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Abstract The evolution of cardiac disease after an acute

ischemic event depends on a complex and dynamic net-

work of mechanisms alternating from ischemic damage

due to acute coronary occlusion to reperfusion injury due to

the adverse effects of coronary revascularization till post-

ischemic remodeling. Cardioprotection is a new purpose of

the therapeutic interventions in cardiology with the goal to

reduce infarct size and thus prevent the progression toward

heart failure after an acute ischemic event. In a complex

biological system such as the human one, an effective

cardioprotective strategy should diachronically target the

network of cross-talking pathways underlying the disease

progression. Thyroid system is strictly interconnected with

heart homeostasis, and recent studies highlighted its role in

cardioprotection, in particular through the preservation of

mitochondrial function and morphology, the antifibrotic

and proangiogenetic effect and also to the potential

induction of cell regeneration and growth. The objective of

this review was to highlight the cardioprotective role of

triiodothyronine in the complexity of post-ischemic disease

evolution.
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Abbreviations

HF Heart failure

CV Cardiovascular

TH Thyroid hormone

ATP Adenosine triphosphate

H? Hydrogen ions

PKC Protein kinase C

ERK Extracellular signal-regulated kinases

AKT Protein kinase B

ROS Reactive oxygen species

I/R Ischemic/reperfusion

BCL-2 B cell lymphoma-2

PTP Permeability transition pore

PTPO Opening of the PTP

L-T3S Low T3 syndrome

AMI Acute myocardial infarction

T3 Triiodothyronine

rT3 Reverse T3

TRs TH-specific receptors

p38MAPK p38 mitogen-activated protein kinases

HSP Heat-shock protein

p53 Tumor suppressor protein

PI3K Phosphoinositide 3-kinase

T4 Tiroxine

MMPs Metalloproteinases

TIMPs Tissue inhibitors of MMPs

TGF Transforming growth factor

bFGF Fibroblastic growth factor

VEGF Vascular endothelial growth factor

HIF-1a Hypoxia-inducible factor 1 alpha

mTOR Mammalian target of rapamycin

MHC Myosin heavy chain
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Introduction

In the last decades, treatment of ischemic cardiac events

shot down drastically the rate of mortality for cardiac

events. This was mainly linked to the effort to reopen

occluded coronary artery vessel as fast as possible from

the onset of pain, initially by intravenous thrombolytic

agents and then by primary percutaneous transluminal

coronary angioplasty and implantation of coronary stents

[1], associated with antiplatelet therapeutics, that help to

maintain vessel patency. Nonetheless, the incidence of

post-ischemic heart failure (HF) remains a remarkable

clinical and prognostic issue, increasing the risk of both

cardiac and overall death [2, 3]. According to 2020 World

Health Organization projections, cardiovascular (CV)

disease and their complications, in particular post-is-

chemic HF, will be the most important cause of death and

morbidity, with high costs to worldwide healthcare sys-

tems. Such projection strengthens the need to develop

new strategies for multiple preventive and therapeutic

interventions targeted at promoting myocyte protection

against acute and chronic ischemic bouts. Therefore,

cardioprotection is definitely the new target of therapeutic

intervention in cardiology to minimize irreversible

ischemic damage and favor functional recovery of the

ischemic-damaged myocardium. The mechanisms favor-

ing myocyte survival programs are complex and multi-

factorial and involve different and frequently cross-talking

pathways. This postulates the need to take into account

the actions of the large number of components to

understand the complex dynamic network of cardiopro-

tection [4] (Fig. 1). Among all the components of car-

dioprotection, the thyroid system may play a determinant

role due to its effects to maintain cardiac homeostasis, the

regulating effect on different intracellular pathways

involved in cardioprotection, the effects on mitochondrial

function and the potential effects on myocyte regeneration

and differentiation. This review is focused on the role of

thyroid hormones (TH) on cardioprotection, starting from

the complexity of cardioprotection.

Cardioprotection: a dynamic complex network

Extensive experimental literature highlighted the multiple

and intermingled factors involved in myocyte survival that

give characterize cardioprotection as a complex dynamic

network. According to Heusch, cardioprotective mecha-

nisms appear as a highly concerted spatiotemporal pro-

gram in which the abrupt occlusion of a coronary artery is

the ‘‘primum movens’’ of the ischemic myocardial dam-

age [5].

Cardioprotection in the acute phase of ischemic

heart disease

Ischemic cell death is the consequence of the depletion of

adenosine triphosphate (ATP) due to cessation of aerobic

metabolism and oxidative phosphorylation and a shift to

anaerobic metabolism, which induces depletion of glyco-

gen store, intracellular accumulation of hydrogen ions (H?)

and cellular acidosis [6, 7]. Irreversible myocyte damage

occurs in a few hours in the presence of occluded vessel,

and importantly, its extent is influenced by the presence of

collateral circulation, by the presence of ischemic condi-

tioning due to preexistent coronary stenosis and by the

individual need for oxygen and nutrients [8]. The following

step of myocardial damage is the reperfusion through

coronary angioplasty and stenting [6]. In the pathophysi-

ology of the reperfusion injury, the mechanism of calcium

overload offers an example of the fine tuning of the bio-

logical systems intended as networks of cooperating units,

whose function is strictly dependent each other. Indeed, at

reperfusion, extracellular washout of accumulated

H ? ions establishes a large gradient greatly favoring the

influx of sodium via the Na/H exchanger in order to correct

rapidly occurring intracellular acidosis. The increased

intracellular sodium concentration strongly stimulates the

reverse action of the Na?/Ca2? exchanger pump, especially

when acidotic inhibition of this pump is relieved, resulting

in even greater elevations of intracellular calcium con-

centration [6, 9].

Other examples of such complex and strictly integrated

phenomena are the molecular mechanisms of cytoprotec-

tion. These systems include stimulation of heat-shock

proteins, activation of protein kinase C (PKC), extracellu-

lar signal-regulated kinases (ERK) and protein kinase B

(Akt) pathways, inhibition of apoptosis, mechanisms of cell

growth and angiogenesis including increased expression of

the vascular endothelial growth factors and mechanisms of

metabolic adaptation such as the stimulation of glucose

metabolism.

An emerging mechanism of cardioprotection implies

regulation of mitochondrial function and biogenesis.

Actually, mitochondria are integrally involved in regulat-

ing myocardial calcium flux, myocyte cell death and

remodeling events, reactive oxygen species (ROS) gener-

ation and antioxidant response, and in furnishing cardio-

protective responses to physiological insults [10]. Not

surprisingly, mitochondrial dysfunctions are critical deter-

minants for myocyte loss during the acute ischemic stage,

as well as during the progression of cardiac disease [10–

13]. During ischemic/reperfusion (I/R) damage to the

mitochondrial outer membrane along with activation of the

proapoptotic B-cell lymphoma-2 (Bcl-2) proteins leads to
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mitochondrial outer membrane permeabilization, release of

cytochrome c, caspase activation and apoptosis [14].

Massive oxidative stress can lead to a sudden increase in

inner mitochondrial membrane permeability that is

attributable to the opening of the so-called permeability

transition pore (PTP). Opening of the PTP (PTPO) is

accompanied by release of ROS and calcium [15, 16]; this

can propagate the damage to neighboring mitochondria and

culminate in activation of calcium-dependent proteases

(calpains) and lipases, inducing necrotic cell death [17, 18].

As such, in recent years scientific efforts have focused on

mitochondria as a target for cardioprotection in ischemic

heart disease and cardiomyopathy.

Cardioprotection in the chronic phase of ischemic

heart disease

Following acute phase of myocardial infarction, post-is-

chemic remodeling process is another dynamic mechanism

influencing myocyte function and survival. Post-ischemic

LV remodeling is the final result of molecular, subcellular,

cellular and interstitial processes which involve changes in

cardiomyocytes, extracellular matrix and vasculature (mi-

crocirculation) affecting the infarct region, acute myocar-

dial infarction (AMI) border and remote regions [19]. This

is a dynamic process, lasting several months from the AMI

phase, causing thinning of the infarct area, infarct expan-

sion at the site of the necrotic border zone, and hypertrophy

and fibrosis of the remote zone likely occurring as a direct

response to increased wall stress [20]. In the pathophysi-

ology of HF, the activation of the neuroendocrine system,

gathering sympathetic autonomic nervous, renin–an-

giotensin–aldosterone and natriuretic peptides, as well as

inflammatory system, is initially protective and adaptive to

hemodynamic changes induced by reduced cardiac output.

However, due to their continuous activation, their protec-

tive mechanisms become first less effective, conferring

resistance to myocardial hypoxic injury, and then mal-

adaptive and dangerous for the entire body and heart,

contributing to myocardial damage and progression of the

disease [21–23].

Thyroid system in acute myocardial infarction

Low triiodothyronine (T3) syndrome (L-T3S) is the more

frequent mild alteration of TH metabolism in AMI occur-

ring in almost 22 % of patients [24]. Low circulating T3

levels associated with a corresponding increase in reverse

T3 (rT3), the inactive T3 metabolite, occur rapidly within

12 h from the onset of symptoms, reaching the nadir by

72 h. Greater T3 down-regulation has been observed in

patients with left ventricular dysfunction, larger myocardial

infarction and intense proinflammatory and stress response

[25, 26]. Further increased levels of rT3 were associated

with negative outcome resulting as an independent pre-

dictor of short-term and long-term mortality [27].

Fig. 1 Schematic

representation of the dynamic

and complex network of the

post-ischemic myocardial

damage and cardioprotection.

The cause of damage and the

corresponding mechanisms

changes along the time from

acute step, coronary occlusion

and revascularization of the

culprit vessel, to the chronic

phase, post-ischemic

remodeling. All these factors

and mechanisms, strictly

intertwisted with each other,

share the final result that is the

heart failure syndrome.

Therefore, cardioprotection

procedures cannot disregard the

dynamic complexity of the

mechanisms leading to heart

failure, and a multiple approach

should be applied in order to

protect heart in the different

phases of myocardial damage
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L-T3S occurs also in the experimental I/S setting [28],

inducing several histological, molecular and structural

abnormalities within the myocardium, which can be

reversed after normalization of TH metabolic profile [29].

Although a low T3 state has been generally interpreted as a

merely adaptive mechanism finalized to reduce catabolic

processes of illness and thus having beneficial effects

through the reduction in metabolic demand, the experi-

mental and clinical data rebut this hypothesis, suggesting

an effective role in cardioprotection [30].

Thyroid system and cardioprotection

Several elements sustain the hypothesis that TH system

plays an effective role in the complex scenario of cardio-

protection. These can be recapitulated in the following

points:

1. TH exerts a regulating function in tissue differentiation

during the transition from fetal to postnatal growth,

during which THs induce transcriptional programming

leading to the typical gene expression profile of the

adult heart

2. TH regulates cardiovascular homeostasis directly

through genomic and non-genomic actions and indi-

rectly by THs regulating effects on other systemic

pathways

3. TH orchestrates function of several intracellular

signals

4. TH is well-known regulators of mitochondrial biogen-

esis and function

5. TH has antifibrotic, proangiogenetic and regenerative

effect in the heart.

The regulation of the intracellular signaling, mitochon-

drial activity and the regenerative processes induced by TH

are strictly intertwisted and depend on transcriptional and

non-transcriptional actions of THs. The genomic effects of

TH on the heart are mediated by TH-specific receptors

(TRs), TRa (TRa1 and TRa2) and TRb (TRb1 and TRb2)
which bind to TH response elements in the promoter region

of some genes [31]. Among the TRs, TRa1 may represent

an important molecular effector of TH-induced cardiopro-

tection since it is the most common isoform in the heart,

and it binds T3 with high affinity and regulates important

genes related to cell protection differentiation and growth

[32]. This role appears to have a dual action which is

dependent on its liganded or unliganded (with repressive

action) state and on the concentration of circulating THs

[33]. When T3 s is low, TRa1 receptor is highly expressed

and in the unliganded state acts as a repressor of TH-pos-

itive-regulated genes, whereas the rise of T3 results in the

conversion of TRa1 into the liganded state, triggering cell

differentiation [34]. In the context of post-ischemic

myocardial damage, overexpression of nuclear TRa1 in

cardiomyocytes can result in pathological or physiological

growth in the absence or presence of T3 [32]. Further, the

inhibition of TRa1 with debutyl-dronedarone abolishes the

beneficial effect of acute T3 treatment on ischemia/reper-

fusion injury [35]. Similarly, TRa1 inhibition induced after

AMI has been associated with marked activation of the

noxious p38 MAPK signaling, potentially causing apop-

tosis and low proliferative activity [36, 37].

Thyroid system and intracellular signaling

The cardioprotective effect of TH is mediated by regulation

of prosurvival pathways, including activation of the PI3K/

AKT and PKC signaling cascade [38–40]; enhancement of

HSP70 and HSP27 expression, phosphorylation and

translocation [41, 42]; and also suppression of p38MAPK

[43].

In particular, it was found that T3 treatment for 3 days

after AMI reduced myocyte apoptosis in the border area,

possibly via Akt signaling [39]. The antiapoptotic effect of

T3 was also reported by Pantos et al. [42] in an ischemia/

reperfusion model with decreased p38 MAPK activation.

In a recent study, TH was found to have a dose-dependent

effect on Akt phosphorylation, which may be of physio-

logical relevance [38]. Mild activation of Akt caused by the

replacement dose of TH resulted in favorable effects, while

further induction of Akt signaling by higher doses of TH

was accompanied by increased mortality and ERK activa-

tion, some of the most well-studied kinases in relation to

pathological remodeling [44]. This study may be of

important therapeutic relevance because it shows that, in

the case of L-T3S, TH replacement therapy may be suffi-

cient to restore cardiac function, while excessive TH doses

may be detrimental rather than beneficial.

In addition, Pantos et al. [42] showed that a preemptive

2-week T4 administration increased heat-shock protein

(HSP) 70 expression and decreased p38 MAPK activation

in response to ischemia, changes that closely resemble

ischemic preconditioning. The same treatment also led to

increase in the basal expression and phosphorylation of

HSP27, and earlier and sustained redistribution of HSP27

from the cytosol–membrane to the cytoskeleton–nucleus

cellular fraction [43]. Such changes might help to protect

myocardium against ischemic insult, resulting in the

improvement of post-ischemic functional recovery.

Thyroid hormone: the effect on mitochondria

THs are well-known modulators of mitochondrial biogen-

esis, function and Ca2? cycling [45–47]. Changes in thy-

roid status are associated with bioenergetic remodeling of
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cardiac mitochondria and great alterations in the bio-

chemistry of cardiac muscle, with consequences on its

structure and contractility [46].

Further, in a rat model of I/R, specific changes in

mitochondrial proteomic profiling have been observed in

relation to different post I/R circulating T3 level [48].

Retention of physiological T3 concentration in the early

post-ischemic setting is associated with the upregulation of

proteins with functional relevance in rescue of the mito-

chondrial integrity and mitochondrial quality control and in

optimization of substrate utilization. These differences,

along with the better recovery of post I/R cardiac function

and mitochondrial activity in the presence of maintained

T3 plasma level, prompted the authors to speculate that a

condition of L-T3S in the early setting of the post I/R

wound healing might affect mitochondrial function and

contribute to adverse remodeling [48]. Accordingly, in the

same experimental models of post-ischemic model of

L-T3S, T3 administration at physiological or near physio-

logical dose rescued mitochondrial function which was

related to reduced cardiomyocyte loss in the peri-infarct

zone and better preserved cardiac performance [49]. The

proposed underlying mechanisms were related to the

upregulation of mitochondrial biogenesis and to the acti-

vation of the cardioprotective mitochondrial channel

mitoK?-ATP [28]. More recently, correction of the post-

ischemic low T3 syndrome has been shown to downregu-

late the mitochondrial-targeted noxious effect of tumor

suppressor protein (p53) possibly through the upregulation

of the miRNA 30a [28]. The main mitochondrial-targeted

post I/R noxious pathways and T3-mediated cardioprotec-

tive effects are summarized in Fig. 2.

Thyroid hormone: the antifibrotic cardiac effect

The target of cardioprotection cannot be limited only on

cardiomyocytes, but also on the other cells composing the

myocardium that include fibroblasts and endothelial cells,

that play a pivotal role to preserve architecture and func-

tion of the myocardium and which are involved in the

chronic pathophysiological evolution of heart failure.

Interstitial remodeling is associated with synthesis and

deposition of collagen along with deregulation of a family

of matrix proteases, matrix metalloproteinases (MMPs) and

the tissue inhibitors of MMPs (TIMPs) [50]. Their effect is

dependent on degrading certain extracellular matrix com-

ponents, regulation of cell proliferation, migration, differ-

entiation and apoptosis [51, 52]. It is generally documented

that MMPs increase whereas TIMPs reduce their activity

following MI. However, a temporal and spatial factor of

MMPs and TIMPs activation is to be taken into account

where MMP-1, 2, 3, 7 and 9 can be activated early and

MMP-8, 13 and 14 late after acute MI [53]. Further TIMPs

1–3 expression is reduced in both remote and border

infarcted zone, whereas TIMP-4 is unchanged in the

remote but decreased in the border infarcted zone [54]. TH

treatment with both T3 and T4 has been associated with a

reduction in interstitial fibrosis in animal models of

ischemic and non-ischemic heart failure, and this effect can

be related partially to the influence of TH on MMPs and

TIMPs activity [55, 56]. T3-induced cardiac hypertrophy

was not associated with fibrosis but with an increase in

MMP-2 and TIMP-2 expression [57]. Similarly, cardiac

hypertrophy induced with T3 in rats has been associated

with a reduction in collagen I and III with an increase in

MMP-1 activity and a decrease in TIMP-l and 4 expression

[58]. More recently, a tendency toward increased MMP-2

expression and TIMPs) -1 to -4 expression was also

observed in long-term T4-treated MI rats, in which a

reduction in collagen deposition in the LV non-infarcted

area has been also documented [55]. The antifibrotic effect

of T3 is further suggested by the evidence that early T3

replacement after ischemia/reperfusion in rat decreased the

activation of the profibrotic TGF-a1 signaling while

inducing the expression of the antifibrotic miRNA-29c, 30c

and 133, and this effect was associated with the reduction

in the scar size and with the maintenance of cardiac per-

formance [59].

Thyroid hormone: the proangiogenetic effect

Chronic hypothyroidism is associated with rarefaction of

coronary microvasculature with the consequence of

impaired vasodilation. This alteration is reversed by T3

administration that promotes remodeling of coronary

resistance vessels, consisting of proliferation of vascular

smooth muscle cells, pericytes and endothelial cells. [60,

61]. The proangiogenetic effect induced by T3 involves

different molecular mechanisms and starts as non-genomic

action through the interaction with integrin aVb3 at the

level of plasma membrane of endothelial cells [62]. The

transduction of the TH signal is further mediated by

mitogen-activated protein kinase ERK1/2 with the conse-

quent transcription of proangiogenetic genes, such as basic

fibroblastic growth factor (bFGF) and vascular endothelial

growth factor (VEGF) [63]. Further, another molecular

circuit involved in the T3 proangiogenetic action occurs via

the expression of hypoxia-inducible factor 1 alpha (HIF-

1a) through the interaction of TH with cytoplasmic TRb
and the activation of P13K signaling [64, 65]. T3-induced

angiogenesis has been documented in several experimental

physiological and pathological rat models of cardiovascu-

lar disease, including ischemia, hypertension and diabetic

cardiomyopathy [55, 56, 66]. In a rat model of post-is-

chemic HF, correction of the low T3 state with T3 sup-

plementation favored a better maintained capillary density
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in the border zone in association with HIF-1a stabilization

and TRa1 upregulation [27].

Thyroid hormones and the regenerative cardiac

processes

As mentioned above, the mechanisms continuously acti-

vated during heart failure evolution change their action

from adaptive and protective to maladaptive and toxic for

the myocardium. Among these, we can include fetal reca-

pitulation, that consists in the increase in b and decrease in

a myosin heavy chains, decreased SERCA/PLB ratio, and

also in the preference of glucose metabolism over fatty

acids [67]. Although the pathophysiological relevance of

fetal recapitulation is still uncertain, one argument in favor

of its adaptive role may be that it lowers energy expendi-

ture of the myocardium in response to hypoxia and ische-

mia reperfusion injury [68, 69]. A fascinating hypothesis is

that TH may be a regulator of the dedifferentiation/

redifferentiation process of myocytes through TRa1 action

[34]. In this context, the role of TRa1 is noteworthy. In

fact, the overexpression of unliganded TRa1 in neonatal

cardiomyocytes was associated with increased b myosin

isoform expression and impaired calcium handling and

contraction [70, 71]. Further, inhibition of T3 binding to

TRa1 abolished cardiac embryonic cells differentiation

[72]. Another evidence of the role of this receptor in

myocyte redifferentiation process is the stress response to

phenylephrine, which has a growth effect mediated by

ERK and mTOR signaling [73]. Following phenylephrine

administration and in the absence of TH, there was a switch

of myosin isoform to a fetal pattern associated with a

redistribution of TRa1 with increased accumulation at the

nuclear levels at the expense of the cytosolic levels [72].

This TRa1 response was abolished by inhibition of mTOR

signaling with the consequence of cell atrophy [74]. With

regard to myosin isoform gene switching, a complex net-

work of miRNA-208a and b and miRNA 499 preside over

Fig. 2 Main mitochondrial-targeted noxious and cardioprotective

mechanisms following cardiac I/R. I/R injury leads to ATP depletion

followed by calcium overload and accumulation of reactive oxygen

species (ROS), the driving pathways of cell death. p53 upregulation

further favors mitochondrial-dependent apoptosis and necrosis of the

injured cardiomyocytes. I/R also prompts the adverse remodeling of

mitochondrial proteome, which enhances the mitochondrial impair-

ment responsible for cell dysfunction. These noxious cascades are

particularly severe in the presence of a post-ischemic low T3 state (L-

T3S). L-T3S correction is associated with the activation of several

cardioprotective pathways including: (1) opening of the protective

mitoK?-ATP channel (mitoK-ATP); (2) favoring mitochondrial

biogenesis through the peroxisome proliferator-activated receptor

gamma coactivator 1 alpha (PGC-1a) and mitochondrial transcription

factor A (mtTFA); (3) reducing the post-I/R level of p53 possibly

through the upregulation of its target miRNA 30a. Deleterious effects

of I/R are indicated in dark pink, and cardioprotective pathways are

evidenced in cyan
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cardiac hypertrophy mechanisms [75]. miR-208a is a car-

diac-specific miRNA encoded by the a-MHC gene.

Deregulation of TH signaling in cardiac disease leads to a-
MHC/miRNA-208a inhibition, while in vitro treatment

with THs significantly upregulates a-MHC/miRNA- 208a

expression and reduces b-MHC/miRNA-208b expression,

as well as miRNA-499 [76]. These data suggest that

physiological TH concentrations are necessary to guarantee

adequate miRNA levels and to avoid fetal myosin isoform

switching.

THiRST study

TH replacement therapy in ST elevation myocardial

infarction (THiRST) study is a phase II, randomized,

double-blind, placebo-controlled study, consisting in the

administration of T3 in patients with AMI, treated with

primary angioplasty, and with evidence of free T3 levels

below the lower reference limit (\2.2 pg/mL) or decrease

in free T3 plasma levels [20 % with respect to the

admission levels in the first 24 h. The maximum daily

dosage was 15 mcg/m2b.s./die to be assumed as drops three

times during the day. Patients were treated for a maximum

treatment period of 6 months. The initial object of the

study was to assess whether T3 replacement therapy

reduced infarct size, regional wall motion abnormalities

and improved systolic and diastolic myocardial function.

Preliminary unpublished results on 30 patients treated with

and without T3 therapy showed the absence of minor or

major side effects induced by T3 treatment. In particular,

no arrhythmias were induced and heart rate did not

increase, but rather decreased at follow-up in T3-treated

patients. Further cardiac magnetic resonance showed that

there was a significant reduction in the global extent of

necrosis, whereas regional systolic function tendentially

improved.

Conclusions

Cardioprotection should be regarded as a complex dynamic

network in which coronary occlusion, myocardial reper-

fusion and post-ischemic remodeling can be viewed as a

pathophysiological continuum of myocardial injury.

Numerous metabolic, molecular and hormonal mechanisms

contribute to this phenomenon; they are strictly integrated

to each other and act at distinct time periods, both in the

acute and the chronic phase, with different times of action

and with potential different effects, from protective to

maladaptive or toxic, depending on the context in which

they work, the time of activation and the interaction among

them. It is also notable that the evolution of post-ischemic

heart failure starts as a regional disease; subsequently, the

infarcted area evolves through an organ disorder and thus

becomes a systemic disease in its progression [77].

Therefore, the network of information stemming from all

the factors playing a role in cardioprotection cannot ignore

the concept of complexity applied to the human biological

systems. This can be compared to a nonlinear, dynamic and

intertwisted network in which small changes can result in

large effects and big changes may result in none or small

effects. In this complex dynamic network, TH system may

be a newly identified player orchestrating the different

molecular, tissue and cellular elements involved.
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