived up to dominate the recently the history of
the universe. Summarizing, with the potentials (6), (41) and (43), we have
a well defined de Sitter inflationary era motivated by axion monodromy po-
tential, together with a simple mechanism for the transition to the radiation
era up to a physically motivated term leading to the late times de Sitter
phase.

9 Conclusions and final remarks

This paper is an attempt to obtain a unified description of the universe
from the inflationary era up to the late de Sitter phase. In particular, we
introduce a physically viable class of phenomenological potentials V (t) that
allow us to achieve this unified description. In fact, our models are able to
produce an inflationary mechanism both at early and late times. We show
that a smooth transition from the inflationary epoch up to the radiation
era can be obtained. After recombination, the scalar field φ generates small
corrections to the Hubble flow H that look as H ∼ 2

3t +
const.
t3

+ o(1). Al-
though these corrections are expected very small, they could be investigated
by future cosmological data. Moreover, a smooth transition to the de Sitter
accelerate phase is obtained.
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The models (6) have four arbitrary constants, i.e. kφ, Iφ, T, k. Two of them
can be fixed by data concerning the present value of the cosmological con-
stant (∼ kφ) and the effective cosmological constant driving the primordial
inflation (∼ Iφ). Unfortunately, we have not at our disposal a sound estimate
for this ratio from ordinary quantum field theory. The other parameters can
be chosen in light of Planck and BICEP2 data.
The parameter T represents the characteristic time after which primordial
inflationary de Sitter-like expansion phase is not more efficient. The ones of
the section 7 have F (t) instead of kφ.

We have also tested our class of models with the recent Planck and BI-
CEP2 data, in particular for the indices ns, ǫV , r, ηV . We found that the
model with a convex potential can be acceptable if we consider the running
spectral index Planck constraints and the more recent BICEP2 data. By
considering more general potentials (6)with n > 1, we can easily obtain
concave potentials with an acceptable range (< 0.12) for the tensor ratio r
according with Planck data. More general potentials can be used provided
that V (t) be monotonically decreasing with respect t, nearly constant dur-
ing inflation and rapidly decreasing soon after inflation to a small value, i.e.
the cosmological constant, or to a small running cosmological constant, as
shown in section 7. However, irrespective of the modifications on V (t), our
study suggests that the definition of V as an agegraphic potential allows
to introduce potentials with a time varying form in terms of φ. In fact,
at the begin of the primordial inflation our potentials (6) and (43) have
with good approximation a linear expression in terms of φ. There, a well
posed mechanism to start inflation in terms of axion monodromy is given,
further motivating the choices (43) and (6). However, also during inflation
other higher orders do appear. This is in line with the idea that quantum
fluctuations can add further terms to the initial expression for V (φ) due to
renormalization group equation (to this purpose see [15]). Moreover, the ex-
plicit presence of t permit us to follows the timing of the universe just in time
to obtain the fundamental transition to the radiation era before nucleosyn-
thesis an up to the dark matter era. Often in the literature these transitions
are obtained only asymptotically (see [18]), which is unphysical. In our ap-
proach we consider from the onset a simple physically motivated expression
for V in terms of the cosmic time t, provided that a monotonically decreasing
expression for φ is allowed. For this reason we named the agegraphic po-
tential ’phenomenological’. The exponential form of the potentials (7) and
(6) is dictated from the necessity to have an efficient primordial inflation-
ary mechanism together with a rapidly decaying allowing a plausible simple
mechanism for a graceful exit from inflation up to matter creation and to a
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late times de Sitter phase. In this regard, note that an arbitrary naive choice
for V (t) generally does not work. As an extreme example, since the class
of potentials (6) and (43) rapidly converge to a constant or negligible value,
one may be tempted to set a potential of the form V (t) = Iφ for t < T and
V (t) = kφ for t > T . Apart from a lack of continuity at t = T that does not
permit a smooth transition from the two regimes at t < T and t > T , these
models predict a strictly gaussian perturbation, i.e. ηV = ǫV = 0, ns = 1, in
complete disagreement with Planck data, which are the cornerstone of any
physically viable cosmological model.

In this manner we have a possible unification of the two inflationary
epochs by a single smooth agegraphic potential expressed in terms of the
cosmic time t in such a way that dark energy is a relic of primordial inflation
together with a possible simple graceful exit from inflation up to radiation
era without invoking the usual reheating mechanism or dangerous particles
creation due to the gravitational field. It is also interesting to note that in
this framework the mechanism chosen for primordial inflation is not plagued
from fine-tuning of φ0 since the only condition that leads to an efficient
inflationary mechanism is that the characteristic time T is of the order or
some order larger than te, i.e. the time after which inflation is not more
strictly in a de Sitter phase. Theoretically, we could take φ0 = 0 and
inflation works as well. Obviously, the mechanism leading up to radiation era
obviously must be further investigated by quantum calculations, by resorting
the post inflationary non oscillatong scenarios, but read in our frame and
with a different mechanism for matter-radiation creation without encounter
the drawbacks of usual non-reheating cosmologies (see [25]). To this purpose
note that the mechanism proposed leading to nucleosynthesis is not plagued
from fine tuning problems and only requires a negligible remnant of radiation
soon after inflation.

Appendix

In this section we obtain an effective description of our potential V in terms
of the variable φ. To this purpose, we adopt the expressions (29)-(33) to
put V (φ) in a form similar (but more complicated) to the one present in
[19] with the domain expressed in terms of φ. The calculations are simple
but the final expressions for the relations among the parameters are rather
cumbersome. Hence in this appendix we only present the potential together
with the suitable equations for the mactching conditions.
We denote with φik, φir, φim, φs the values of the potential respectively at
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the begin of kination, radiation, dark matter era and structures formation.
We have added another transition zone, indicated with φtr, that describes
the short transition between the early inflationary epoch and the kination
era. We have:

V (φ) = kφ + Iφ +
Iφ
AT

(φ− φ0) +

+ Iφ

[

B

TA3
+

1

2A2T 2

]

(φ− φ0)
2, φ ∈ [φtr, φ0]; (45)

= kφ + Iφe
−

t(φ)
T , t(φ) = −aφ+ b, φ ∈ [φik, φtr] (46)

= kφ + Iφe
−

t(φ)
T , (47)

t(φ) =
c2β√
12πG

[(

1 +

√
12πGtik
c2β

)

e−(φ−φik)
√

12πG

c2 − 1

]

,

β =
1

c
√
Kik

−
√
12πG

c2
tik, φ ∈ [φir, φik],

= kφ + Iφe
−

t(φ)
T , t(φ) =

1
[

φ−φir

2c
√
Kirt

3
2
ir

+ 1

t
1
2
ir

]2 , φ ∈ [φim, φir];(48)

= kφ + Iφe
−

t(φ)
T , t(φ) =

1
φ−φim

c
√
Kimt2im

+ 1
tim

, φ ∈ [φs, φim]; (49)

= kφ + Iφ

(

φ− φ∞
B2

)
c

T
√

24πGkφ , φ ∈ [φ∞, φs]. (50)

The next step is to impose the matching conditions at φ = φtr, φ = φik, φ =
φir, φ = φim, φ = φs. To obtain a continuous and differentiable expression
for V (φ), we must impose the continuity of V (φ) and V,φ(φ) at that points.
To start with, we must paste the functions (45) and (46) at φ = φtr. From
the continuity of V (φ) and its derivative we obtain:

Iφ +
Iφ
AT

(φtr − φ0) + Iφ

[

B

TA3
+

1

2A2T 2

]

(φtr − φ0)
2 = Iφe

−
ttr
T ,(51)

Iφ
AT

+ 2Iφ

[

B

TA3
+

1

2A2T 2

]

(φtr − φ0) =
Iφ
T
e−

ttr
T a, (52)

where
ttr ≃ 10−2T = −aφtr + b. (53)

The equations (51)-(53) permit to obtain the parameters φtr, a, b.
Concerning the transition at φik we must paste (46) with (47) at φ = φik.
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We obtain:

tik ≃ 103T = −aφik + b, (54)

β +

√
12πG tik
c2

= a. (55)

From (54) we can obtain φik (with the condition φik < φtr < φ0). With this
value we can obtain β from (55).
The same calculations must be done for the functions (47) and (48) at φ =
φir. The continuity is obtained by calculating the function t(φ) in (47) at
φ = φir and substituing the expression so obtained for t(φir) = tir in the
expression for t(φ) given by (48). For the differentiability condition we have:

(

β +

√
12πGtik
c2

)

e−(φir−φik) =
1

c
√
Kir

, (56)

that can be easily solved for Kir. Concerning the matching between the
potentials (48) and (49), also in this case the continuity at φ = φim is
obtained by calculating t(φ) in (48) at φ = φim and putting the obtained
expression in the formula for t(φ) in (49). For the differentiability we have:

t(φim) =
1

[

φim−φir

2c
√
Kirt

3
2
ir

+ 1

t
1
2
ir

]3

1

t
3
2
ir

√
Kir

=
1√
Kim

. (57)

From equation (57) we can easily obtain Kim. Finally, we can paste the
potentials (49) and (50) when dark energy era begins to start, i.e. at the
epoch of the formation of the big structures in the universe (at redshift
z ≃ 0.5). The continuity equation it gives:

t(φ) =
1

φs−φim

c
√
Kimt2im

+ 1
tim

= − c√
24πG

ln

(

φs − φ∞
B2

)

. (58)

Equation (58) can be solved analitically in terms of B2. The differentiability
condition at φ = φs can be solved analitically in terms of φ∞. Summarizing,
in this way we have the parameters φ0, φs left free for the potential V (φ).
The potential so obtained can generate the physics depicted in this paper.
The traduction of V (t) in terms of φ is important since it permit us to study
the model of this paper as an ordinary field theory.
In fig. 3 we have plotted the behaviour of V (φ) (vs −φ) for T = 10−33

and φ0 = 0 (remember that in our tractation φ0 plays no role) in Planck
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units. The reconstructed potential, as stated above, is a monotonic increas-
ing function of φ (decreasing with respect to −φ). Note that the potential
shows two plateau concerning the begin of the primordial inflation (φ = 0)
and the begin of the kination era up to the begin of the late times de Sitter
phase (φ = φ∞).
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Figure 3: V (φ) vs. −φ (φ is negative) to have a logaritmic scale. V (φ) has
been multiplied by 106 to have a more readable y range. The figure shows the
plot of V (φ) for the following choice of parameters: (α = 10117; T = 10−33

sec). It is apparent the practically constant value of the V (φ) in the range
φ ∈ [φtr, 0], the rapidly decrease in the range φ ∈ [φik, φtr] and again the
practically constant behaviour with V ≃ kφ in the range φ ∈ [φ∞, φik]
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1342008.

[16] Planck Collaboration (P.A.R. Ade et al.), Planck 2013 results. XXII.
Constraints on inflation, Preprint: arXiv 1303.5082 (2013).

[17] Bicep2 Collaboration P.A. R. Ade et al, Phys. Rev. Lett. 112, 241101
(2014).

[18] S. V. Chervon and V. M. Zhuravlev V M arXiv:gr-qc 9907051.

[19] P. J. E. Peebles and A. Vilenkin, Phys. Rev D59 (1999) 063505.

[20] G. F. R. Ellis, Preprint: arXiv 1306.3021.

[21] L. A. Kofman and A. D. Linde, Nucl. Phys. B282 (1987)555.

[22] R. Riotto and M. Trodden, Ann. Rev. Necl. Part. Sci 49 (1999)35.

[23] B. Spokoiny, Phys. Lett B315 (1993) 40.

[24] M. Joyce, Phys. Rev. D55 (1997)1875.

[25] G. N. L.Felder, L. Kofman and A. D. Linde, Phys. Rev D60

(1999)103505.

27



[26] F. Scardigli, C. Gruber and P. Chen, Phys. Rev. D83 (2011) 063507.

[27] N. Sasakura, Prog. Theor. Phys. 102 (1999)169.

[28] R.G. Cai, Phys. Lett. B 657 (2007) 228.

[29] H. Wei and R. Cai, Phys. Lett. B 660 (2008) 113

[30] L Tomassini and S. Viaggiu , Class. Quantum Grav. 28 (2011) 075001.

[31] L. Tomassini and S. Viaggiu , Class. Quantum Grav. 31, (2014) 185001.

28


