
1

A methodology for mapping functional blocks
into earliest deadline scheduled threads

Cesare Bartolini and Giuseppe Lipari, Member, IEEE,
and Marco Di Natale, Member, IEEE

Abstract

Model-based design brings the promise for an increase in productivity and correctness in the development of
complex embedded software. The use of a formal model of computation allows, in principle, for automated support
in the verification, simulation and testing of functional and non-functional properties. Automatic generation of a
programming code implementation of the model is also a very common asset of modern tools. Unfortunately,
despite all research and industrial efforts, a language (or a design methodology) that can provide verification of
both functional and time without incurring in excessive inefficiencies (at verification or implementation time) is not
available and separation of concerns is the solution advocated by many. Most research and commercial languages
and tools focus on providing support for the design and validation of functional properties. At a different level,
models and theory have been developed for supporting the description of the threads and resources composing the
software architecture, and schedulability analysis provides support for the validation of timing constraints. However,
the design of the concurrent structure of the application is still done manually. The system designer has to decide
the number of threads, their structure and interactions, without the possibility of evaluating the trade-off between
different solutions.

This paper presents a solution towards what we believe to be a key objective: the synthesis of the architecture-
level design and the automated logical-to-architectural mapping. Our proposal tries to reduce the overheads and
excessive priority inversions of existing solutions that map all functional blocks (or reactions) into a single thread
or assign a thread of execution to each action or possibly to each active object. After presenting our algorithm, we
compare it with existing solutions and provide a schedulability analysis of the resulting system.

Index Terms

Software models, architecture level design, scheduling, dynamic priorities.

I. INTRODUCTION

Increasing complexity and short time to market demand for higher productivity and reduced error

rates in the production of reactive embedded software. Formal techniques for verification of functional

and non-functional properties and a number of design and modeling methodologies as well as formal

languages have been proposed in the last decades in order to provide support for formal or simulation-

based verification of a least a subset of the requirements. Automatic generation of the code implementation

of the model is also advocated as necessary for reducing the probability of fault injection in the manual

coding phase.

Collectively, these practices go under the name of model-based design and development. Unfortunately,

an encompassing methodology that can support all phases of the design stage and provide formal verifica-
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tion of all system properties is still out of reach for most systems of practical interest and most designers

must necessarily settle for lower expectations.

The most common assumption is the separation of the two main concerns of functional and architectural

specification. Layering of functional and architectural-level design is among the founding principles that

inspired the Ptolemy framework [11], the Metropolis methodology and tool set [3], emerging standards

and recommendations, such as the UML Profile for Schedulability, Performance, and Time from the Object

Management Group, [1] and industry best practices, such as the V-cycle of software development common

in the automotive industry [5] (Figure 1).

Functional design is concerned with the development of logically correct software. Models and lan-

guages apt at representing the abstractions used by application domain experts are often used and formal

verification or simulation of system properties is performed. In order to reduce programming errors, tools

for automatic generation of functional code can also be used at this stage. For example, in the automo-

tive domain the Simulink toolkit (based on a synchronous reactive semantics) supports the design and

simulation of control algorithms and the Stateflow plug-in (and the associated statecharts-like semantics)

captures the evolution of the systems state with the arrival of external events and the possibly subsequent

mode changes (Control algorithms design and sign-off stages of Figure 1). UML and the object-oriented

paradigm are other very popular choices (albeit often in different application domains) and, more recently,

the real-time UML profile (implemented by commercial products such as Rational Rose Real-Time) and

a subset of the upcoming 2.0 revision of the language assume a (transitional) model where active and

passive components cooperate in the implementation of the system behavior and each call action upon a

component’s method results in the transition of the statechart automata describing the object behavior.

Requirements for logical-level resources, timing constraints and timing assumptions may be formally

defined at this level, but timing analysis, when and if performed at this stage, only deals with abstract

specification entities, typically assuming infinite availability of physical resources (such as memory or

CPU speed).
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At the Architecture level, the designer defines the concrete model on which the functional abstractions

must be mapped and constrains the generic specification by defining an implementation on an architectural

platform. At this level, design choices define (among others) the levels of concurrency and the resource

management policies. The definition of the architecture of the software threads and the selection of the

resource management policies is a non-trivial task, with possible implementations ranging from single

thread implementations to networks of concurrent processes (Software design stage in the v-cycle of

Figure 1).

Single thread implementations are quite common (see the related work section) and simple: the entire

functional specification is executed in the context of a single task, which performs a never ending cycle

where it serves events in a non-interruptable fashion according to the run-to-completion paradigm. The

thread waits for an event (either external, like an interrupt from an I/O interface, or internal, like a call

from one object to another); fetches the event and the associated parameters and, finally, it executes

the corresponding code. On the other extreme, we could define one software task for every functional

block. Each task can be assigned its own priority, depending on the criticality and on the deadline

of the corresponding activity. At run time, the operating system scheduler properly synchronizes and

sequentializes the tasks so that the order of execution respects the functional specification.

Both approaches may easily prove inefficient. The single thread implementation suffers from large

priority inversion due to the need of completing the processing of each event before fetching the next

event in the global queue. The one-to-one mapping of functions or actions to threads suffers from excessive

scheduler overhead caused by the need for a context switch at each reaction. Considering that the action

specified in a functional block can be very short and that the number of functional blocks is usually

quite high (in most application it is in the order of hundreds), the overhead of the operating system could

easily prove unbearable. Furthermore, standard Rate Monotonic analysis of this model is only possible

when cooperation among active objects is restricted to purely asynchronous communication or interaction

through semaphore-protected mailboxes [7].

The designer essentially tries to achieve a compromise between these two extreme, balancing respon-

siveness with schedulability, flexibility of the implementation and performance overhead.

A. Related work

The number of works devoted to the specification of real-time systems at the logical level is simply too

high to try even a short survey of the existing methodologies and languages. For the sake of this paper,

we will divide them into the two broad categories of (strictly) synchronous models and languages and

asynchronous (or general) models.

Synchronous reactive languages, such as Esterel, Lustre or Signal [6] define the system as a netlist
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(graph) of processing blocks and assume the computation of the response or reaction to events by

each block takes zero time. External events are sampled and computation proceeds according to the

discrete time model. A formal semantics and mathematical results allow verification of logical properties

such as liveness or correctness with respect to constraints or invariants. In systems developed according

to this model, the scheduling problem is solved statically at compile time (equivalently, the operating

system level components are automatically synthesized) and the aim of the timing analysis is making

sure that the longest chain of reactions or computations initiated by any event fits in the time interval

between any two ticks. Unfortunately, these systems suffer from multiple inefficiencies, arising from

two main sources: the quality of the code generated by the compiler and the priority inversions and

limited flexibility of the scheduling strategy. However, in those cases where a discrete time model is

applicable and concerns for safety overcome the additional costs caused by compiler and scheduling

overheads, these models provide a satisfactory solution encompassing both stages of the development.

A synchronous reactive model (although based on a looser, semi-formal semantics) is also at the base

of the widely used commercial tool Simulink from Mathworks. In this case, the accompanying code

generation tools (such as Embedded coder) generally offer the designer three options for generating the

thread architecture. The first option simply consists in a single thread implementation, with the associated

drawbacks. In the multi-thread option (available only for discrete time models where the rates of external

and internal events are strictly harmonic) all the functions activated with the same rate are grouped in one

single task and executed in lexicographic order. Threads are then simply scheduled according to the Rate

Monotonic rule. Possible race conditions when accessing variables shared among blocks with different

rates can be solved according to a deterministic (fixed delay) or nondeterministic (semaphore-protected)

synchronization model. Unfortunately, in both cases, the semantics of the implementation differs from the

semantics of the simulated model [12].

In the case of asynchronous models and generic languages, such as UML (similar reasoning applies

to SDL), a mapping or synthesis procedure including formal verification of logical and timing properties

is currently not available and the logical and architecture models are developed in stages. In UML, the

logical and architecture designs are both drawn using objects (at different levels of granularity).

The recent development of the OMG UML profile for schedulability, performance and time provided

modeling constructs for specifying logical and physical resources, concurrent active objects (threads),

binding of logical objects into architecture objects and representation of timing attributes and constraints,

thus paving the way for schedulability analysis of UML architecture models.

Application of schedulability analysis techniques to the design problem can provably reduce the total

composition time and the round implementation time when tuning the design of the architecture level by
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as much as 50% [17].

In the context of this work, a survey of the existing scheduling methodologies is clearly impossible for

space constraints, however, an exception is necessary for previous work done in the context of architectural

model synthesis, which bears a strong connection to our research.

An early attempt at task synthesis, mainly aimed at solving the problem of synthesizing a graph of

cooperating tasks where architecture-level properties are expressed in a fundamental way, such as rates

of execution and relative deadlines has been presented in [10]. As a further example, in [13] the authors

proposed the synthesis of a cyclic executive scheduling starting from a Modechart specification of the

system.

Finally, the problem of matching the logical level to the software architecture level and the corresponding

synthesis of the task model has been discussed in length in the UML case by Saksena and others [15]. In

their work, the authors assume a more general model of active objects freely interacting by exchanging

events resulting in (asynchronous) signals or (synchronous) method calls. Each active object executes

according to the base server model: awaits messages in the input queue and processes them. Incoming

messages to each object are queued. The mapping and scheduling problem needs to account for multiple

constraints and design options. First, object methods need to be executed according to a run-to-completion

paradigm in order not to compromise the consistency of the object’s state. Second, the scheduling problem

becomes a dual problem: scheduling the messages in the input queue of each object and scheduling the

threads on the processor. Furthermore, a method for mapping the execution of active object methods

(actions) into threads is needed.

Based on this assumption, the authors discuss a single threaded solution, where all actions are imple-

mented by a single thread and events are queued by priority (only the message scheduling problem needs

to be considered) and a multi-threaded solution where threads inherit their dynamic priorities from the

priorities of the messages that activate them. A mechanism based on priority ceilings protects against

multiple priority inversions when mutual exclusion on objects needs to be guaranteed.

Unfortunately, while the single threaded implementation is analyzable and practically applicable (al-

though with some restrictions and overheads), the multi-threaded implementations are either almost

impossible to analyze for the worst case timing scenario (when thread priorities are static, as implemented

by most commercial tools) or analyzable for worst case behavior but inapplicable to the code generated

by existing tools.

Contributions of this paper: In this work we present algorithms for mapping a generic logical

model, which is equivalent to the UML model discussed in [15] into a set of threads automatically generated

assuming execution on top of an earliest deadline scheduler. With respect to previous work we discuss
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the synthesis problem in the context of dynamic (EDF) rather than static scheduling. We believe dynamic

(earliest deadline) scheduling is a more natural way for combining rate and deadline constraints and eases

the interleaving of pipelined executions when the end-to-end deadline of a computing chain is greater than

the activation rate of the chain of actions (as it is in most practical cases). Our mapping procedure works

directly on the graph representing the functional dependencies among actions (the emergent behavior

of the system) and, compared to previous work, it provides an easy way to assign different priorities

(deadlines) to multiple paths of execution originating from the same external event. Furthermore, the

example discussed in this paper shows how the method brings the potential for improvements in the

number of system configurations that can be guaranteed for schedulability over previous (fixed priority

based) methods.

II. FUNCTIONAL MODEL

Most real-time embedded systems have a simple structure: some event (generated for example by a

sensor) or user input triggers the system’s execution, the system does some operations, it processes the

input signal, updates the internal state and then generates the outputs.

One natural model for this kind of structures is the dataflow model. Of course, since this model

identifies a particular structure, not all systems (especially not general-purpose systems) can be adequately

represented using dataflow.

A dataflow model can be represented with a directed graph. Such a graph will have inputs from the

environment, which represent the external events that can trigger the execution. At the other end of the

graph the outputs mark the end of the execution of the dataflow. In the middle, the collection of edges

and vertexes represents the system’s functionality.

In this research, we use a restriction: no cycles must exist inside the structure of the graph. This is a

common restriction in the dataflow model, since it largely reduces the complexity of the analysis while

still leaving enough expressive power to define the behavior of most embedded systems [6].

Our model of execution can be represented through a Directed Acyclic Graph (DAG). Formally speaking,

the functional model used in this research is a t-uple {V, E ,R}, where V is the set of vertices, E the set

of edges, and R is a set of mutually exclusive (logical) resources, representing shared data.

• V = {F1, . . . , Fn} is the set of functional blocks. They represent the basic operations of the system. A

functional block Fi is characterized by a maximum computation time γi and a set of used resources

Ri,1, . . . , Ri,n(i). A block Fi has one input port and one output port. An input port is a buffer of

infinite size that may contain activation tokens. When at least one activation token is present on the

input port, the functional block is active. A functional block can execute only if it is active and all

resources in the resource set are available. Each functional block is executed once for each activation
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token; therefore, if multiple tokens are input to a block, the activation semantics is of OR type. AND

type activation semantics, as allowed by other modeling languages, is not considered in this paper

and will be the subject of future extensions.

If the block is scheduled to execute, it first acquires all the needed resources; then, it executes

consuming exactly one token. The duration of the execution is a random variable comprised between

0 and γi. At the end of the execution, it first releases all resources, and then fires its output port. If

no other token is present on the input port, the block becomes inactive. Otherwise it remains active.

• E = {l1, . . . , lm} is the set of functional links. A functional link li = (Fh, Fk) connects the output

port of functional block Fh (the source block) to the input port of block Fk (the sink). One functional

block can be the source or sink of many links. When a functional block completes execution, it fires

its output port: this means that tokens are sent on all the links starting from that output port. When

fired, a token is instantaneously received on the input port of the sink.

In the following, the source and the sink of link li will also be denoted by src(li) and snk(li),

respectively.

In our model, we focus on the flow of control among blocks. Although our tokens are pure activation

signals (i.e. they do not carry data), an extension to typed signals is possible.

• R = {R1, . . . , Rz} is the set of logical resources that can be used by the functional blocks to carry out

their computations. They are used to model shared data structures that can contain state information

or shared data and that need to be executed in mutual exclusion.

An external event results from the execution of a special functional block ei with no input links,

representing one entity in the external environment. Since external events are produced by the environment,

we assume a minimum interarrival time between successive activations, denoted by Ti. Therefore, an

external event can be periodic (i.e. with a constant interval of time between events) or sporadic.

An output oj is a special functional block with no output link. It represents a consumption by the

environment of the data produced by the system and sent to some actuator. For our purposes, an output

is merely a stub where execution ends.

It is important to make some considerations on the execution time of a block. In practice, execution

times strongly depend on the hardware platform on which the application is implemented. Therefore,

we assume that the hardware architecture is known and that computation times can be estimated before

actually deploying the system. In reality, the development process will follow a spiral model in which, at

each incremental step, the execution time of each functional block can be more accurately estimated.

A functional chain from Fi to Fj , or P (i, j), is an ordered sequence P = [l1, . . . , ln] of links that, starting

from Fi = src(l1), reach Fj = snk(ln) crossing n + 1 functional blocks such that snk(lk) = src(lk+1).
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Fi will be the chain’s source and Fj its sink. Clearly, a sequence of functional links is in strict relation

with a unique sequence of functional blocks. Thus a functional chain also (and most importantly) denotes

a sequence of blocks.

There can be more than one functional chain between two blocks i and j. The k-th functional chain

between Fi and Fj is denoted with Pk(i, j). If a block Fs ∈ Pk(i, j) is activated before Fp ∈ P (i, j),

the former is a predecessor in respect to the latter, which is successor; the notation used is Fp ≺ Fs. To

simplify the notation, without loss of generality, a chain from Fi to Fj will be simply denoted by P (i, j).

A path Pk(ei, oj) is a chain with ei as source and oj as sink. Substantially, a path is a chain from

one end of the DAG to the other. A path represents one end-to-end execution of the system, from the

triggering of the external event to the generation of the output. More than one path can be originated by

one external event.

Being the application described with a DAG, no chain must exist which has the same block as both source

and sink; i.e., no cycles must exist in the graph. Clearly, this limitation does not exclude programming

constructs like conditional loops from our modeling; simply, any loop must be entirely contained inside

a functional block.

The path deadline for Pi, denoted by ∆i, is the end-to-end constraint for the computation performed

in the path. The implementation and the run-time mechanisms must ensure that all the functional blocks

in the path must be completed at most ∆i time units since the arrival of the event.

ei,j is the j-th activation instance of event ei, and Pi,j is the j-th activation of path Pi, since every

instance of a given event triggers a new instance of the path. The activation time for event ei,j is denoted

with Ai,j.

While the path deadline is a relative time constraint, independent of the actual path instance, each path

instance will have its absolute deadline: δi,j = Ai,j + ∆i.

A. Example of a functional model

The expressiveness of the proposed functional model is demonstrated through a simple example equiv-

alent to the sample (UML) object model in [15]. The DAG is shown in Figure 2. The example consists of 4

external events that activate 5 different paths. A total of 12 functional blocks are defined. The periods of

the events, the computation times of the functional blocks and the deadlines of the paths are summarized

in Table I.

One main difference between our model and the model in [15] is the possibility to set deadlines for

paths. In the model presented in [15], deadlines are assigned to the external events. This means that all

paths starting from the event must be completed before the same deadline.
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TABLE I

PARAMETERS OF THE EXAMPLE.

e1 T1 = 200 F1 γ1 = 10
e2 T2 = 300 F2 γ2 = 20
e3 T3 = 700 F3 γ3 = 15
e4 T4 = 1500 F4 γ4 = 25
P (e1, F6) ∆ = 125 F5 γ5 = 25
P (e2, F8) ∆ = 200 F6 γ6 = 5
P (e3, F9) ∆ = 700 F7 γ7 = 90
P (e3, F10) ∆ = 700 F8 γ8 = 25
P (e4, F12) ∆ = 1500 F9 γ9 = 90

F10 γ10 = 25
F11 γ11 = 25
F12 γ12 = 50

Fig. 2. Graphical representation of the example of Section II-A.

However, in many cases, the functional blocks activated by an external event can have very different

criticalities. As an example, consider the external event e3 that activates two paths, one consisting of

blocks F3 and F9, the other one consisting of blocks F3 and F10. Suppose that block F9 is critical and

must be completed before the next instance of e3 is triggered. Therefore, the deadline for path P (e3, F9)

is 700. Now, suppose that block F10 is used to log some data on a secondary storage. This activity is not

critical, so we could set a long relative deadline for path P (e3, F10). Expressing these constraints with

the model proposed in [15], is not easy (if possible), while we can naturally do it in our model.

Another difference is that in our model we do not need to associate a priority to each event. In [15], a

customized scheduler, based on fixed priority, is assumed. Therefore, it is necessary to specify the priority

of every event, introducing one more (unnecessary) design parameter. Instead, our scheduling model is

based on EDF, as will be described in Section III-A. Therefore, we do not need to specify any additional

priority.

III. SOFTWARE ARCHITECTURE

According to our methodology, a functional model must be mapped on a set of real-time tasks.

A task is denoted with τi and its j-th instance is τi,j , activated at a time ai,j . Relative task deadlines

are denoted by Di,j, while absolute ones are di,j (referring to the j-th instance of task τi).
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Task τi starts its execution for the j-th instance at time si,j, and the execution is terminated at time

fi,j. The deadline is respected if fi,j ≤ di,j.

The response time for the j-th instance of task τi is the time difference between its finishing time and

its activation: ri,j = fi,j − ai,j.

The computation time ci,j for the j-th instance of task τi is the time it would take executing if there

were no other concurrent tasks (ci,j ≤ ri,j). The worst case execution time of a task τi, denoted as Ci, is

given by the sum of the WCETs γk of all functional blocks contained in the task. Since a task is strictly

sequential, the only approximation introduced is neglecting the overhead resulting from signal latency on

the bus, scheduling overheads, and so on.

The base deadline of a task instance τk,l is the time difference between its absolute deadline and the

arrival of the external event which caused such instance to execute: Db
k,l = dk,l − Ai,j , where ei,j is

responsible for activating τk,l.

A task can use resources in mutual exclusion. The use of such resources derive from the functional

blocks that the task executes. Therefore, if a functional block Fj is implemented by task τi and the

functional block uses resource Rr, we say that task τi uses Rr with a critical section of duration equal

to the WCET of Fj . We denote by ξi,r the longest critical section among all critical sections of task τi on

resource Rr.

We assume that the underlying scheduling policy implements a synchronization protocol like Priority

Ceiling [16] or Stack Resource Policy [2]. Therefore, we define a preemption level πi for task τi inversely

proportional to its base deadline:

πi =
1

Db
i

.

For each resource R, we define a ceiling:

ceil(R) = max
i

{πi | τi uses R}.

Table II summarizes the symbols defined in the paper.

A. Execution platform

We assume that the application is implemented on a single processor architecture, with a real-time

operating system. We assume earliest deadline first (EDF) as the scheduling algorithm, but the task model

is not the usual periodic/sporadic model and tasks are not assigned periods or minimum interarrival times.

While a task activated by an event is considered to be periodic or sporadic (having the same period or

minimum interarrival time as the event), a task that is activated by another task cannot be assigned a

period (analysis based on the minimum interarrival time would be too pessimistic). A task is assigned an

absolute deadline d upon activation.
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TABLE II

SUMMARY OF NOTATIONS AND DEFINITIONS.

F Functional block
l Functional link
e External event
o Output
P Functional chain or path
τ Task
γ Functional block WCET

C Task WCET

c Task computation time (actual)
A Event activation time
a Task activation time
s Task start time
f Task finishing time

r = f − a Response time
w = s − a Waiting time

∆ Path relative deadline
δ Path absolute deadline
D Task relative deadline
d Task absolute deadline

Db Base deadline
ξ Duration of critical section
π Preemption level

ceil(R) Ceiling of resource R

IV. GENERATION OF THE TASK SET

In this section we present the methodology for mapping functional blocks to real-time tasks, and to

generate the task real-time scheduling parameters. The general problem is quite difficult because there is a

high number of possible mappings. Rather than exhaustively searching among all possibilities, we propose

two different algorithms that derive the task set with complexity linear in the number of functional blocks,

according to their topology. We will prove in Section VI that such algorithms are optimal for the single

processor case and assuming EDF as scheduling policy.

The basic ideas underlying the two algorithms are the following:

• each functional block is mapped onto only one task (this assumption can be removed in future work);

• if two blocks belong to the same paths and one is the successor of the other, then the two blocks

are candidates for placement in the same task;

• if there is no path between two given blocks, these cannot be assigned to the same task;

• once a task starts executing, it never blocks waiting the completion of another task; in other words,

the only synchronization mechanisms used in our model are the activation of a task and mutual

exclusion semaphores for shared resource;

• once a task starts executing, it can be preempted before completion only when an external event

results in the activation of a higher priority task. In other words, a task never activates higher priority

tasks. This provides an upper bound to the maximum number of preemptions;

• the generation of the task set must not depend on the computation times of the blocks;
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Fig. 3. Sample application graph.

• the parameters of the tasks (deadlines or priorities) depend on the end-to-end path deadlines;

The two algorithms presented in this paper are called Late Activation (LA) and Joined Late Activation

(JLA). To show the differences between them, the sample application shown in Figure 3 will be used. The

WCETs of the functional blocks are shown below:

Block F1 F2 F3 F4 F5 F6 F7

γ 6 3 3 1 4 2 3

The DAG has three paths with the following characteristics:

• P1 = [e1, F1, F2, F4] has a relative deadline of ∆1 = 18;

• P2 = [e1, F1, F3, F5] has a relative deadline of ∆2 = 22;

• P3 = [e2, F6, F7, F5] has a relative deadline of ∆3 = 25.

A. Late Activation

The algorithm analyzes the DAG and creates the task set in two steps: in the first step, the tasks are

created, and the functional blocks are assigned to the tasks; in the second step, it assigns the real-time

parameters to the tasks.

The algorithm for creating the tasks is shown in Figure 4.

• Lines 1-3: every event activates at least a block which must be processed by the algorithm. After all

successors of an event have been considered (and the queue Q emptied), the analysis proceeds to the

next event.

• Lines 4-17: this cycle represents the processing of an event and all its successors.

• Line 5: if an output has been reached, then there is no other block in the path. The algorithm moves

to the next element in the queue.

• Lines 6-9: a new task must be created, and blocks will be inserted into it. At least one block will be

used; the presence of other blocks depends on the DAG topology.

• Lines 10-14: if Fk has only one successor Fh, and is its only predecessor, then all paths containing

Fk also contain Fh. When this happens, the two blocks will belong to the same task. Otherwise, the

current task is finished, and we leave the cycle.
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Algorithm LA

Variables: a queue Q of blocks, initially empty;
1:For every event ei {
2: insert the successor of ei in the queue Q;
3: while (the queue is not empty) {
4: extract block Fk from Q;
5: if (Fk is not an output) {
6: create a new task τj;
7: condition = true;
8: while (condition) {
9: insert Fk in τj;
10: if (Fk has only one successor Fh

11: and Fh has only Fk as predecessor)
12: insert Fh in τj;
13: continue the cycle with Fk = Fh;
14: } else condition = false;
15: }
16: all successors of Fk that are not already
17: part of a task are inserted in Q
18: }
19: }
20:}

Fig. 4. Pseudo-code for Algorithm LA.

• Lines 16-17: at this point, Fk will have some successors; these might have been processed earlier in

the algorithm. If this is not the case, then they will be queued for later iterations.

Notice that the precedence relations over the DAG imply precedence relations over the tasks. As a

consequence, we obtain a set of precedence related tasks, a model similar to the one by Chetto and

Chetto [9]. All tasks will have the same following cyclic structure:

• wait for next activation;

• execute the assigned functional blocks;

• activate the successor tasks.

Notice that all successors are activated just before completion of the task instance. Also, the activations

are buffered; therefore, it can be that while a task executes, it is activated again by some other external

event or by some other task. In this case, the activation remains pending and is buffered until the task

completes the currently executing instance.

Among all pending activations, the one corresponding to the path with the shortest deadline must be

served first. Therefore, each activation carries information about the corresponding path deadline, and the

incoming activations are inserted in a queue ordered by deadline.

Once the set of functional blocks has been partitioned into tasks, we must assign the scheduling

parameters to the tasks. Each instance of an external event may result in multiple activations of internal

tasks, but only one for the first task in the path. The rules for assigning the deadlines are listed below:

• every time a task is activated by an external event or by a functional link, it is assigned an absolute
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Fig. 5. The precedence relations among the tasks generated by LA.

deadline equal to the minimum absolute deadline of all sub-paths originating from the activation

event.

• a task activated by an external event, let it be τ1, has an absolute deadline of

d1 = min
i
{δi | τ1 ∈ Pi};

• the absolute deadline of a task τi,l ∈ P , which is activated by τi−1,h ∈ P at time fi−1,h, is

di,l = min
j
{δj | τi,l ∈ Pj}.

Notice that knowledge of the WCETs of the functional blocks is not required for computing the deadlines.

It is important to underline that, when activating a task, we must specify its current absolute deadline.

Also, activations must carry information about the absolute deadline, computed according to the previous

equations. Unfortunately, this is not usually available in commercial implementations of the EDF scheduler.

We will discuss the implications of this characteristic of the algorithm in Section VII.

Finally, in the classical EDF scheduler, deadline ties can broken arbitrarily. In this paper, we assume

that our EDF scheduler does not allow preemption between tasks with the same deadline.

B. Example with LA

To demonstrate how LA works, we show the results of the partitioning on the example of Figure 3.

The task set and its parameters are listed below:

Task τ1 τ2 τ3 τ4 τ5

Components F1 F2, F4 F3 F5 F6, F7

C 6 4 3 4 5

The precedence relations among tasks are depicted in Figure 5.

The first interval of the schedule obtained when all events are activated at time 0, is shown in Figure

6. One important property of this algorithm is that a task can only be preempted by the activation of
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Fig. 6. Schedule produced by LA.

an external event. In other words, the tasks in a path going from one external event to an output have

increasing absolute deadlines: therefore, every task has always priority over its successors.

Another important observation regards the way the algorithm generates the tasks. Basically, every time

one functional block has more than one successor, we create one new task for every successor. Also,

every time a functional block has more than one incoming link, we create a new task that starts from this

block. This second rule makes the schedulability analysis more difficult: in fact, such a task cannot be

considered a periodic because it can be activated by two different external events that can have different

periods or minimum interarrival times. Also, every time this task is activated, it can be assigned a different

base deadline, depending on which event the activation comes from.

In the example, task τ4 can be activated by task τ3 and by task τ5: when activated by τ3, it is assigned

a base deadline equal to the deadline of path P2 = [e1, F1, F3, F5], which is equal to ∆2 = 22; when it

is activated by task τ5, it is assigned the base deadline of path P3 = [e2, F6, F7, F5], which is ∆3 = 25.

Notice also, that τ4 is not a periodic task, since it can be activated by event e1 and by event e2.

As we will see in Section IV-E, a schedulability analysis can still be carried out: one possible solution

is to analyze each different activation separately.

C. Joined Late Activation

Algorithm JLA is an improvement over LA that tries to reduce the number of generated tasks. The

pseudo-code for the algorithm is shown in Figure 7. The differences from the one shown in Figure 4 are

displayed in boldface.

• Lines 10-12: if Fk is assigned to task τj , it is likely that one of its successors will be assigned to the

same task. Fk belongs to a set of paths P = {P1, . . . , Pm}; each one of its successors belongs to a
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Algorithm JLA

Variables: a queue Q of blocks, initially empty;
1:For every event ei {
2: insert the successor of ei in the queue Q;
3: while (the queue is not empty) {
4: extract block Fk from Q;
5: if (Fk is not an output) {
6: create a new task τj;
7: condition = true;
8: while (condition) {
9: insert Fk in τj;
10: select Fh as the successor of Fh that belongs to
11: the path with the minimum relative deadline ∆
12: if (Fh has only one predecessor) {
13: insert Fh in τj;
14: all successors of Fk not already assigned
15: to a task, except Fh, are inserted in Q
16: continue the cycle with Fk = Fh;
17: } else condition = false;
18: }
19: all successors of Fk that are not already
20: part of a task are inserted in Q;
21: }
22: }
23:}

Fig. 7. Pseudo-code for Algorithm JLA.

subset of P . The minimum path deadline will be ∆ = min{∆l | Pl ∈ P}. There will be at least one

successor of Pk contained in a path with deadline ∆; this will be the candidate successor. In case

there is more than one they will all be candidates, and failing the first another one may be tested. If

the candidate has only one input link, then it will be included in task τj . The task cannot contain a

block which does not belong to the path with the minimum deadline, otherwise τj would activate a

task which would immediately preempt it.

• Lines 14-15: all successors except the one which was included in the task, unless they have already

been assigned to other tasks, must be queued for later processing.

The main difference is that, if a functional block has more than one successor, the one belonging to

the path with the shortest base deadline is selected and inserted in the same task. Notice that, as before,

the precedence relations in the DAG imply precedence relations among the generated tasks.

D. Example with JLA

When partitioned with JLA, the example shown in Figure 3 produces a set of four tasks, as shown in

following table:

Task τ1 τ2 τ3 τ4

Components F1, F2, F4 F3 F5 F6, F7

C 10 3 4 5

The precedence relations between the tasks are depicted in Figure 8.
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Fig. 9. Schedule produced by JLA.

It is important to point out that, since these tasks strictly follow the blocks’ properties, τ1 will execute

for at most 6 (which will actually be 4 in our example) time units, then activates τ2 before going on with

its execution. The resulting schedule is charted in figure 9.

E. Schedulability test

In this section, we propose a schedulability analysis test for the generated task set. Let us start to

analyze the schedulability of the task sets produced by Algorithm LA. We will then show that the same

analysis can be applied to the task sets generated by JLA.

As anticipated in the previous section, the main problem is that when a task can be activated by more

than one task, belonging to different events, it cannot be modeled as a periodic or sporadic task. In fact,

each time this task is activated, it can be assigned a different task deadline. The basic idea underlying our

analysis is to split such tasks (and all the successors) in many tasks, one for each different activation.

Let us clarify the idea with an example. Consider again the precedence graph of Figure 5. We split

task τ4 into two different tasks, τ 1
4 and τ 2

4 , activated by tasks τ2 and τ5, respectively. The resulting graph
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is shown in Figure 10.

As you can see, in this case, the original precedence graph has been separated into a “forest” of trees.

Each tree has an event as root. Now, task τ 1
4 can only be activated by task τ2 and hence by event e1.

Therefore, all tasks in the tree with e1 as a root can be associated the same period T1 and each task is

always assigned the same base deadline. The same thing happens with tasks τ5 and τ 2
4 .

However, we also have to take into account an additional constraint: since τ 1
4 and τ 2

4 are actually the

same task, τ 1
4 is not allowed to preempt τ 2

4 and vice versa. To account for this non-preemption constraint,

we introduce a pseudo-resource for each split task. In the example, a resource Rτ4 is created, and every

time τ 1
4 or τ 2

4 are activated, they must first lock resource Rτ4 before starting to execute.

Generalizing, we transform a precedence graph in a set of trees, according to the following rules:

• every external event becomes the root of a tree;

• the tree contains all the tasks activated by the corresponding root event;

• suppose that a task τi is activated by many events or tasks; we split the task into many identical

“pseudo-tasks”, one for every different incoming activation: τ 1
i , . . . , τm

i , where m is the number of

different incoming activations. All of them will have the same WCET; each one has a different base

deadline, depending on the corresponding path. Moreover, since a task cannot interrupt itself, we

create a “pseudo-resource” Rτi
, shared between all the split tasks originated by τi, to prevent them

from preempting one another. Each split task τ k
i is assigned a critical section ξk

i,τi
with duration equal

to the WCET of τi. In addition, when a task is split, all its successors must be split too with the same

method.

At this point, each task (both normal and pseudo-task) can be associated a period Ti equal to the period

(or minimum interarrival time) of the root event. We have then transformed our set of complex tasks into

a set of sporadic tasks, for which schedulability analysis techniques are well-known.

To test the schedulability of the generated task set, we use the processor demand criterion, first proposed
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by Baruah et al. [4]. According to this criterion, the worst case condition is when all events are activated

at the same time, that by convention we denote with time 0. Then, we must test the processor demand

in all time intervals starting from time 0 until the first idle time. The two conditions to check are the

following:

U =

N
∑

i=1

Ci

Ti

< 1

∀L ≤ L∗,
N

∑

i=1

[(⌊

L − Db
i

Ti

⌋

+ 1

)

0

Ci

]

+ B(L) ≤ L, (1)

where N is the number of tasks, including the pseudo-tasks generated by the transformation described

above, and U =
∑N

i=1
Ci

Ti
< 1 is the total system load. The term B(L) is the blocking time in interval L

and it is defined as follows [14]:

B(L) = max
k,r

{

ξk,r | Db
k > L ∧ ceil(Rr) ≥

1

L

}

.

Finally, L∗ is an upper bound to the end of the busy period. It is defined by a recursive equation:

L∗(0) =
N

∑

1=1

Ci

L∗(k) =

N
∑

i=1

⌈

L∗(k − 1)

Ti

⌉

Ci

The recursion ends when L∗(k) = L∗(k − 1), and convergence is guaranteed when U < 1. In the special

case in which all deadlines are less than the period, an alternative formula for L∗ is the following [4]:

L∗ =
U maxi(Ti − Db

i )

1 − U
.

Theorem 1: Given a task set generated by algorithm LA, and the corresponding precedence graph,

consider the task set obtained by transforming the precedence graph in a forest of trees according to the

above methodology. The task set is schedulable if Equation (1) is verified.

Proof: The proof simply descends from the processor demand analysis. Proofs of correctness for

Equation (1) can be found in [4], [8] and [14].

Finally, it is straightforward that the above schedulability test is valid both for the task sets generated

by LA and by JLA. In fact, the transformation method can be applied to both JLA and LA.
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V. PREEMPTION BOUNDS

In this section, we provide worst-case bounds for estimating the number of preemptions in the system.

The following theorems are based on the concept of transaction. A transaction Γ is the complete, worst-

case set of functional blocks executed upon arrival of an external event with a minimum interarrival time

equal to that of its source event. The number of transactions in the system is clearly equal to the number

of external events and each transaction is a tree of functional blocks (Section IV-E). Γi(k) refers to the

k-th instance of transaction Γi. For practical reasons, we denote an event, its minimum interarrival time

and its transaction with the same index.

A transaction contains a number of paths and the path sets of different transactions have a null

intersection. Among all paths in Γ, the minimum and maximum deadlines are labeled, respectively as

∆min = min{∆i | Pi ∈ Γ} and ∆max = max{∆i | Pi ∈ Γ}.

Theorem 2: The execution of a task τ in the transaction instance Γi(k) cannot be preempted by another

task in the same transaction instance.

Proof: In LA, a task can only activate other tasks in the same transaction instance at its completion

time, hence no preemption can possibly occur. In JLA, it is possible for a task to activate another task in

the same transaction before it completes, but the newly activated task always has a deadline higher than,

or equal to the deadline of the activating task τ . This is because the set of paths to which τ belongs is a

superset of the path sets of its successors, and the minimum path deadline for τ will always be less than

or equal to the minimum path deadline for its successors. Since preemption among same priority tasks is

disallowed, then proof follows.

Theorem 3: If a transaction Γ has a minimum interarrival time T such that T +∆min > ∆max, then a

job in the k-th instance Γ(k) will never be preempted by a job belonging to the following instances Γ(k ′)

with k′ > k.

Proof: Assume the triggering event of instance Γ(k) arrives at time A. Then, the least possible

time for the activation of the next instance Γi(k + 1) will be A + T . The maximum deadline for a task

instance τi in Γ(k) is di = A + ∆max and the minimum possible deadline for a task τj in Γ(k + 1) is

dj = A + T + ∆min. From our hypothesis on T it is clearly dj > di. Therefore, every job deadline in

Γ(k) is lower than any job deadline in Γ(k + 1) and also in Γ(k ′) with k′ > k.

Corollary 1: In a system with n external events, if ∀i, Ti + ∆min
i > ∆max

i , then the maximum possible

number of preemptions at any given time is n − 1.

Proof: Given Theorems 2 and 3, if the above property is true a task can never be interrupted

by another task in the same transaction (regardless of the instance). The only possible preemptions are

between different transactions, and since there are n in total, there can be a maximum of n−1 preemptions
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and n active tasks at any time.

Please note, if deadlines are not assigned to paths, but to transactions (as in [15]), then ∆min = ∆max

and the limit on the number of preemptions holds regardless of the interarrival times of the transactions.

The above results can be generalized to find the maximum number of active tasks in the system when

the condition on event interarrival times and transaction deadlines of Theorem 3 cannot be guaranteed. In

this case, it is possible to bound the number of future instances of a transaction that can possibly preempt

a transaction instance.

Theorem 4: An instance of a transaction, Γ(i), can be preempted by a maximum of kM future instances

of the same transaction, i.e., the last instance that can preempt Γ(i) is Γ(i + kM), where

kM =

⌊

∆max − ∆min

T

⌋

(2)

Proof: If we assume periodic transactions, which is the worst-case assumption, then Γ(i) will be

activated at time iT . Its longest deadline will be iT +∆max. The i+k-th instance of the same transaction

will be activated at time (i + k)T , and the shortest deadline of its tasks will be (i + k)T + ∆min. The

preemption is possible if (i + k)T + ∆min < iT + ∆max, which is true if k < ∆max
−∆min

T
. In addition, k

must be an integer; hence Equation 2.

The bound on the number of preemptions occurring at any given time can be used to bound the number

of task frames that are active and need to be stored in the system stack at any given time. This bound can

be used to provide a better estimate of the amount of RAM memory that is required for the execution of

the system.

VI. PROOF OF OPTIMALITY FOR LA AND JLA

In this section, we demonstrate that the task synthesis algorithms of both LA and JLA are optimal under

EDF scheduling. The following theorems prove that task sets generated by LA and JLA are EDF schedulable

if and only if the task set produced by one-to-one mapping of tasks to functions is schedulable under

EDF. Given that EDF scheduling is optimal in the case of independent tasks, then both JLA and LA are

also optimal scheduling algorithms in the case of independent function trees.

If scheduling overheads are considered, then JLA produces less context switches and it is clearly to be

preferred over the other methods.

In the following, the term Full Deadlines refers to the deadline assignment policy giving a task a

deadline equal to its minimum path deadline.

We first show that, in case of independent trees and functions, a one-to-one mapping (one task per

function) using the Full Deadlines assignment is optimal. Then, we prove that the grouping of functions

into tasks performed by the LA and the JLA algorithms do not compromise schedulability.
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Fig. 11. LA grouping of functional blocks.

A. Full Deadlines optimality

Theorem 5: If a generic DAG system S is mapped into a task set T by assigning a unique task τi for

each functional block Fi, and if every task τi is assigned a deadline di equal to the lowest path deadline

δ among all paths to which block Fi belongs to, then a necessary and sufficient condition for feasibility

of S is that T be EDF feasible.

Proof: S is feasible ⇒ T is EDFfeasible. If S is feasible, then a schedule σ exists such that every

path Pj finishes its computation within its path deadline δj . Every functional block Fi, consequently, must

have ended before the path deadline of all paths to which it belongs: ∀j | Fi ∈ Pj, fi ≤ δj , where fi is the

finishing time for Fi. If di = minj{δj | Fi ∈ Pj} is the minimum path deadline for Fi, we have fi ≤ di.

According to the Full Deadlines assignment, di is also the deadline for task τi (implementing block Fi).

It follows, that the feasible schedule for S is also a feasible schedule for T Since EDF is optimal and a

feasible schedule for T exists, then the task set T is EDF schedulable.

T is EDFfeasible ⇒ S is feasible. If T is EDF feasible, then every task τi completes before its

deadline and so does the corresponding functional block Fi: fi ≤ di. But di = mini{δj | Fi ∈ Pj}, then

fi ≤ di ⇒ ∀j | Fi ∈ Pj, fi ≤ δj . This means that every functional block executes before the deadlines of

all paths it belongs to. Then, S is feasible.

B. LA optimality

The second step is to prove that the LA grouping does not compromise the optimal schedulability of

the Full Deadlines algorithm.

Theorem 6: If a task set T is a one-to-one assignment of functional blocks from a feasible DAG system

S using the Full Deadlines assignment, and T ′ is the task set created by applying the LA grouping to S,

then T is EDF feasible ⇔ T ′ is EDF feasible.

Proof: T is EDFfeasible ⇒ T ′ is EDFfeasible.
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Let Fk = {Fk,1, Fk,2, Fk,n} be the set of functional blocks assigned to the same task τk in T ′ where

Fk,j ≺ Fk,j+1 (Figure 11). They belong to the same set of paths Πk. This means that task τk ∈ T and

all tasks implementing the functional blocks {Fk,1, Fk,2, Fk,n} in T have the same deadline dk,1 = dk,2 =

. . . = dk,n = dk = minl{δl | Pl ∈ Πk} . According to the EDF scheduling rules, tasks with the same

deadline can be scheduled in any order. Hence, if T is EDF feasible, then there exists a feasible schedule

where all the functional blocks sets belonging to the sets Fk for all k, are executed consecutively, from

sk,1 to fk,n. A feasible EDF schedule for T ′ can now simply be constructed by scheduling task τk on

the CPU at time sk,1. τk will finish in fk,n, since it executes for the sum of the computation times of

the functional blocks mapped into it. The task schedule for T ′ is guaranteed to be EDF because the task

deadlines match the deadlines of the functional sets they are replacing.

T ′ is EDFfeasible ⇒ T is EDFfeasible. Let τk be a task in T ′ which contains Fi and Fj , respectively

assigned to τi and τj in T . If T ′ is schedulable, then fk ≤ dk. According to the Simple Partitioning rules,

Fi and Fj must necessarily belong to the same set of paths Π, so their minimum path deadlines di and

dj are the same, and they are equal to dk. Therefore, independently of the order of the two blocks, since

τk executes both, fi ≤ di and fj ≤ dj, making the task set T feasible.

C. JLA optimality

Finally, we assume that a DAG system is partitioned using the JLA algorithm, with the Full Deadlines

assignment. We need to demonstrate that such a task set is schedulable if the task set generated with LA

is schedulable, and vice versa.

Once again, the proof exploits equivalence of the deadlines of all the LA tasks that are merged into a

single JLA task. In fact, when a functional block Fi has more than one output, the successor Fj, which

is assigned to the same task by JLA is the one on the path with the shortest deadline (Figure 12).
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Theorem 7: If a task set T is created using the LA algorithm from a DAG system S, and T ′ is the

reduced task set created with JLA, T is feasible ⇔ T ′ is feasible.

The proof is similar to the proof of LA optimality, considering that JLA tasks group LA tasks with

identical deadline similarly to the way LA tasks group functional locks with the same deadlines. The

interchangeability of tasks with the same deadline in an EDF schedule can be used to demonstrate

equivalence with respect to EDF schedulability of the two sets.

VII. CONSIDERATIONS ON IMPLEMENTATION

As described in Section IV-A, the way the task set is generated requires the operating system to support

some special functionality that is not available from current operating systems. In particular, if a task can

be activated by more than one task, and hence by more than one event, it must be assigned a different

base deadline depending on which event the activation comes from. Therefore, each activation has to carry

information on the event that originated the activation itself and on the deadline of the shortest path that

can be originated from the task. Also, since pending activations must be buffered, they must be served in

an earliest deadline order.

While the shortest relative deadline among all the possible outgoing paths can be statically computed, the

activation time of the event and the external source that triggered the execution path must be dynamically

communicated along the chain of computation by adding the appropriate information to the signal.

Implementing such mechanism can be hard, since it demands for additional run-time overheads, limiting

its adoption in embedded systems with limited computational resources.

In Section IV-E, we presented a mechanism to transform a precedence graph in a set of precedence

trees (transactions), by splitting tasks that have more than one incoming activation. In this way, every task

is assigned a fixed base deadline. Therefore, all tasks activated by one external event can be activated

at the same time with their own fixed base deadline. This can be easily implemented also as an user

space library, without any modification to the scheduling mechanism. However, the transformation method

generates many more tasks and resources, and this in turn may require more overhead and more memory

to implement the application.

VIII. A SAMPLE CASE

In this section, we show the advantage of using our methodology, based on EDF scheduling, over the

methodology in [15] that is based on fixed priority scheduling. The authors of [15] mention a heuristic

algorithm that tentatively assigns functional blocks and priorities to tasks until a schedulable solution is

found. However, since the algorithm was not described in detail, we could not compare it against ours.

Rather, we will try to use both rate monotonic and deadline monotonic priority assignments.



25

Fig. 13. An example of DAG not schedulable by fixed priority.

The example DAG is shown in Figure 13. The WCET of the blocks are the following:

Block F1 F2 F3 F4 F5 F6 F7

γ 30 10 30 20 50 40 35

The relative deadlines assigned to the paths are the following:

• P1 = [e1, F1, F3] has a deadline of ∆1 = 100;

• P2 = [e1, F1, F2, F5] has a deadline of ∆2 = 200;

• P3 = [e1, F1, F2, F4] has a deadline of ∆3 = 300;

• P5 = [e2, F6, F7] has a deadline of ∆4 = 150.

Finally, the period of e1 is T1 = 300 while period of e2 is T2 = 150.

By applying algorithm JLA to the DAG, the following tasks are derived:

Task τ1 τ2 τ3 τ4

Components F1, F3 F2, F5 F4 F6, F7

C 40 50 50 75
Db 100 200 300 150
T 300 300 300 150

Now we suppose that these tasks are assigned fixed priorities, using rate monotonic: tasks τ1, τ2 and τ3

have priority 1 (the lowest) while task τ4 has priority 2 (the highest). By applying response time analysis,

task τ1 has a worst case response time of 115 that is greater than its base deadline. Therefore, the system

is not schedulable with this priority assignment.

Another possibility is to try a deadline monotonic priority assignment. In this case, τ1 has priority 4

(the highest), τ4 has priority 3, τ2 has priority 2 and τ3 has priority 1 (the lowest). Again, by applying

response time analysis, we obtain a worst case response time for τ2 of 240, greater than its deadline.

Instead, by applying Equation 1 the system results schedulable by EDF.

Please note that the example is not simply a pathological case, but it is representative of an entire class

of software models where a single external event triggers more paths with different deadlines.

IX. EXPERIMENTS

We performed several experiments on randomly generated task graphs in order to verify the time and

schedulability efficiency of the algorithms, when compared to state of the art solutions based on fixed
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priority scheduling. The following parameters were subject to evaluation:

• feasibility: to verify the efficiency in terms of the percentage of functional graphs that can be

scheduled;

• grouping efficiency: to check the size of the generated task set.

• execution time: to give an indication upon the size of the problems (in terms of number of functional

blocks) that can be effectively solved by our algorithms.

A. Experimental setup

We compared our algorithms against an implementation of [?] where fixed priorities are assigned

according to the Rate Monotonic or the Deadline Monotonic rule. We tested the scheduling algorithms

with randomly generated graphs of functional blocks, produced using the TGFF, Task Graphs For Free

tool. The TGFF tool, now at version 3.0, is widely used in the research community on embedded systems

and almost a de-facto benchmark when testing algorithms working on graphs of tasks or functional blocks.

Unfortunately, when used for generating graphs with timing constraints, it only provides limited control

over the generation of the deadlines and the activation rates of tasks and events.

The TGFF tool generates task graphs (graphs of functional blocks, for the purpose of our study) based on

the configuration parameters defined in the tgffopt input file and it produces a tgff file with a text description

of the graph. The graph description produced by TGFF contains a table with the timing attributes that are

assigned to each block: computation time, period, and also deadline (in the last version of the program).

In our case, period and deadline are used in events (root nodes) and outputs (leaf nodes), respectively

and ignored in other nodes. Unfortunately, TGFF assigns deadlines to nodes in a deterministic way, based

only on their distance from the root node (in direct proportion). Furthermore, even if the current version

of the program allows generating graphs with multiple root nodes, the graph generator assigns the same

activation period to all of them.

In order to provide the additional flexibility and generality required for our real-time analysis, we

wrote a feeder program (in C++), which creates the tgffopt option file, setting the parameters required

by TGFF for graph generation and we also developed a post-processing program then transforms the tgff

output file by modifying the deadlines and the activation rates of the leaf and root nodes. Uncertainty

in the values of periods and deadlines is obtained by multiplying the TGFF values, by random values

uniformly drawn from the interval [1.0, 3.0]. Activation periods are finally rounded up in quanta to lower

the hyperperiod and the complexity of the EDF test. The final output of the post-processing phase is an

XML file describing the functional graph. The XML file is processed by an analysis and simulation tool

(written in Java) implementing the grouping and schedulability analysis algorithms. The whole process is

invoked repeatedly by a bash script which assigns different parameters at every cycle.
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Fig. 14. Percentage of schedulable graphs when D/T ≈ 1 (nf = 25 ± 10).

There is a large number of parameters that can be used to define a functional graph:

• the number of (external) event nodes nev

• the number of functional nodes nf

• the (average) in-degree nin and out-degree nout of the nodes

• the average utilization U for the entire functional set

• the average ratio between the Deadline of the leaf node with highest depth and the period of its

triggering event (D/T )

B. Results

In the first series of tests we used JLA and LA for grouping functional blocks into tasks and then

we compared our methods against an implementation of Saksena’s schedulability analysis where fixed

priorities are assigned according to the event rates (in Rate Monotonic fashion), or according to the smallest

deadline among all the output nodes that can be triggered by the block (that is, Deadline Monotonic).

In this case, we selected nev = 3± 1 external events, and nf = 25± 10 functional blocks. Initially, we

ran the test with the maximum deadlines approximately equal to the periods D/T ≈ 1, then the ratio was

increased with steps of 0.1, until D/T ≈ 2. For each set of values, we tried different utilization values,

from U = 0.1 to U = 1.0.

In all cases, our algorithm performed much better than its fixed priority scheduling counterparts.

Figure 14 shows the percentage of schedulable sets when the deadline approximately equals the activation

period. When the ratio D/T is increased, an increasing number of task sets is found schedulable, but the

gap between our EDF-based method and fixed-priority based algorithms widens even more (Figure 15).

We then went back to our initial test with a deadline/period approximate ratio of 1, and spanned the

results with a variable number of average functional blocks, from 5±1 (Figure 16) to 50±10 (Figure 17).

The percentage of schedulable sets did not change significantly with the number of functional blocks.
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Fig. 15. Percentage of schedulable graphs when D/T ≈ 2 (nf = 25 ± 10).
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Fig. 16. Percentage of schedulable graphs when the number of functional blocks is 5 ± 1 (D/T ≈ 1).

The slight increase in the performance of our method for larger sets and the corresponding decrease for

fixed-priority scheduling should be considered within the range of experimental uncertainty.

To test for grouping efficiency, we generated graphs with increasing numbers of average functional

blocks, and tested the grouping obtained with LA and JLA in terms of number of tasks. We ran batches

of 500 seeds, with 5 to 50 average blocks for each seed. Every test batch had different values for the

maximum in-degree and out-degree (number of input and output links for each block, respectively). We

ran batches with maximum in-degrees of 1 and 2, and maximum out-degrees of 2 to 4.

Figures 18 and 19 show the result for the two extreme settings ((in-degree,out-degree) respectively

equal to (1,2) and (2,4)). The graphs clearly show that, unless the graph is very sparsely connected, only

JLA results in a number of tasks significantly smaller than the number of functional blocks and, more

importantly, it produces tasks of larger size and less subject to large context switch overheads.

All the experiments done so far have shown that our methodology is computationally tractable: on a

2Ghz AMD Athlon 64, running algorithm JLA and the corresponding scheduling analysis on a DAG with

100 functional blocks takes less than 4 seconds.
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Fig. 17. Percentage of schedulable graphs when the number of functional blocks is 50 ± 10 (D/T ≈ 1).
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Fig. 18. Percentage of generated tasks with respect to number of blocks, assuming max in-degree = 1 and max out-degree = 2.

X. CONCLUSIONS

The paper presents a model for the description of the dataflow architecture of embedded systems and

algorithms for the synthesis of the architecture-level design, the automated logical-to-architectural mapping

and schedulability analysis of the resulting task set. Our proposal is based on runtime support from a

real-time operating system capable of earliest deadline scheduling. The presented solution allows to reduce

the overheads and excessive priority inversions of existing solutions that map all functional blocks (or

reactions) into a single thread or assign a thread of execution to each action or possibly to each active

object. Sample cases show how our method can possibly improve the schedulability of the dataflow graph,

implemented in a set of threads scheduled with dynamic priorities in comparison with existing solutions

based on fixed priority.

We are currently investigating the consequences of removing the limitation of mapping each functional

block on to a single task.

Extensions of the procedure to more general models and multiprocessor platforms are currently being

investigated.
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Fig. 19. Percentage of generated tasks with respect to number of blocks, assuming max in-degree = 2 and max out-degree = 4.
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