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ABSTRACT
Falling is one of the most common causes of injury in all ages,
especially in the elderly, where it is more frequent and severe. For
this reason, a tool that can detect a fall in real time can be helpful
in ensuring appropriate intervention and avoiding more serious
damage. Some approaches available in the literature use sensors,
wearable devices, or cameras with special features such as thermal
or depth sensors. In this paper, we propose a Computer Vision
deep-learning based approach for human fall detection based on
largely available standard RGB cameras. A typical limitation of
this kind of approaches is the lack of generalization to unseen
environments. This is due to the error generated during human de-
tection and, more generally, due to the unavailability of large-scale
datasets that specialize in fall detection problems with different
environments and fall types. In this work, we mitigate these lim-
itations with a general-purpose object detector trained using a
virtual world dataset in addition to real-world images. Through
extensive experimental evaluation, we verified that by training
our models on synthetic images as well, we were able to improve
their ability to generalize. Code to reproduce results is available at
https://github.com/lorepas/fallen-people-detection.

CCS CONCEPTS
• Software and its engineering→ Virtual worlds training simula-
tions; •Computingmethodologies→Object detection; Activity
recognition and understanding.
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1 INTRODUCTION
As reported by World Health Organization [15], falls are the sec-
ond leading cause of unintentional injury deaths worldwide. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CBMI 2022, September 14–16, 2022, Graz, Austria
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9720-9/22/09. . . $15.00
https://doi.org/10.1145/3549555.3549573

people who suffer the most from falls are adults over 60; if not
timely assisted, falls may lead to severe injuries and even death. For
these reasons, a monitoring system that can identify a fall can be
beneficial to giving first aid as soon as possible.

Among available techniques, vision-based ones offer a cheap
and minimally invasive solution, as they do not require special-
ized hardware other than a standard video camera and do not
involve wearing battery-powered sensors. Computer vision algo-
rithms based on deep learning have already demonstrated excellent
performance in detecting people and objects from video streams
and can be adapted to detect fallen people. However, training a
robust deep-learning-based detection model implies having a large
labeled dataset covering a wide variety of scenarios. This is usu-
ally not available, as large sets are usually too expensive to obtain,
limiting the generalization capabilities of the trained models.

This paper proposes to use synthetic data from virtual worlds to
build robust vision-based fall detection models. We exploit charac-
ters and scenarios of a highly photo-realistic video game to create
automatically-labeled synthetic images of fallen and non-fallen
people. Controlling the game engine allows us to collect labeled
data under different settings, varying scenes, characters, lighting,
number of people in the scene, and camera pose. We create and
release Virtual World Fallen People (VWFP) — a collection of 6071
synthetic labeled images depicting fallen and non-fallen people.

We set up a frame-based visual fall detection pipeline based
on widely used object detector deep neural networks. We explore
different configurations of synthetic data usage to train more ro-
bust fallen people detectors. Experiments on existing non-synthetic
benchmarks show that synthetic data helps improve the generaliza-
tion capabilities of detection models compared to the same models
trained only on small training collections of real images.

2 RELATEDWORK
Due to its potential societal impact, fallen people detection is an
actively studied field of research with many proposed approaches
and methodologies.

Sensor-based Fall Detection. A significant body of work proposes
to detect falls employing sensors, alone or combined with video
data. For example, Dovgan et al. [7] adopt an approach that per-
forms different tests in sensor data applied to different body parts.
Martínez-Villaseñor et al. [13] uses a multimodal approach, col-
lecting both data from videos and sensors, in which the subjects
perform 11 different activities (six normal daily activities and five
different types of falls). Falls are recognized using a shallow classi-
fier on handcrafted features. Another multimodal approach can be
seen in Kwolek and Kepski [8], in which both video images and ac-
celeration data are collected through two Microsoft Kinect cameras.
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An SVM on defined features detects falls. Antonello et al. [1] pro-
pose an open-source solution for an autonomous robotic platform
for home care. They build a dataset that contains both images and
point clouds for this scope. Geometric consistency checks together
with SVM classifiers are used to discern fallen people. In general,
those solutions require specific hardware and setups to be deployed
without the guarantee of being robust to different scenarios.

Visual Fallen People Detection. Detecting fallen people from video
streams makes systems easier to deploy, as video cameras are acces-
sible and often already available, e.g., existing surveillance cameras.
However, extracting information from RGB data poses additional
challenges. Seminal work [4] tries to detect a fall by using hand-
crafted spatiotemporal descriptors and shallow classifiers trained
on a limited number of scenarios. More recent solutions adopt AI-
based computer vision; Maldonado-Bascón et al. [12] use the YOLO
object detector to find people in images taken by a mobile-patrol
robot. They adopt an SVM to decide whether detected people are
fallen given geometric features on bounding box position and as-
pect ratio. The main roadblock to a robust solution in these works
is the limited generalization capabilities given by ad-hoc training
sets or camera configurations.

Synthetic data for Fall Detection. The most relevant work to our
proposal of using synthetic data for fall detection is Asif et al. [2].
The authors propose a multimodal segmentation and human skele-
ton pose estimation model to detect people and their pose from RGB
data. The segmentation map and skeleton position are fed to Fall-
Net, a deep classifier that discerns falls from non-falls and is trained
on synthetic segmentation and skeleton data generated with the
MakeHuman tool. Unlike their work, our approach aims to train a
single detection model able to discern fallen and non-fallen people
from RGB data directly. Our solution is more straightforward and
probably more efficient, but it is more challenging to generate the
synthetic RGB data needed to train the model. For the generation
of RGB data, we follow a collection procedure of Di Benedetto et al.
[5] with the difference that we collect also fall/non-fall information
instead of object bounding boxes.

3 VISUAL FALLEN PEOPLE DETECTION
Our goal is to compare the performance of detectors trained with
and without virtual data on available real-data benchmarks. To this
end, we set up a common pipeline to detect fallen people from video
streams described below.

We formulate the task of visual fallen people detection as a
frame-based analysis of the video stream. Each analyzed frame is
processed by a deep object detection neural network to find people
in the image and, if any, classify them as either fallen or non-fallen.
Although the pipeline could be improved by including temporal
information and additional logic (e.g., adding alarm hysteresis), here
we keep a simple detection pipeline for the sake of easy comparison.

We assume to have a synthetic training set and a real training
set. We explore four configurations of training data for our detector
models, which are

Real-only Data (R), a baseline configuration in which the training
phase uses only the real data,

Table 1: Datasets Statistics. Datasets were adapted as de-
scribed in Section 4.

# imgs # fallen # non-fallen annot/img

VWFP (ours) 6071 7456 26125 5.53± 2.68
FPDS [12] 6832 5019 2247 1.06± 0.26

train set 4699 3863 1004 1.03± 0.20
validation set 1174 765 413 1.00± 0.06
test set 959 391 830 1.27± 0.48

Elderly [11] 412 357 65 1.02± 0.15
URFD [8] 421 182 239 1.00± 0.02

Virtual-only Data (V) in which the training phase uses only the
synthetic game data,

Virtual then Real Data (V→ R) in which the model is initially
trained on synthetic data and then fine-tuned on real data,
and

Virtual and Real Data (V + R) in which the model is trained on
a mixture of synthetic and training data.

Once detector models are trained, we test them by measuring their
performance on real-world benchmark data.

4 DATASETS
Table 1 collects statistics of the datasets used in this work and
described in this section. First, we introduce our novel synthetic
dataset for visual fallen people detection and its collection proce-
dure. Then, we review the existing real-data benchmarks we will
use to validate the trained models.

4.1 Virtual World Fallen People (VWFP)
We collect a novel synthetic dataset for fallen people detection
called Virtual World Fallen People (VWFP). VWFP comprises images
extracted from the highly photo-realistic video game Grand Theft
Auto V developed by Rockstar North1. Each image is automatically
labeled by extracting from the game engine the information about
people present in the scene, i.e., their bounding boxes and their
status (fallen or non-fallen). Specifically,

(1) we set up a scenario picking a time of the day, a weather
condition, and a position in the game map at random,

(2) we instantiate at most 30 pedestrians around the center of
the scene, let themwander in the area, and kill approximately
half of them, having the consequence that they fall on the
ground,

(3) we place the camera in a random position pointing it to the
scene,

(4) we take a snapshot of the scene and collect the 2D bounding
boxes and status (fallen/non-fallen) of visible pedestrians,
and

(5) we repeat steps (3) and (4) five times to obtain more view-
points of the same scene.

The above actions are implemented via game engine API calls
available via modding hooks. Technical details are available in

1https://www.rockstarnorth.com/

https://www.rockstarnorth.com/
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Di Benedetto et al. [5, 6]. We filter out images containing no labeled
objects that mostly correspond to bad game locations (e.g., oceans)
and highly occluded camera angles. We also filter out annotations
for objects that are more than 80% occluded (e.g., by walls, trees,
or other pedestrians) in the capturing viewpoint. After cleaning,
we obtain 6,071 images depicting 7,456 fallen and 26,125 non-fallen
people. Figure 1 shows samples from VWFP. The dataset is publicly
available [3].

4.2 Benchmark Datasets
In this section, we discuss three frame-based real-world benchmark
datasets for visual fallen people detection that we adopt in our
experimental evaluation, i.e., FPDS [12], Elderly [11], and URFD [8]
datasets. All the datasets comprise a collection of images with
bounding box annotations localizing fallen and non-fallen people
in the scene. Figure 2 shows some samples from each collection.
Details of each benchmark are given in the following paragraphs.

FPDS. comprises 6,832 images depicting fallen or non-fallen peo-
ple. This is one of the largest benchmarks for visual fall detection
with frame-level annotations. Since video data were meant to be
captured and analyzed by a domestic robot, images are captured
using a single camera from 76 cm above the floor. Moreover, most
images depict indoor scenarios with precisely a single person in
the scene, even if outdoor scenarios and multi-instances images
do occur. We adopt the original train, validation, and test splits
provided by the authors. However, through manual inspection of
the dataset, we filter out images having no or bad annotations (e.g.,
incorrect values for the coordinates of bounding boxes). Dataset
statistics after cleaning are available in Table 1.

Elderly. is a smaller collection of images collected by the same
authors of FPDS with the same intent. This collection comprises 413
images of volunteer subjects over 65 years old depicted in standing,
sitting, and lying postures in indoor scenarios. As in FPDS, people
bounding boxes and fallen/non-fallen status are provided for each
image, and we manually fixed missing or wrong annotations on
dataset inspection. With respect to FPDS, object distribution is even
more skewed towards fallen people.

URFD. is a collection of 70 image sequences comprising 30 fall
sequences and 40 sequences of daily living activities. Fall events
are recorded indoors with 2 Microsoft Kinect cameras and corre-
sponding accelerometer data at 30 fps. We only kept RGB data with
bounding box annotations of fall sequences for our purposes. More-
over, we pick every fifth frame from each sequence to reduce the
redundancy of consequent video frames. In the end, we retain 421
images for evaluation consisting of 239 non-fallen and 182 fallen
instances.

5 EXPERIMENTAL EVALUATION
5.1 Model and Training Details
Here we describe procedures for defining and training detectors
that are common for all performed experiments.

As object detection model, we use the widely adopted Faster-
RCNN [14] with a ResNet-50 with Feature Pyramid Network [9]
as backbone and a two-class detection head. We initialize all the

model parameters from the model snapshot pre-trained on the
COCO train2017 set [10] except for the detection head in which
parameters are randomly initialized. We freeze the parameters of
the backbone network except for the last three residual blocks that
are trainable.

The model is trained with SGD for 10 epochs with a learning
rate of 5 · 10−3 divided by 10 every 3 epochs, momentum of 0.9,
and weight decay of 5 · 10−4. We applied data augmentation using
random cropping, random horizontal flipping, and random color
augmentations (contrast/brightness, color jitter, or grayscale trans-
formations). We cope with class unbalance by weighting images
based on the distribution of object classes in it; we assign weights to
each annotation such that fallen and non-fallen objects are balanced
in the entire training set, and then we set the weight of each image
as the mean weight of its objects.

At each epoch, we measure the loss and the COCOmean average
precision (mAP) on a validation set, and we select the snapshot that
gave the maximum mAP as the final model.

5.2 Configuration Comparison
We train four models using the configurations of training data
described in Section 3 and the training procedure detailed above.
In (V), we use the proposed VWFP dataset with a random 80/20
train/validation split. In (R), we use the train and validation splits
of FPDS. In (V→ R), we fine-tune the model obtained in (V) using
the train and validation splits of FPDS, or equivalently, we apply
procedure (V) and (R) sequentially on the same model. In (V + R),
we use VWFP, but we replace 30% of synthetic samples with real
samples randomly picked from FPDS for both the training and
validation splits.

We then test these four models on the test set of FPDS, on the
URFD, and on the Elderly benchmarks, and we report results in
Table 2. For each test set and configuration, we report the mAP as
a threshold-independent metric and Recall, Precision, and 𝐹1-score
as threshold-dependent metrics. To make our results comparable to
the work of Maldonado-Bascón et al. [12], for threshold-dependent
metrics, we discard the localization information provided by the
model (bounding boxes) and consider only the presence or absence
of the fallen/non-fallen classes as in a binary classification problem.
In this context, we report results using the threshold that maximizes
the 𝐹1-score.

We can observe that the (V+ R) configuration consistently achieves
good performance compared to other configurations, especially on
Elderly, the benchmark on which FPDS data transfer worst, where
it reaches 0.82 mAP compared to 0.68 of (R). Mixing synthetic and
real data also provides a basic domain adaptation that helps transfer
knowledge from the synthetic to the real domain. The (R) baseline
configuration performs best when applied on the same domain used
in training (FPDS) but can achieve significant results when trans-
ferred to other datasets. Still, results suggest that including virtual
data can improve the generalization capability of the model free of
labeling cost. The (V→ R) configuration instead is often suboptimal;
we deem that separating training phases on synthetic and real data
tends to increase overfitting in each domain, preventing the model
from learning robust features not specific to a particular domain.
Note that without any real data, the (V) configuration still achieves



CBMI 2022, September 14–16, 2022, Graz, Austria Carrara et al.

Figure 1: Samples from the Virtual World Fallen People (VWFP) Dataset. Green and red bounding boxes represent non-fallen
and fallen people, respectively. The game engine and contents enable us to capture variability in background scenes, pedestrian
looks and behaviors, and lightning and occlusion conditions. Best viewed in electronic format.

reasonable performance in some benchmarks (0.75 mAP on FPDS
and 0.74 on URFD), indicating that useful knowledge is present in
synthetic data and can be harnessed, especially in scenarios where
real data is hard to collect.

6 CONCLUSIONS
The main challenge for robust detection of fallen people from visual
data is the lack of large and varied training dataset. In this work,
we tackled this problem by proposing the use of synthetic training
data generated from virtual worlds to improve the generalization
capabilities of fallen people detector models.

We generated and publicly released a varied and highly photo-
realistic synthetic dataset of fallen and non-fallen people exploiting
modern video games. We performed several experiments training
widely used detector models with different configurations of real
and synthetic images and testing them on publicly available visual
fallen people detection datasets. Results showed that synthetic data
improved the generalization capability of models when tested on
unseen real scenarios. Specifically, mixing synthetic data with a
small portion of real data in the training set gives the best detection
performance in terms of mAP on unseen benchmarks.

Future directions include improving the synthetic dataset by
exploring more contents offered by virtual worlds (more pedestrian
models, poses, and behaviors, richer indoor scenarios, and more
challenging lightning and occlusions). Moreover, future work may
apply our proposal to more complex detection pipelines (e.g., in-
cluding temporal information) and thus extend its evaluation by
exploiting larger and different (e.g., non-frame-based) benchmarks.
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Table 2: Fallen people detection performance. For threshold-
dependentmetrics, we report values obtainedwith the thresh-
old that maximizes the 𝐹1-score. The best and second best
entries are respectively indicated in bold and underlined.

(a) On FPDS test subset.

mAP thr Recall Precision 𝐹1-score

YOLO+SVM [12] - - 0.95 0.92 0.93
(R) 0.97 0.50 0.99 0.99 0.99
(V) 0.75 0.40 0.80 0.76 0.78
(V→ R) 0.94 0.90 0.93 0.99 0.96
(V + R) 0.96 0.90 0.93 0.99 0.96

(b) On URFD.

mAP thr Recall Precision 𝐹1-score

(R) 0.93 0.99 0.98 0.64 0.78
(V) 0.74 0.20 0.66 0.73 0.69
(V→ R) 0.98 0.99 0.91 1.00 0.95
(V + R) 0.99 0.90 0.91 0.97 0.94

(c) On Elderly.

mAP thr Recall Precision 𝐹1-score

(R) 0.68 0.80 0.94 0.90 0.92
(V) 0.46 0.60 0.70 0.72 0.71
(V→ R) 0.57 0.50 0.97 0.83 0.90
(V + R) 0.82 0.80 0.87 0.90 0.88

REFERENCES
[1] Morris Antonello, Marco Carraro, Marco Pierobon, and Emanuele Menegatti.

2017. Fast and Robust detection of fallen people from a mobile robot. In Intelligent



Learning to Detect Fallen People in Virtual Worlds CBMI 2022, September 14–16, 2022, Graz, Austria

(a) FPDS [12]

(b) URFD [8]

(c) Elderly [11]

Figure 2: Sample images from non-synthetic benchmarks. Green and red bounding boxes represent non-fallen and fallen
people instances, respectively.
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