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Abstract. We consider in this paper an extension of Datalog with mechanisms for temporal,
nonmonotonic and nondeterministic reasoning, which we refer to as Datalog++. We show,
by means of examples, its flexibility in expressing queries concerning aggregates and data
cube. Also, we show how iterated fixpoint and stable model semantics can be combined to the
purpose of clarifying the semantics of Datalog++ programs, and supporting their efficient
execution. Finally, we provide a more concrete implementation strategy, on which basis the
design of optimization techniques tailored for Datalog++ is addressed.

Notes. This paper is a revised, extended version of two extended abstracts, appeared as [8,
9]

Keywords: Logic Programming, Databases, Negation, Nondeterminism, Stable lmodels.
ACM-CR Subject Classification: D.1.6, 1.2.3, H.2.3, F.1.3, F.3.2, F.3.3.

1 Introduction

Motivations. The name Datalog++ is used in this paper to refer to Datalog extended with
mechanisms supporting:

— temporal reasoning, by means of temporal, or stage, arguments of relations, ranging over a
discrete temporal domain, in the style of Datalogis [4];
— nonmonetonic reasoning, by means of a form of stratified negation w.r.t. the stage arguments,

called XY-stratification [23];
— nondeterministic reasoning, by means of the nondeterministic choice construct (11}

Datalog++, which is essentially a fragment of LDL+-+ [2], and is advocated in [24, Chap. 10],
revealed a highly expressive language, with applications in diverse areas such as Al planning
3], active databases [22], object databases 7], semistructured information management and Web
restructuring [10]. However, a thorough study of the semantics of Datalog++ is still missing, which
provides a basis to sound and efficient implementations and optimization techniques. A preliminary
study of the semantics for a generalization of Datalog++ is sketched in [3], but their approach

presents some inconveniences that are fixed in this paper.



Objective. The goal of this paper is to provide a declarative semantics for Datalog+-, which
accommodates and integrates the temporal, nonmonotonic and nondeterministic mechanisms, and
which justifies the adoption of an iterated fixpoint semantics for the language, thus making it viable
an efficient implementation. B

We proceed as follows:

1. anatural, non effective, semantics for Datalog-++ is assigned using the notion of a stable model;

9. an effective semantics is then assigned using an iterative procedure which exploits the stratifi-
cation induced by the progression of the temporal argument;

3. in the main result of this paper, we show that 1. and 2. are equivalent, provided that a natural
syntactic restriction is fulfilled, which imposes a disciplined use of the temporal argument
within the choice construct,

On the basis of this result, we introduce a more concrete operational semantics, and a repertoire
of optimization techniques, especially tailored for Datalog++. In particular, we discuss how it is
possible to support efficient history-insensitive temporal reasoning by means of real side-effects
during the iterated computation [16].

Related Work. Nondeterminism is introduced in deductive databases by means of the choice
construct. The original proposal in [14] was later revised in [20], and refined in [11]. These studies ex-
posed the close relationship connecting nonmonotonic reasoning with nondeterministic constructs,
leading to the definition of a stable model semantics for choice. While the declarative semantics
of choice is based on stable model semantics which is untractable in general, choice is amenable
to efficient implementations, and it is actually supported in the logic database language LDL [17]
and its evolution LDLA++ [2]. :

On the other side, stratification has been a crucial notion for the introduction of nonmonoetonic
reasoning in deductive databases. From the original idea in [1] of a static stratification based on
predicate dependencies, stratified negation has been refined to deal with dynamic notions, as in the
case of locally stratified programs [18] and modularly stratified programs [19]. Dynamic, or local,
stratification has a close connection with temporal reasoning, as the progression of time points
yields an obvious stratification of programs—consider for instance Datalogs (4]. It is therefore
natural that non monotonic and temporal reasoning are combined in several deductive database
languages, such as those in [15], [13], [10], [24, Chap. 10}. '

However, a striking mismatch is apparent between the above two lines of research: nondeter-
minism leads to a multiplicity of {stable) models, whereas stratification leads to a unique {perfect)
model. So far, no comprehensive study has addressed the combination of the two lines, which oc-
curs in Datalog++, and which requires the development of a non deterministic iterated fizpoint
procedure. We notice however the mentioned exception of [3], where an approach to this problem
is sketched with reference to locally stratified programs augmented with ckoice. In the present pa-
per, we present instead a thorough treatment of Datalog-++ programs, and repair an inconvenience
of the approach in [3] concerning the incompleteness of the iterated fixpoint procedure.

2 Query Answering with Datalog++

Datalog, the basis of deductive databases, is essentially a friendly syntax to express relational
queries, and to extend the query facilities of the relational calculus with recursion. Datalog’s sim-



plicity in expressing complex queries impacted on the database technology, and nowadays recursive
queries/views have become part of the SQL3 standard. Recursive queries find natural applications
in all areas of information systems where computing transitive closures or traversals is an issue,
such as in bill-of-materials queries, route or plan formation, graph traversals, and so on.

However, it is widely recognized that the expressiveness of Datalog’s (recursive) rules is limited,
and several extensions, along various directions, have been proposed. In this paper, we address in
particular two such directions, namely nondeterministic and nonmonotonic reasoning, supported
respectively by the choice construct and the notion of XY-stratification. We introduce these mech-
anisms by means of a few examples, which are meant to point out the enhanced query capabilities.
The extended Datalog query language is referred to with the name Datalog++. B

Nondeterministic choice. The choice construct is used to nondeterministically select subsets
of answers to queries, which obey a specified FD constraint. For instance, the rule

st_ad(St, Ad) « major(St, Area), faculty(Ad, Area), choice((St), (Ad)).

assigns to each student a unique, arbitrary advisor from the same area, since the choice goal
constrains the st.ad relation to obey the FD (St — Ad). Therefore, if the base relation major is
formed by the tuples {< smith,db >, < gray,se >} and the base relation faculty is formed by
the tuples {< brown,db >, < scott,db >, < miller,se >1, then there are two possible outcomes
for the query st_ad(St,Ad): either {< smith,brown >, < gray,miller >} or {< smith,scott >
, < gray,miller >}. In practical systems, such as LDL++, one of these two solutions is computed

and presented as a result.
Thus, a first use of choice is in computing nondeterministic, nonrecursive queries. However,
choice can be combined with recursion, as in the following rules which compute an arbitrary

ordering of a given relation r: :

ord_r(root,root).
ord.r(X,Y) < ordr(.,X),r(Y), choice(X,Y), choice(Y, i}

Here root is a fresh constant, conveniently used to simplify the program. If the base relation r is
formed by k tuples, then there are k! possible outcomes for the query ord.r(X,Y), namely a set:

{ordr(root,root), ord r(reot, ty),ordr(ty, ta),...,ord.r(te_1, ty)}

for each permutation {ty,...,tyx} of the tuples of r. Therefore, in each possible outcome of the
mentioned query, the relation ord.r is a total ordering of the tuples of r. The double choice
constraint in the recursive rule specifies that the successor and predecessor of each tuple of r is
unique.’

Interestingly, choice can be employed to compute new deterministic queries, which are inex-
pressible in Datalog, as well as in pure relational caleulus. A remarkable example is the capability
of expressing aggregates, as in the following program which computes the summation aggregate
over a relation r, which uses an arbitrary ordering of r computed by ord.r:

sum.r(root,0).
sum.r(Y,N) + sumx(X,M),ordr(X,Y),N =M +Y.

total_sum r{N) & sum _r(X,N), ~ord.r(X,.).



Here, sum.r (X,N) is used to accumulate in N the summation up to X, with respect to the order given
by ord.r. Therefore, the total sum is reconstructed from sum_r (X, N) when X is the last tuple in the
order. Notice the use of (stratified) negation to the purpose of selecting the last tuple. In practical
Janguages, such as LDL++, some syntactic sugar for aggregation is used as an abbreviation of the
above program [23]: :

total _sum_r{sum < X >} + r(X).

On the basis of this simple example, more sophisticated forms of aggregation, such as datacube and
other OLAP functions, can be built. As an example, consider a relation sales(Date, Department,
Sale), and the problem of aggregating sales along the dimensions Date and Department. Three
aggregation patterns are then possible, corresponding to the various facets of the datacube: <
Date, * >, < %, Department >, < *,* >. The former two patterns correspond to the aggregation of
sales along a single dimension (respectively Department and Date), and can be obtained from the
original relation by applying the method shown above. The latter pattern, then, can be obtained
by recursively applying such method to one of the two patterns previously computed, in order to
aggregate along the remaining dimension. In case of several dimensions along which to aggregate
we can simply repeat the process, aggregating at each step along a new (i.e., still non-aggregated)
dimension.

A thorough account on programming with nondeterminism in deductive databases can be found
in [6,12]. ,

The semantics of choice is assigned using the so-called stable model semantics of Datalog— pro-
grams, a concept originating from autoepistemic logic, which was applied to the study of negation
in Horn clause fanguages by Gelfond and Lifschitz [5]. To define the notion of a stable modei we
need to introduce a transformation H which, given an interpretation I, maps a Datalog— program
P into a positive Datalog program H(P,I):

H(P,I) = {A{—Bl,---,Bn l A{—Bl,...,Bn,—Cl,...,—'Cm € gTOUﬂd(P) M {C;,...,Om}ﬂf =®}

Next, we define:
Sp(I) =Tywpn Tw

Then, M is said to be a stable model of P if Sp(M) = M. In general, Datalog— programs may
have zero, one or many stable models. The multiplicity of stable models can be exploited to give
a declarative account of nondeterminism. '

We can in fact define the stable version of a program P, SV(P), to be the program transfor-
mation where all the references to the choice atom in a rule 7 : H + B, choice(X,Y) are replaced
by the atom chosen(X,Y), and define the chosen; predicate with the following rules:

chosen, (X, Y) + B, ~diffchoice.(X,Y).
diffchoicer(X,Y) + chosen,{X,Y'),Y # Y.

where, for any fixed value of X, each choice for Y inhibits all the other possible ones via diffchoice,,
so that in the stable models of SV (P) there is (only) one of them. Notice that, by construction, each
occurrence of a choice atom has its own pair of chosen and diffchoice atoms, thus bounding the
scope of the atom to the rule it appears in. The various stable models of the transformed program
SV (P) thus correspond to the choice models of the original program.



XY-programs. Another notion used in this paper is that of XY-programs originally intreduced
in [23]. The language of such programs is Duatalogys, which admits negation on body atoms and &
unary constructor symbol, used to represent a temporal argument usually called the stage arqument.
A general definition of XY-programs is the following. A set P of rules defining mutually recursive
predicates, is an XY-program if it satisfies the following conditions:

1. each recursive predicate has a distinguished stage argument;
2. every recursive rule 7 is either an X-rule or a Y-rule, where:
— 7 is an X-rule when the stage argument in every recursive predicates in 7 is the same
variable,
— ris a Y-rule when (i) the head of r has a stage argument s(J), where J is a variable, (ii)
some goal of r has J as its stage argument, and (iii) the remaining recursive goals have
either J or s(J) as their stage argument.

Intuitively, in the rules of XY-programs, an atom p{J, ) denotes the extension of relation p at the
current stage (present time) J, whereas an atom p(s(J),.) denotes the extension of relation p at
the next stage (Future time) s(J). By using a different primed predicate symbol p' in the p(s(J),.)
atoms, we obtain the so-called primed version of an XY-program. We say that an XY-program is
X Y-stratified if its primed version is a stratified program. Intuitively, if the dependency graph of
the primed version has no cycles through negated edges, then it is possible to obtain an ordering
on the original rules modulo the stage arguments. As a consequence, an XY-stratified program is
also locally stratified, and has therefore a unique stable model that coincides with its perfect model
[18]. :
Let P be an XY-stratified program. Then, for each ¢ > 0, define F; as

P; = {r|s'(nil)/I] | r € P, 1 is the stage argument of the head of r}

(here r[z/I] stands for r where I is replaced by z) i.e,, F; is the set of rule instances of P that
define the predicates with stage argument s'(nil} = i. Then the iterated fixpoint procedure for
computing the (unique) minimal model of P can be defined as follows:

1. compute My as the minimal model of Fy;
2. for each 7 > 0 compute M; as the minimal model of P; U M;_i.

Notice that for each j > 0, P; is stratified by the definition, and hence its perfect model Mj is
computable via an iterated fixpoint procedure.

In this paper, we use the name Datalog++ to refer to the language of XY-programs augmented
with choice goals.

3 A Semantics for Datalog++4

When choice constructs are allowed in XY-programs, a multiplicity of stable models exists for
any given program, and therefore it is needed to clarify how this phenomenon combines with the
iterated fixpoint semantics of choice-free XY-programs. This task is accomplished in three steps.

1. First, we present a general result stating that, whenever a Datalog~ program P is stratifiable
into a hierarchy of recursive cliques G4, @z, ... , then any stable model of the entire program
P can be reconstructed by iterating the construction of approximating stable models, each
assoclated to a clique. :



2. Second, we observe that, under a syntactic restriction on the use of the choice construct
that does not compromise expressiveness, Datalog++ programs can be naturally stratified
into a hierarchy of recursive cliques Qq,@z,... , by using the temporal arguments of recursive
predicates.

3. Third, by the observation in 2., we can apply the general result in 1. to Datalog++ programs,
thus obtaining that the stable models of the entire program can be computed by an iterative
fixpoint procedure which follows the stratification induced by the temporal arguments.

Given a (possibly infinite) program P, consider a (possibly infinite) topological sort of its distinct
recursive cliques @) < Qz... < @ < ..., induced by the dependency relation over the predicates
of P. Given an interpretation I, we use the notation I; to denote the subset of atoms of I whose
predicate symbols are predicates defined in clique @;.

The following observations are straightforward:

- Usso fi = 1, and analogously Uise @i = P; _
— the predicates defined in ;1. depend only on the definitions in QL U...U;; as a consequence,
the interpretation of Qi1 is I; U... UL U Iy (ie., we can ignore U449 5)-

The next definition shows how to transform each clique, within the given topological ordering, in a
self-contained program which takes into account the information deduced by the previous cligues.
Such transformation resembles the Gelfond-Lifschitz transformation reported in Sect. 2.

Definition 1. Consider a program P, a topological sort of its cligues Q1 < Qz... < Qi..., and an
interpretation I = | J;5q fi. Now define

Q{"Ed(” — {H(""Bla--'aBﬂ { H+ By,...B,,C1,..,Cn € g?‘OUﬂd(Qi)

A Bi,..., By, are defined in @ '

ACy, ... Cm are defined in (Q1U...UQi—1)

/\flU...UIiW1E=01,---7Cm} H

The idea underlying the transformation is to remove from each clique @; all the dependencies
induced by the predicates which are defined in lower cliques. We abbreviate Q:Ed(” by @7¢d, when
the interpretation I is clear by the context.

Ezample 1. Consider the program P = {p+q,r. g+ 1,t. T+ q,s.} and the cliques @) =
{qé1r,t. T4 qs.}and @ = {p+ q,r}. Now, consider the interpretation I = {s,q,r}. Then
Qr*d = {q¢r,t. reqgs}and Q5= {p+ .} s

The following Lemma, 1 states the relation between the models of the transformed cliques and
the models of the program. We abbreviate Iy U... U I; with ] ), and analogously for Q.

Lemima 1. Given a (possibly infinite) Datalog—~ program P and an interpretation I, let {1 <
Q... < Qs... and Iy < Is... < ;... be the topological sorts on P and I induced by the dependency
relation of P. Then the following statements are equivalent: :

1. Sp(I) =1
2. Wi > 0. Sgrea(ls) = I
3. Vi > 0. S (I) =14



Proof sketch. The proof is structured as follows: (1) < (3) and (2) <= (3).

(3) == (1) We next show that (a) Sp(I) C I, and (b) I C Sp({).

(a) Each rule in H (P, I} comes from a rule r of P, which in turn appears in QW for some i,
and then ¥ is a model of 7, by the hypothesis. No atom in I\ [ (#) appears in 7, so also [
is model of r. T is then a model of H(P, I), and hence Sp(I) C 1.

(b) If A €I, then A€ I9 for some i, so (by the hypothesis and definition of Sp) for each I*
such that I* = Tggu rn)(I7), A € I"*. Moreover, for each I' such that I' = Typ,n(I'),
it is readily checked that for each i I') = TH{Q(,-)’I{,-))(I’("')), and then I C Sp(I).

(1) = (3) We observe that I = min{I* | I* = Ty(p 1) (I*}}, which implies:

19 = min{ " | I*7 = Ty 1o ()} _

(2) == (3) We proceed by induction on i. The base case is trivial. In the inductive case, we next
show that (a) Sgw (1) C I, and (b) vice versa.

(a) Notice that from the induction hypothesis, ) |= QU—1), and then it suffices to show that
It = Q; (by a simple case analysis). .

(b) Exploiting the induction hypothesis, %0 ¢ SQu“u(I('i‘l)) = Sq(a_l)(I{“)) - SQ(&)(I(i))
(by definition of H{P,I)). We now show by induction on n that Vrn > 0 T}}(Q_,,d 1) -

T oy The base casen = 01is trivial: In the induction case (n > 0),if A € TE(Q".‘“,I;)’

then there exists a rule 4 « by, ..., by in H(Q7*, I;} such that {b1,...,bx} C TI’}(_érgd 1
Now, by definition of H and Q7°?, there exists a rule:

A+ bls--'abha_'cls"'a_'cj!dls'-'adka_'e}a-'-a_'el.

in @; such that {¢1,...,¢;}NJ; = and I6=1 b= dy A...Adip A=ey A. .. A—ep. Observe now
that by definition of H, A ¢ b1, ..., by, d1,....dx € H{Q', I'®). Furthermore, by the in-
duction hypothesis and 10-1) C Sow (I9), we have the following: {b1,...,bn,d1,...,dk} C
TI‘:,{Q(,-)J(,.)}. Hence, by definition of T¥, A € TE(Q(‘),I(”)’ thatis A € SQ(;y(I('i)). This com-
pletes the innermost induction, and we obtain that [; = Sgrea(I;) C Sgo (1 M,

(3) == (2) We proceed is a way similar to the preceding case. To see that Vi I C SQ_?d(Iz-),

it suffices to verify that for each rule instance r with head A, the following property holds:
¥n A € TE,(Q(,-)J“)} = A€ T‘I}(Q“d 1y For the converse, we simply observe that I; is a model

of Qred, O

This result states that an arbitrary Datalog— program has a stable model if and only if each its
approximating clique, according to the given topological sort, has a local stable model. This result
gives us an intuitive idea for computing the stable models of an approximable program by means
of the computation of the stable models of its approximating cligues.

Notice that Lemma 1 holds for arbitrary programs, provided that a stratification into a hierar-
chy of cliques is given. In this sense, this result is more widely applicable than the various notions
of stratified programs, such as that of moedulerly stratified programs [19], in which it is required
that each clique Q7*? is locally stratified. On the contrary, we do not require here that each clique
is, in any sense, stratified. This is motivated by the objective of dealing with non determinism, and
justifies why we adopt the (nondeterministic) stable model semantics, rather than other determin-
istic semantics for (stratified) Datalog— programs, such as, for instance, perfect model semantics
{18]. ‘



We turn now our attention to XY-programs. The result of instantiating the clauses of an XY-
program P with all possible values (natural numbers) of the stage argument, yields a new program
SG(P) (for stage ground). More precisely, SG{P) = ;5 Is, where

P, = {r[i/I}| ris arule of P, T isthe stage argument of r}.
The stable models of P and SG(P) are closely related:
Lemma 2. Let P be an XY-program. Then, for each interpretation I:
Sp(I)y =1+ Ssapy(I) =1

Proof sketch. We show by induction that ¥n.Tg o p I)({B) = Thp, 7(0); which implies the
thesis. The base case is trivial. For the inductive case, observe that since P is XY-stratified, if
A€ T (D) then for each rule A « By, ..., By € H(P,I) such that {B1, ..., Ba} € T(p(#) =

H(PD)
T}}{SG(P)J)(@), we have A + Bq,..., B, € H{SG(P),I). _
Vice versa, if A € T}}'("Slg(P)_n(@) then for each rule A« By,...,Bn € H(SG(P),I) such that
{Bl,...,Bn}ET}}(SG(PM)(@)=T}}(PJ){@),wehaveA(—Bl,...,BnEH(P,I). ' 0

However, the dependency graph of SG{P) (which is obviously the same as P) does not induce
necessarily a topological sort, because in general XY-programs are not stratified, and therefore
Lemma 1 is not directly applicable. To tackle this problem, we distinguish the predicate symbol p
in the program fragment P; from the same predicate symbol in all other fragments P; with j # i, by
differentiating the predicate symbols using the temporal argument. Therefore, if p(i, x} is an atom
involved in some rule of P, its modified version is p; (x). More precisely, we introduce, for any XY-
program P, its modified version SO(P) (for stage-out), defined by SO(P) = ;50 SO(P); where
SO(P); is obtained from the program fragment F; of SG (P) by extracting the stage arguments
from any atom, and adding it to the predicate symbol of the atom. Similarly, the modified version
SO(I) of an interpretation I is defined. Therefore, the atom p(i,x) is in I iff the atom p;(x) is in
SO(I), where 1 is the value in the stage argument position of relation p.

Unsurprisingly, the stable models of SG(P) and SO(P) are closely related:

Lemma 3. Let P be an XY-program. Then, for each interpretation I:
Ssopy () = I < Ssopy(SO(I)) = SO).
Proof sketch. It is easy to see that SO(SG(P)) = SO(P). Hence, the least Herbrand models of
SO(H(SG(P),I)) and H(SO(P),SO(I}) coincide. a
Our aim is now to conclude that, for a given Datalog+-+ program P

(a) SO(P)o < SP(F)1 < - is the topological sort over SO(P) in the hypothesis of Lemma 1 ;
recall that, for i > 0, the clique SO(P); consists of the rules from SO(P) with stage argument
4 in their heads; :

! In general, SO(P); can be composed by more than one clique, so that in the above expression it should
be replaced by SO(P} < -++ < SO(P)}i. However, for ease of presentation we ignore it, since such
general case is trivially deduceable from what follows.



(b} by Lemmas 1, 2 and 3, an interpretation [ is a stable mode.i of P iff I can be constructed as
Uizq fiy where, for i > 0, I; is a stable model of SO(P):MUM), i.e. the clique SO(P); reduced

by substituting the atoms deduced at stages earlier than 4.

On the basis of {b) above, it is possible to define an iterative procedure to construct an arbitrary
stable model M of P as the union of the interpretations Mo, M), ... defined as follows:

Iterated stable model procedure.

Base case. Mp is a stable model of the bottom clique SO{P)o.
Induction case, Fori > 0, M; is a stable model of SO(P);Ed(M(l]}, i.e. the clique SO(P); reduced
with respect to Mo U -+ - U M;_q. !

The interpretation M = {J,»o M; is called an iteraied stable model of P.

It should be observed that this construction is close to the procedure called sterated choice fizpoint
in [3]. Also, following the approach of [12], each local stable model M; can in turn be efficiently
constructed by a nondeterministic fixpoint computation, in polynomial time.

Unfortimately, the desired result that the notions of stable model and iterated stable model
coincide does not hold in full generality, in the sense that the iterative procedure is not complete for
arbitrary Datalog++ programs. In fact, as demonstrated by the example beiow, an undisciplined
use of choice in Datalog++ programs may cause the presence of stable models that cannot be
computed incrementally over the hierarchy of cliques.

Ezample 2. Consider the following simple Datalog++ program F:

q(0,2).
q(s(I),p) + q(I,a).
p(1,X) + q{I, X}, choice((), X).

In the stable version SV (P) of P, the rule defining predicate p is replaced by:

p(I,X) + q(I,X),chosen(X).
chosen(X) < g{I,X), ~diffchoice(X).
diffchoice(X) ¢ chosen(Y),Y # L.

It is readily checked that SV (P) admits two stable models, namely {q{0, a), q(s(0),b), p(0,a)} and
{q(0,a), a(s(0}, b), p(s(0),b}}, but only the first model is an iterated stable models, and therefore

ihe second model cannot be computed using the iterated choice fizpoint of {3]. 0

The téchnical reason for this problem is that the free use of the choice construct inhibits the
possibility of defining a topological sort on SO{P) based on the value of the stage argument.
In the Example 2, the predicate dependency relation of SO(SV(P)) induces a dependency among
stage ¢ and the stages j > i, because of the dependency of the chosen predicate from the predicates
q; for all stages 1 > 0.

To prevent this problem, it is suffices to require that choice goals refer the stage argument I
in the domain of the associated functional dependency. The Datalog++ programs which comply
with this constraint are called choice-safe. The following is a way to turn the program of Example
2.into a choice-safe program (with a different semantics):



p(I,X) < q(I,X),choice(I,X).

This syntactic restriction, moreover, does not preatly compromise the expressiveness of the query
language, in that it is possible to simulate within this restriction most of the general use of choice
(see [16]).

The above considerations are summarized in the following main result of the paper, which,
under the mentioned restriction of choice-safety, is a direct consequence of Lemmas 1, 2 and 3.

Theorem 1 (Correctness and completeness of the iterated stable model procedure).
Let P be a choice-safe Datalog++ program and I an interpretation. Then I is a stable model of
SV (P) iff it is an iterated stable model of F. O

The foliowing example shows a computation with the iterated stable model procedure.

Ezample 8. Consider the following Datalog-+ version of the seminaive program, discussed in [23],
which non-deterministically computes a maximal path from node a over a graph g:

delta{0,a).

delta(s(I),Y) + delta(I,X),g(X,¥),-all(I,Y), choice({I,X),Y).
all(I,X) + delta(I,X).

all(s(I),X) « all(I,X),delta(s(I),.).

Assume that the graph is given by g = {{a,b), (b, c},{b,d},{d,e)}. The following interpretations
are carried out at each stage of the iterated stable model procedure:

1. Iy = {deltag(a),allo(a)}.
2. I, = {alli(a),alls(b),deltas(b)}.
3. 1} = {ally(a),ally(b),deltas(c),allz(c)},
IZ = {ally(a), ally(b), deltas(d), ally(d)}
4. I} =012 = {alls(a),alls(b),alls(d},deltag(e),allz(e)}
5. Ij:®forj>3.

By Theorem 1, we conclude that there are two stable models for the program: I' = Ly Ul U I}
and I? = I,Ul; UIZ U 2. Clearly, any realistic implementation, such as that provided in LDL++,
computes non deterministically only one of the possible stable models. O

4 An Operational Semantics for Datalog++

We now itranslate the iterated stable model procedure into a more concrete form, by using rela-
tional algebra operations and control constructs. Following the style of {21}, we associate with each
predicate p a relation’ P — same name capitalized.

The elementary deduction step Tg(J) is translated as an assignment to appropriate relations:

I' =Tu() — Vp € def(Q) P := EVAL(p, Rels)

where Rels = {P| p € def(Q)} U{R} R € EDB}, ie., the relations defined in the clique @
together with the extensional relations, and EVAL(p, Rels) denotes, in the notation of i21], a
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single evaluation step of the rules for predicate p with respect to the current extension of relations

in Rels.

We show the translation of Datalog++ cliques incrementally in three steps, starting with simple
Datalog programs and stratified negation, then introducing the Choice construct and eventually
describing how to translate the full language. The. translation of a whole program can be trivially
obtained by gathering the single translated cliques in the natural order.

Datalog with stratified negation. We can apply straightforwardly the transformation given
in [21] for safe stratified Datalog programs, where each negative literal referring to a previously
computed or extensional relation is translated to the complement of the relation w.r.t. the universe

of constants:

Translation Template 1

Vp defined in @ : P:=0;
repeat
Vp defined in Q¢ lastP = P;
P := EVAL{p, Rels);
until ¥p defined in @ : P = last_F

The translation is illustrated in the following:
Frample 4. The program:

p(nil,a}.
p(X,Y) + p(X,2),arc(z, Y), “badnode(Y).

is translated to the following naive evaluation procedure, where EVAL(...) is instanced with an
appropriate RA query:

P =0
repeat
last_P .= P,

P:={<nil,a>}Urxy (last_P(X, Z)ba Arc(Z,Y) Bad,node(Y)) ;
until P = last P.

Adding Choice. Now we need to translate in relational algebra. terms the operations which
compose a nondeterministic computation. Following the approach of [12,11], we partition the rules
of SV(Q) (the stable version of @) into three sets:

C = chosen rules
D = diff Choice rules
0 =5V(Q)\ (CuD) (ie., the remaining rules)

Now, the non-deterministic fixpoint procedure which computes the stable models of a choice pro-
gram is represented by the following: :
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Translation Template 2

0. Init
¥p defined in SV(Q): P:=0
1. Saturation
repeat
Yp defined in O : last_P:=F
P := EVAL(p, Rels)
until ¥p defined in @ : last P = P
2. Gather choices
Yehosen, defined in C : Chosen!, := EVAL(chosen,, Rels)
3. Termination test
if Vchosen,. defined in C : Chosen!. = (i then stop
4. Choice -
Execute {fairly) the following
a. Choose Chosen!, #
b. Choose t € Chosen,.
¢c. Chosen, := Chosen, U {1}
5. Inhibit other choices
Ydiffchoice, defined in D : Diffchoice, := F VAL{diffchoice,, Rels)
6. goto 1

At step 1, the procedure tries to derive all possible atoms from the already given choices (none
at the first iteration), so that at step 2 it can collect all candidate atoms which can be chosen
later. If there is any such atom (i.e., we have not reached the fixpoint of the evaluation), then we
can nondeterministically choose one of them (step 4) and then propagate the effects of such choice
(step 5) in order to force the FI? which it implies. We are then ready to repeat the process.

Ezample 5. The stable version of the students-advisors example seen in section 2 is the following:

© : st_ad(St, Ad) + major(St, Area), faculty(Ad, Area), chosen(St, Ad).
C: chosen(St,Ad) ¢ major(St, Area), faculty(Ad, Area), ~diffchoice(St, Ad).
P : diffchoice(St, Ad) «+ chosen(St,Ad"), Ad # Ad'.

Following the above translation schema, then, we obtain the following procedure:
0. St_ad := 0; Chosen := §; Dif f choice := §; '
1. St.ad 1= 7se.44 (Magjor(St, Area) ba Faculty(Ad, Area) b Chosen(5t, Ad));
2. Chosen' 1= Tst, 4d (Major(St, Area) 1 Faculty(Ad, Area) 4 Diffchoice(St, Ad)) ;

3. if Chosen’ = 0 then stop;
4p. Choose (fairly) < st,ad >€ Chosen';
4c. Chosen := ChosenU {< st,ad >};

5. Diffchoice := Diffchoice U ({< st >} x {< ad >}) ;
6. goto 1

Notice that some steps have been slightly modified: (i) step 1 has been simplified, since the only
rule in O is not recursive (modulo the chosen predicate); (ii) here we have only one choice rule, so
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step 4a becomes useless and then it has been ignored; (i) step 5 is rewritten in & brief and more
readable form, which has exactly the same meaning of that shown in the above general schema.

Adding XY-stratification. Analyzing the evaluation procedure of an XY-cliques @, it is easy
to see that at each step n the only atoms which can be derived are of the form p(n,...), i.e, ail
with the same stage argument, and then the syntactic form of the rules ensures that such rules
refer only to atoms p(n,...) and p(n —1,...). Then, the stage arguments in each rule serve only to
distinguish the literals computed in the actual stage I from those computed in the previous stage
I-1. .

Therefore, we can safely omit the stage argument from each XY-recursive predicate, renaming
the literals referring to a previous stage (i.e., those having stage [ inside a rule with head having
stage T + 1) by adding the prefix “old”. This does not apply to exit-rules, in which the stage
argument value is significant and then must be preserved. We denote by @' the resulting rules, and
by p' the predicate obtained from each p. :

Ezample 6. The program (-

p(7,a).
p(s(I), X) + q(s(1),%,Y),r(L,X).

is transiated into the new program Q'

p(7,2).
p(X) « q(X,Y),0ld x(X).

Now, it suffices to store in an external register J the value of the stage under evaluation. We
can (i) fire the exit-rules having the same stage argument as J, and then (ii) to evaluate the new
rules in Q' (which are now stratified and possibly with choice) as described in the last two sections.
When we have completely evaluated the actual stage, we need to store the newly derived atoms p
in the corresponding old.p, to increment J and then to repeat the process in order to evaluate the
next stage. The resulting procedure is the following.

Translation Template 3

0. Init
J =10
¥p' defined in @' : old_P' =1
P=10
1. Fire exit rules
Vexit-rule r = p(j,...) ¢ ...:
if J = j then P':= EVAL.(p', Rels)
2. Fire @O’
Translate Q' following the translation templates 1 and 2
3. Update relations
Vp' defined in Q' : old_P' := P’ :
P:=PuU{{N)} x P}
P=0 '
4. J:=J+1goto1
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Here we simply reduce the evaluation of the XY-clique to the iterated evaluation of its stage
instances {step 2) in a sequential ascending order (step 4). Each stage instance is stratified modulo
choice and then it can be broken into subcliques (step 2) which can be translated by template 1 (if
choice-free) or template 2 (if with choice). The resulting relations (step 3) can be easily obtained
by collecting at each stage J the relations P’ and translating them into the corresponding P, i.e.
adding to them the stage argument J.

Egample 7. Let g/2 be an extensional predicate representing the edges of a graph. Consider the
following clique @:

A(nil,¥) + g(a, Y).

A(s(1),Y) « A(I,X), g(X, ¥), ~all(I, ¥).

all(s(1),Y) « all(I,Y),a(s(I),).

all{L,Y) « A(L,Y).

The corresponding transformed clique Q' is:

ro 1 A(nil,Y) « gla, Y). (exit rule)
1t A(Y)  old a'(X),g(X,Y), ~old-all'(Y).
re s all/(Y) « old.all/(Y),8'(.).

rq 1 all(Y) + A'(Y).

Q' can be partitioned into: ezit-rule ro, subclique Q! = {r,} and subclique Q4 = {re,73}. Applying
the translation template 3 we obtain:

0. J:=0; 0ld A" :=§; A" := {,
old Al = 0; All' .=

1.if J = 0 then A" := my(ox=a(G(X,Y)));
2. A" = A' Uy (ald_A'(X) s G(X,Y) e AlV(Y));
9b. All' := All' U [zy (old _Al'(Y) »a A") U A'];

3.0ld.A = AL A= {< J >} x AL A =0

old ALl = All'; All = {< J >} x AUl All' .= 0
4. J:=J+ Lgoto 1

Notice that steps 2a and 2b have been simplified w.r.t. translation template 1, because Q' is not
recursive and then the iteration cycle is useless {indeed it would reach saturation on the first step

and then exit on the second one).

5 Optimization of Datalog++ queries

A systematic study of query optimization techniques is realizable on the basis of the concrete
implementation of the iterated stable model procedure discussed in the previous section. 'We now
sketch a repertoire of ad hoc optimizations for Datalog++, by exploiting the particular syntactic
structure of programs and queries, and the way they use the temporal arguments.

First of all, we observe that the computations of translation template 3 never terminate. An
obvious termination condition is to check that the relations computed at two consecutive stages
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are empty. To this purpose, the translation template 3 can be modified by inserting the following
instruction between step 2 and 3:

if Vp definedin @ : P=old P = @ then stop

A more general termination condition is appiicable to deterministic cliques, under the assumption
that the external calls to the predicates of the clique do not specify particular stages, i.e., external
calls are of the form p(.,...). In this case, the termination condition above can be simplified as

follows:
if Vp defined in Q : P = old_P then stop

Forgetful-fixpoint computations. In many applications {.g., modeling updates and active rules
[22,10]) queries are issued with reference to the final stage only (which represents the commit state
of the database). Such queries often exhibit the form

p(I, 1), _'P(S{I): -)

with the intended meaning “find the value X of p in the final state of p”. This implies that (i} when
computing the next stage, we can forget all the preceding states but the last one (see [23]), and (ii) if
a stage I such that p(I, %), —p(s(1), ) is unique, we can quit the computation process once the above
query is satisfied. For instance, the program in Example 7 with the query AL X}, ~A(s(D), )
computes the leaf nodes at maximal depth in a breadth-first visit of the graph rooted in a. To the
purpose of evaluating this query, it suffices to (i) keep track of the last computed stage only, (i)
exit when the current A is empty. The code for the program of Example 7 is then optimized by:

(i) replacing step 3 with: -
3. 0ld A" = AL A =0
old All' .= All'; All' :=;

i.e., dropping the instructions that record previous stages;
(i) insert between steps 2 and 3 the instruction:

if A= then A := {< J — 1>} x old.4"; stop

Another interesting case occurs when the answer to the query is distributed along the stages, .g.,
when we are interested in the answer to a query such as (_, X), which ignores the stage argument.
In this case, we can collect the partial answers via a gathering predicate defined with a copy-rule.
For instance, the all predicate in Example 7 collects all the nodes reachable from a. Then the
query all{I,X), -all(s(I),.), which is amenable for the described optimization, is equivalent to
the query A(,X), which on the contrary does not allow it. Therefore, by (possibly) modifying the
program with copy-rules for the all predicate, we can apply systematically the space optimized
forgetful-fixpoint.

Delta-fixpoint computations. We already mentioned the presence of a copy-rule in Example 7:

au(s(l), X) + all(I,X),A(s(I), ).
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Iis effect is that of copying all the tuples from the stage I to the next one, if any. We can avoid
such useless space occupation, by maintaining for each stage only the modifications which are to
be applied to the original relation in order to obtain the actual version. For example, the above
rule represents no modification at all, and hence it should not have any effect; indeed, it suffices
to keep track of the additions to the original database requested by the other rule:

all{I,X) + A(I,X).

which can be realized by a supplementary relation all™ containing, at each stage, the new tuples
produced. In the case that we replace the copy-rule with a delete-rule of the form:

a11(s(1), X) « a11{L,X),A(s(I),-), ~q(X).

we need simply to keep track of the negative contribution due to literal =q(X), which can be
stored in a relation all~. Each all(T,...) can then be obtained by integrating all(Q,...) with all
the a11%(J,...) and all™(J,...) atoms, with J < [. This method is particularly effective when
a11(0,...) is a large relation. To illustrate this point, let us assume that the program of Example
7 is modified by adding a new exit rule for relation all: '

all(0,X) + r{X).
where ¥ is an extensional predicate. The resulting code is then the following:

0.J:=0;0ld. A =04 =0
old_AllT = §; All* := 0

1.if J =0 then &' := 7y {ox=a(G(X.Y)));
9. A 1= AU sy {old_A'(X) e G(X,Y) = r(Y)U old_AllF(Y));
2b. Allt = A" U old_AllT; '

3.0ld A = A A {< T >} x AL A =0

old_All' := All'; All := {< T >} x All'; All' = B
4. J:=J+ 1;goto 1

In this way we avoid the construction of relation All, i.e., the replication of relation r at each
stage. In fact, A1l is reconstructed on the fly when needed (step 2a).

Side-effect computations. A direct combination of the previous two techniques gives rise to a
form of side-effect computation. Let us consider, as an example, the nondeterministic ordering of
an array performed by swapping at each step any two elements which violate ordering. Here, the

array a =< a;, -, an > I8 represented by the relation a with extension a{1,a;), ++- ,a(n,an).
ar(0,P,Y) + a(P,Y).
swp(I,P1,P2) + ar(I,P1,X),ar(I,P2,Y), X>Y, P1<P2, choice({I),(P1,P2)).
ar(s(I),P,X) + ar(I,P,X), —swp(I,P,)), —swp(I,., P}, swp(I,_, ).
ar(s(I),P,X) + ar(I,P1,X), swp(I,P1,P).
ar(s(I),P,X) + ar(I,P1,X), swp(I,P,Pt).

?7 ar(I,X,Y),-ar(s{I),-,-)
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At each stage i we nondeterministically select an unordered pair x,y of elements, delete the
array atoms ar(i, pt, x) and ar(i,p2,y) where they appear, and add the new atoms ar(s{i),pl,vy)
and ar(s(i},p2,x) representing the swapped pair. The query allows a forgetful-fixpoint compu-
tation (in particular, stage selected by the query is unique), and the definition of predicate ar is
composed by delete-rules and an add-ruies. This means that at each step we can (i) forget the
previously computed stages (but the last}, and (i) avoid copying most of relation ar, keeping
track only of the deletions and additions to be performed. If the requested update are immedi-
ately performed, the execution of the proposed program, then, boils down to the efficient iterative
computation of the following (nondeterministic) Pascal-like program:

while 37 a[I] > o[l + 1] do swap(a[l],a[l +1]) od

6 Conclusions

The work reported in this paper, concerning fixpoint/operational semantics and optimization of a
logic database language for non deterministic and nonmonotonic reasoning, constitutes the starting
point for an actual implemented system. Such project is currently in progress, on the basis of the
L£DL++ system developed at UCLA. We plan to incorporate the proposed optimization into the
LDL++ compiler, to the purpose of

— evaluating how effective the proposed optimizations are for realistic LDL++ programs, i.e.,
whether they yield better performance or not,

— evaluating how applicable the proposed optimizations are for realistic LDL++ programs, i.e.,
how often they can be applied,

— experimenting the integration of the proposed optimizations with the classical optimization
techniques, such as magic-sets.
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