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ABSTRACT: Drug-induced blockade of the human ether-a-̀go-go-
related gene (hERG) channel is today considered the main cause of
cardiotoxicity in postmarketing surveillance. Hence, several ligand-
based approaches were developed in the last years and are currently
employed in the early stages of a drug discovery process for in silico
cardiac safety assessment of drug candidates. Herein, we present
the first structure-based classifiers able to discern hERG binders
from nonbinders. LASSO regularized support vector machines
were applied to integrate docking scores and protein−ligand
interaction fingerprints. A total of 396 models were trained and
validated based on: (i) high-quality experimental bioactivity
information returned by 8337 curated compounds extracted from
ChEMBL (version 25) and (ii) structural predictor data. Molecular
docking simulations were performed using GLIDE and GOLD software programs and four different hERG structural models,
namely, the recently published structures obtained by cryoelectron microscopy (PDB codes: 5VA1 and 7CN1) and two published
homology models selected for comparison. Interestingly, some classifiers return performances comparable to ligand-based models in
terms of area under the ROC curve (AUCMAX = 0.86 ± 0.01) and negative predictive values (NPVMAX = 0.81 ± 0.01), thus putting
forward the herein proposed computational workflow as a valuable tool for predicting hERG-related cardiotoxicity without the
limitations of ligand-based models, typically affected by low interpretability and a limited applicability domain. From a
methodological point of view, our study represents the first example of a successful integration of docking scores and protein−ligand
interaction fingerprints (IFs) through a support vector machine (SVM) LASSO regularized strategy. Finally, the study highlights the
importance of using hERG structural models accounting for ligand-induced fit effects and allowed us to select the best-performing
protein conformation (made available in the Supporting Information, SI) to be employed for a reliable structure-based prediction of
hERG-related cardiotoxicity.

■ INTRODUCTION

Ether-a-̀go-go (EAG) proteins are potassium channels expressed
in the muscles as well as in various brain regions, endocrine cells,
and heart. The EAG-related gene (ERG) channels represent an
EAG subfamily including three isoforms, namely, Kv11.1,
Kv11.2, and Kv11.3, all characterized by the coassembly of
four identical α-subunits each containing six transmembrane
helices.1 Commonly known as the human ether-a-̀go-go-related
gene (hERG), the human isoform Kv11.1 has attracted
increasing interest over the last years since its dysfunction is
associated with prolongation of the QT interval (i.e., long QT
syndrome, LQTS) inducing ventricular arrhythmia (torsades de
pointes, TdP), which may cause ventricular fibrillation and
sudden death.2−4 Since LQTS can be the result not only of
congenital dysfunctions but also of the drug-induced block of
the channel,5 hERG is today recognized as a primary antitarget in
the screening of drug candidates. It is worth noting that in the
last years, many pharmaceuticals from multiple drug classes

including antihistamines,6 antiarrhythmics,7 antipsychotics,8

antimalarials,9 antibiotics,10 and gastroprokinetic11 were proved
to induce hERG-related LQTS, a side effect responsible for
about 30% postmarketing drug withdrawal between 1953 and
2013 in the US.12 In this context, a meaningful example is
represented by terfenadine, an antihistamine drug removed from
the market by the U.S. Food and Drug Administration (FDA) in
1997 because of its hERG-blocking ability.5,13 As a result, the
assessment of hERG-related cardiotoxicity is today recognized as
a common practice in the preclinical stages of drug discovery,14

in agreement with the regulatory guidelines.15 In this respect,
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different in vitro tests can be employed such as radioactive flux-
based, binding, and fluorescence-based assays.16,17 In particular,
several companies today allow screening of large collections of
chemicals with a reasonable cost. In this context, in silico
approaches are extremely appealing for their ability to support
experimental toxicity testing quickly and at even lower
costs.18−20

To this aim, several ligand-based models have been developed
in the last years by employing quantitative structure−activity
relationship (QSAR) approaches,21−23 pharmacophore mod-
els,24−28 and machine learning algorithms.28−37 The paper by
Ekins et al.24 published in 2002 and reporting the first
pharmacophore model for hERG inhibition is worth noting.
Although developed based on few available experimental data,
the model, containing one positive ionizable and four hydro-
phobic features, was successfully employed in the last two
decades. In the same year, Cavalli et al.26 published a
pharmacophore model showing that most of the hERG blockers
are flexible molecules bearing a central tertiary amine function
and at least two aromatic moieties.
Although ligand-based models can provide good predictive

performances, their application for screening compounds
spanning very different classes is limited by their restricted
applicability domain38 as they are usually developed from
training sets containing a limited number of congeneric
analogues.
In this context, employing structure-based approaches,

usually characterized by higher interpretability, can represent a
valuable strategy to overcome this limitation14 and can be
efficiently used in consensus strategies in combination with
ligand-based classifiers.39,40 In particular, in the last few years,
molecular docking has emerged as a valuable strategy to develop
classification models in the context of predictive toxicology.41,42

Such a computational technique has been widely employed to
shed light on the hERG−drug interactions, often in combination
with other computational (e.g., molecular dynamics, MD)43−45

and experimental (mutagenesis studies) approaches,46,47

allowing the identification of a pool or residues responsible for
drug binding in the so-called hERG central cavity (CC), namely,
F656, Y652, G648, T623, S624, V625, and F557.48 As a result,
although we cannot exclude the presence of other binding sites
(BS) for some hERG binders, as postulated in some papers,49,50

CC is today the recognized pocket for hERG blockers.51 It is
worth noting that most of these structure-based investigations
were performed employing homology models based on the
crystal structure of other K+ channels,52−54 as the first near-
atomic resolution structure of hERG was determined only
recently through single-particle cryoelectron microscopy. In
particular, among the different models deposited by the
authors,55 the one provided with the best resolution (3.7 Å
PDB code: 5VA1) is today emerging as the structure of choice to
perform molecular docking simulations, as highlighted by the
recent literature.44,56−62 Despite providing insights into the
molecular determinants of drug binding, all of these studies
focus on small data sets of compounds already proved to be (or
potentially be) hERG binders. In other words, they do not
provide any useful model for discerning hERG binders from safe
compounds. In this paper, we present the first structure-based
models for predicting the hERG-blocking potential of chemicals
by employing a large collection of high-quality experimental
bioactivity data available from ChEMBL63 (version 25). The
models were derived by employing two popular software
programs for drug discovery, namely, GLIDE64 v.6.5 and

GOLD65 v.5.2 to (i) provide easy-to-run and interpretable
structure-based classifiers of hERG-related cardiotoxicity, (ii)
weigh the hERG structure commonly used for docking
simulations as a valuable three-dimensional (3D) model for
discerning safe from unsafe compounds by comparing its
performance with those returned by a homology model
commonly used in the last years66,67 and another recently
proposed as able to provide docking results in agreement with
experimental Ala-scan data,44 (iii) identify which residues are
likely responsible for hERG−drug binding, and (iv) prompt the
scientific community to consider new hERG structural models
that, by including ligand-induced fit effects, can be used for more
reliable docking simulations. From amore methodological point
of view, the paper represents the first effort to develop classifiers
integrating docking scores (DSs) and protein−ligand inter-
action fingerprints by support vector machine (SVM) LASSO
regularized models, thus providing a new computational
workflow for a comprehensive structure-based approach in the
context of predictive toxicology.

■ MATERIALS AND METHODS
Data Set Construction. A total of 17 952 activity entries

were extracted from ChEMBL63 (version 25) according to the
Target ID (ChEMBL240) assigned to the hERG channel. To
ensure the validity of the data, the database was mined retaining
only entries with the following criteria: (i) entries annotated
exclusively with IC50 (11,144 entries) measures, (ii) data
referring to assays conducted on human targets (“target_organ-
ism” = “Homo sapiens”), (iii) data marked as direct binding
(“assay_type” = “B”), and (iv) entries free of warnings in the
“data_validity_comment” field.68 In addition, molecules with
molecular weights (MW) <200 or >600 Da were removed as
well as duplicates. The resulting data set, hereinafter named
hERG-DB, contains 8337 entries and is characterized by a high
structural diversity as a result of the well-known hERG
promiscuity. This is supported by the computed internal
diversity (ID), namely, the average Tanimoto distance of each
molecule belonging to the DB computed with respect to all of
the others by employing the Morgan radius 2 fingerprint.69

Indeed, hERG-DB returned an ID value as high as 0.83.
It is worth noting that hERG-DB includes IC50 measures

resulting from experiments performed on different cell lines such
as HEK and CHO. However, when the purpose is that of
developing classifiers rather than regression models, the noise
resulting from the hERG IC50 variability can be tolerated, as
confirmed by the recent literature.28,32−34

Consistent with previous studies,70−73 different inactivity
thresholds (IC50 = 1, 10, 20, 30, 40, 50, 60, 70, and 80 μM) were
used. Our training data set was therefore composed of positive
and negative examples: positive molecules are those that show
IC50 ≤ 1 μM and negative molecules are those with IC50 greater
than the different inactivity thresholds listed above. Table S1
(see the Supporting Information) reports the number of positive
and negative samples in dependence of the selected thresholds.
The negative set includes also those compounds whose IC50
field in ChEMBL shows the expression “not a number”. As a fair
comparison of classifiers requires the knowledge of distributions
of the relative quality metrics,74 for each threshold, we trained
100 classifiers on randomly drawn negative and positive samples
in the same number. This choice lets us train classifiers on
balanced data sets and so prevents linear SVMs to converge on
majority-class classifiers and to neglect classes of fewer samples.
In particular, we performed multiple estimates of the
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classification performances on different external data sets: we
randomly split the data into two subsets, one acting as a training
set and the other as an external (validation) set, the latter
including 100 compounds (50 randomly selected active and 50
randomly selected inactive compounds) unseen by the classifier.
This operation was repeated 100 times by selecting each time
different randomly selected external compounds. The resulting
100 performances were averaged to provide a single value of a
given quality metric along with the relative standard deviation
and allowed us to build a distribution used to compare the
performances of the different models by statistical Kolmogor-
ov−Smirnov (KS) tests.
Selection and Preparation of Protein Structures.

Docking simulations were performed using the following as
protein structures: (i) the recently published models of the
hERG structure, hereinafter named using their PDB IDs, namely,
5VA155 and 7CN1;75 (ii) the homology model developed by
Farid et al.66 using the crystal structure of the bacterial potassium
channel KvAP as a template (KvAP-Homo); (iii) the homology
model recently published by Helliwell et al.67 based on the X-ray
crystal structure of MthK (PDB code: 1LNQ)67 and providing a
consistent match between experimental Ala-scan and docking
data returned by several hERG blockers (MthK-Homo); and (iv)
two conformational states of the protein extracted from
molecular dynamics (MD) simulations performed on 5VA1
and proposed as the protein conformations to be used to discern
blockers from nonblockers (5VA1_MD_b) and activators from
nonactivators (5VA1_MD_a) through molecular docking
simulations.44 5VA1 and 7CN1 were prepared using the protein
preparation wizard tool76 available from Schrodinger Suite
2019−4,77 which enables us to (i) add missing hydrogen atoms,
(ii) determine the optimal protonation and tautomerization
states of the residues, (iii) fix the orientation of any misoriented
group, and (iv) perform a final energy minimization.
Selection of Five Representative hERG Binders. The

Canvas 4.2 module78 of Schrödinger was used to generate binary
fingerprints (i.e., MOLPRINT2D)79,80 of all of the compounds
belonging to the hERG-DB. The similarity between the
developed fingerprints was computed using the Tanimoto
coefficient.81 All of the compounds were clustered into five

groups using the k-means clustering protocol integrated into
Canvas 4.2.78 For each cluster, the compound responsible for
the lower IC50 value was selected for further induced-fit docking
(IFD) simulations. In doing that, ligands corresponding to the
following ID in ChEMBL were selected: CHEMBL271066
(IC50 = 6.31 nM),82 CHEMBL1257698 (IC50 = 0.38 nM),83

CHEMBL3775456 (IC50 = 58.49 nM),84 CHEMBL3422978
(IC50 = 0.39 nM),85 and CHEMBL2146867 (IC50 = 0.76 nM)86

(see Figure 1).
It is worth noting that the selected compounds show a

molecular weight (MW) ranging from 350.46Da (compound 2)
to 514.66 Da (compound 1). As the majority (87.2%) of the
chemicals belonging to hERG-DB have anMWbetween 300 and
550 Da, compounds 1−5 can be reasonably considered as
representative of the whole hERG-DB also in terms of size.

Induced-Fit Docking Simulations. All of the five selected
compounds (Figure 1) were subjected to IFD simulations
performed87 on 5VA1.55 All of the compounds were subjected to
LigPrep88 to properly generate all of the tautomers and
ionization states at a pH value equal to 7.0 ± 2.0. In the initial
docking step, the residues known to be important for binding of
hERG blockers, namely, F557,67,89 T623,90,91 S624,90 V625,92

Y652,91,93 F656,47,93 and G648,47 were mutated to alanine and
the van der Waals radii of protein atoms were scaled down to
70%. A cubic grid having an edge of 10 Å for the inner box and 30
Å for the outer box centered on the residues F557, T623, S624,
V625, Y652, F656, and G648 was employed. Initial docking was
performed using the Glide standard precision64 (SP) mode and
20 poses were generated for each ligand. In the second stage,
residues mutated in the initial docking step were restored and
the structures of the residues within 5.0 Å of the docked ligand
were refined via the Refinement module of Prime,94 a tool
available in the Schrodinger Suite 2019-4. In the final redocking
step, each ligand was docked again to the refined protein using
the extra precision (XP) protocol.64 Finally, the generated poses
were ranked using the IFD score, and the resulting top-scored
protein−ligand complexes were used for further standard
docking simulations.

Standard Docking Simulations. All of the compounds
belonging to the hERG-DB were subjected to LigPrep88 to

Figure 1. Compounds selected from the hERG-DB for generating hERG conformations using IFD simulations.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00744
J. Chem. Inf. Model. 2021, 61, 4758−4770

4760

https://pubs.acs.org/doi/10.1021/acs.jcim.1c00744?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00744?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00744?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00744?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


properly generate all of the tautomers and ionization states at a
pH value equal to 7.0 ± 2.0. Different stereoisomers were also
produced in the case of entries whose chiral configuration was
not defined in the hERG-DB. All of the selected protein
structures were employed for docking simulations performed
using two software programs widely used in the context of drug
discovery, namely, GLIDE64 v.6.5, which is part of the
Schrodinger Suite, and GOLD65 v.5.2, available as Cambridge
Crystallographic Data Centre (CCDC) product. During the
docking process, the receptor protein was held fixed, whereas full
conformational flexibility was allowed for the ligands. The
default Force Field OPLS_200595 and all of the default settings
for the standard precision64 (SP) protocol were used during
docking simulations performed with GLIDE, while the scoring
function CHEMSCORE96 was employed for docking simu-
lations performed with GOLD. Finally, a cubic grid having an
edge of 30 Å for the outer box and 10 Å for the inner box
(GLIDE)64 and a spherical grid having a radius of 10 Å
(GOLD)65 were centered on the center of mass of the residues
F557, T623, S624, V625, Y652, F656, and G648.
It is worth noting that the scoring function used by Glide

(GLIDE SCORE)64 can be seen as a modified and expanded
version of CHEMSCORE,96 herein adopted when software
GOLD is used. Furthermore, GOLD and GLIDE differ for the
used search algorithm. Indeed, GLIDE employs an algorithm
approximating a systematic search of positions, orientations, and
conformations of the ligand in the receptor-binding site using a
series of hierarchical filters, while GOLD uses a genetic
algorithm to explore the full range of ligand conformational
flexibility. Finally, differently from GOLD, the docking scores
returned by GLIDE include Epik state penalties so that low-
populated protonation states are penalized.
Generation of Protein−Ligand Interaction Finger-

prints. In the first step, a common binding site (BS) was
defined for all of the investigated compounds using a 9 Å cutoff
radius from all atoms of the molecule showing the best docking
score. This operation was performed for each model and the
interaction fingerprints (IFs) were generated using the SIFt tool
available from the Schrodinger Suite 2019-4.77,97 Notice that IFs
are binary one-dimensional (1D) representations encoding the
presence or the absence of specific interactions occurring
between a given compound and the BS in the top-scored
docking pose. In particular, for each residue belonging to the BS,
nine types of possible interactions were considered: (i) any
contact, (ii) backbone interactions, (iii) side-chain interactions,
(iv) contact with polar residues, (v) contact with hydrophobic
residues, (vi) formation of hydrogen bonds with H-bond
acceptors of the BS, (vii) formation of hydrogen bonds with H-
bond donors of the BS, (viii) contact with aromatic residues, and
(ix) contact with charged residues. By doing so, each residue
belonging to the BS was represented by a nine-bit long string,
where 1 indicates the presence of the corresponding ligand−
residue interaction in at least one monomer, and 0 indicates the
absence of the same interaction in all of the monomers.
SVM and LASSO Models. We used, as a first step, the

obtained docking scores (DSs) as input for training SVM
models.98 The performance of the obtained classifiers was
evaluated using different quality metrics to identify the protein
models more useful to distinguish hERG binders from
nonbinders. For those classifiers derived using IC50 = 80 μM
as the inactivity threshold, the area under the ROC curve
(AUC)99 was computed using the output scores from each SVM
model for unseen samples. To provide a DS threshold that

corresponds to the separation point between the two classes, the
classifier outputs were computed at varying DSs in the range of
the observed DS values with a step of 0.01, and the DS value
corresponding to the change of the label from active to inactive
was recorded. Another aim of our work was to test whether
classification models including IFs as additional predictors
outperform classifiers based on DS only. Linear classification
methods for two-class learning enable to jointly consider
associations between DS and the presence or the absence of
specific interactions in the IFs and the label of the molecular
activity. Linear models with L1-regularization constraint
(LASSO) classifiers handle efficiently sparse high-dimensional
data structures such as input data consisting of DS and IFs being
able to overcome overfitting issues. Models based on these data
were trained using LASSO with the SVM learner and the sparsa
solver. LASSO is a widely known model introduced by
Tibshirani100 in which the target value is expected to be a linear
combination of the features with an L1-penalty term added to
the objective function. To represent both continuous and binary
variables in a single vector on which it is possible to apply
classification models, our data were preprocessed as follows. DS
values were standardized (DSst) according to the following
transformation

μ
σ

= −
DSst

DS

where μ is the mean and σ is the standard deviation on the
observed DSs. In the IFs, the values −1 and 1 indicate the
absence or the presence of a specific ligand−residue interaction,
respectively. The LASSO model tries to set as many coefficients
as possible to zero unless a certain residue is really important to
drive correctly the predictions. The amount of regularization
applied depends on a parameter that takes values in the (0,1)
range, and when it takes larger values, the L1-penalty term has a
higher weight in the objective function and this leads to an
increase in the predictor variable sparsity, namely, fewer
interactions will be retained by the model. At varying the
regularization strength, a LASSO model was trained and the
minimum classification error rate on unseen samples was used to
learn the value of the regularization weight. All data analyses
were completed in MATLAB using the Statistics and Machine
Learning Toolbox (see the Supporting Information for
methodological details).

Evaluation of the Prediction Performance. To evaluate
the models’ performance, accuracy (ACC), sensitivity (SE),
specificity (SP), and negative predictive values (NPVs) were
calculated as follows

= +
+ + +

ACC
TP TN

TP FN FP TP

=
+

SE
TP

TP FN

=
+

SP
TN

TN FP

=
+

NPV
TN

TN FN

where true positives (TP) and false negatives (FN) are the
numbers of known binders predicted to be binders and
nonbinders, while true negatives (TN) and false positives
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(FP) are the numbers of known nonbinders predicted to be
nonbinders and binders, respectively.

■ RESULTS AND DISCUSSION
For the sake of clarity, a flowchart summarizing the main steps of
the adopted computational protocol is reported in Figure 2,

while in the following subsections, the obtained results will be
presented and discussed. Notice that all of the quality metrics
were computed using compounds not included in the training
phase, as reported in the “Materials and Methods” section, and
that the SE and SP values at varying inactivity thresholds are
reported in the Supporting Information (Tables S2 and S3,
respectively).
Evaluation of the Starting Protein Structures. The

entire hERG-DB was docked into the binding sites of 5VA1,
KvAP-Homo, and MthK-Homo to assess the ability of the
selected protein structures to generate predictive docking-based
classifiers. Notice that, based on mutagenesis studies,47,89−93 the
protein region including T623, S624, V625, G648, T652, F656,
and F557 can be reasonably considered as the hERG BS. This is
supported by the evidence that this site is relatively larger when
compared to the corresponding cavity of other K+ channels,
consistently with the higher drug promiscuity observed in
hERG.55

In particular, as pointed out in a recent co-authored paper,14

an in-depth visual inspection reveals the presence of an atypical
BS conformation in 5VA1 (Figure S1 in the Supporting
Information). Based on that, 5VA1 has been widely employed
as the structure of choice to perform molecular docking
simulations.44,56−62 However, such a structural model suffers

from two important limitations, which are as follows: (i) it has a
resolution (3.7 Å), which is too low to provide an atomic model
of the protein and (ii) the model was derived in the absence of a
ligand, thus totally neglecting the BS conformational rearrange-
ment occurring upon ligand binding (i.e., induced-fit effects).
In this regard, it should be noted that developing high-quality

cryo-EM models accounting for induced fit effects is extremely
challenging as the presence of a small molecule in the CC is able
to disrupt the hERG symmetry, which is required for properly
solving the protein structure.55,75 In other words, there is no
guarantee that this structure is of sufficient quality for reliable
docking simulations. Having said that, we performed a
preliminary investigation aimed at testing the hypothesis,
decisive for the present study, that there are significant
differences between hERG binders and nonbinders in terms of
the docking score (DS). More specifically, using a Kolmogor-
ov−Smirnov test, we tested the null hypothesis that binders and
nonbinder DS values come from populations with the same
distribution, against the alternative hypothesis that they are from
different distributions. Satisfactorily, very low p-values (max-
imum value equal to 4 × 10−17) were obtained for all of the
considered protein structures and thresholds (see Table S2 in
the Supporting Information). Encouraged by these preliminary
data, 54 classifiers were developed using GOLD and GLIDE as
software and 5VA1, MthK-Homo, and KvAP-Homo as protein
structures and nine different IC50 inactivity thresholds (see the
Materials and Methods section for methodological details).
Notice that when GLIDE was employed as software, the models
were derived excluding a small fraction of compounds from the
hERG-DB [i.e., a percentage from 0.50% (KvAP-Homo) to
3.02% (cryo-EM) of undocked molecules].
Table 1, reporting the computed accuracies (ACC) for all of

the developed classifiers, clearly shows that 5VA1 ensures
performances (ACCMAX = 0.70 ± 0.01) better than those
returned by the homology models herein considered only if
GLIDE is used as software. In particular, ACCMAX = 0.62± 0.01
and 0.67 ± 0.01 were returned byMthK-Homo (KS test p-value
= 2.2 × 10−20) and KvAP-Homo (KS test p-value = 3 × 10−6),
respectively. Regarding the classifiers derived using GOLD, both
homology models strongly outperform 5VA1 (ACCMAX = 0.60
± 0.01) returning an ACCMAX = 0.73 ± 0.01 (MthK-Homo KS
test p-value = 4 × 10−34) and ACCMAX = 0.70 ± 0.01 (KvAP-
Homo KS test p-value = 7 × 10−29). In other words, these data
suggest that the selection of the protein structure to be used for
docking simulations should be performed according to the
docking software to be employed. The goodness of the classifiers
was also assessed by computing the NPVs, a widely used metric
in the context of predictive toxicology41,42 as it measures the
ability of the model to properly classify nontoxic compounds,
namely, to minimize false negatives (i.e., hERG binders
incorrectly classified as nonbinders). The obtained data are
reported in Table 2 showing that, for all of the starting hERG
structures, the trend discussed based on the computed ACCs is
almost confirmed with 5VA1, providing the best NPV (NPVMAX
= 0.70 ± 0.01) when GLIDE is used as software and the
homology models ensuring the best performances when the
software employed is GOLD with NPVMAX = 0.74 ± 0.01
(MthK-Homo) and NPVMAX = 0.72 ± 0.01 (KvAP -Homo).
Although encouraging in terms of performance, these models

were developed based on the DSs only (hereinafter named DS-
based models), a strategy commonly employed for developing
structure-based classifiers.41,42 However, in addition to provid-
ing a score estimating the binding affinity, molecular docking

Figure 2. Flowchart showing the main steps of the adopted
computational workflow.
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simulations predict the conformation as well as the position and
orientation of a given ligand (usually referred to as pose) in the
target cavity. This piece of information was recently proved to be
crucial to overcoming DS deficiencies in virtual screening
campaigns.101−103 These evidence prompted us to develop

classifiers integrating the information provided by both scoring
and posing by taking into account the IFs, namely, 1D
representations of the ligand−protein interactions occurring in
the top-scored docking poses. To this aim, classification models
based on sparse high-dimensional data structures consisting of

Table 1. ACCs Returned by the Developed Classifiers on the Basis of Docking Scores (Top) and Docking Scores and IFs
(Bottom) Using GLIDE (Left) and GOLD (Right) as Software Programsa

aNotice that different inactivity thresholds (μM) were considered, as described in the Materials and Methods section. For the sake of clarity, ACC
values >0.50 and ≤0.65, >0.65 and ≤0.75, and >0.75 are reported in red, orange, and green, respectively.

Table 2. NPVs Computed for All of the Developed Classifiers on the Basis of Docking Scores (Top) and Docking Scores and IFs
(Bottom) Using GLIDE (Left) and GOLD (Right) as Softwarea Programs

aNotice that different inactivity thresholds (μM) were considered, as described in the Materials and Methods section. For the sake of clarity, NPV
values >0.50 and ≤ 0.65, > 0.65 and ≤ 0.75, and >0.75 are reported in red, orange, and green, respectively.
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DSs and IFs (hereinafter called DS/IF-based models) were
trained using linear models with L1-regularization constraint
(LASSO) with the SVM learner and the sparsa solver (see the
Materials and Methods section for details). A comparative
analysis based on KS tests on the distributions of ACC and NPV
values was performed to establish whether DS/IF-based models
outperform the DS-based ones. Interestingly, the IFs’ integra-
tion allowed obtaining significantly better performances in terms
of both ACC (Table 1) and NPV (Table 2), irrespective of the
used starting structure. A meaningful example is given by the
classifier returned by 5VA1 when GLIDE is used as software and
80 μM as inactivity threshold returning ACC (0.76 ± 0.01) and
NPV (0.77 ± 0.01) values significantly higher (KS-test p-values
equal to 1.6 × 10−17 and 4.6 × 10−18 for the comparison of ACC
and NPV, respectively) than those of the corresponding DS-
based model (ACC and NPV = 0.70 ± 0.01). Such an
improvement is even more evident when docking simulations
are performed on 5VA1 with GOLD, as apparent, for instance,
looking at the ACC and NPV values returned when 80 μM is
used as the inactivity threshold (0.72 vs 0.59, KS-test p-value 1.1
× 10−35 and 0.75 vs 0.60, KS-test p-value 4.6 × 10−31). These
data, taken as a whole, suggest that developing DS/IF-based
models can be a winning strategy to develop highly performing
classifiers based on docking simulations on the considered hERG
starting structures.
Impact of Ligand-Induced Fit Effects on Model

Performance. As mentioned above, 5VA1 was derived in the
absence of a ligand, hence no information about the putative BS
conformational rearrangement occurring upon ligand binding
can be derived from such a structural model. Computational
strategies such as IFD and MD simulations are recognized tools

for overcoming this limitation, being able to provide the
prediction of the BS conformation required for ligand binding.
Keeping this in mind, we generated five new hERG
conformations by performing IFD simulations of five
representative and highly affine binders on the 5VA1 structure.
The resulting top-scored docking poses are depicted in Figure 3.
The obtained protein conformations were named 5VA1-IFD-

x, where x refers to the ligand used in the IFD simulation,
according to the labeling shown in Figure 1. In addition, we also
employed (i) two conformations resulting fromMD simulations
performed on 5VA1 strongly agreeing with mutagenesis data
and recently published by Dickson et al.,44 as allowing
discrimination of blockers vs nonblockers (5VA1-MD-b) and
activators vs nonactivators (5VA1-MD-a) and (ii) an hERG
model published at the time of writing the present paper and
obtained through electron microscopy in the presence of the
known blocker astemizole (PDB code 7CN1).75 All of these BS
conformations, depicted in Figure S2, were therefore employed
to derive 288 (144 DS-based and 144 DS/IF-based) classifiers
by taking into account again nine different IC50 inactivity
thresholds and GLIDE and GOLD as software. The obtained
ACC and NPV values are reported in Tables 1 and 2,
respectively. Interestingly, the use of both IFD- and MD-based
protein conformations allowed obtaining much more perform-
ing classifiers than the starting 5VA1 model. The improvement
observed in the DS-based classifiers is worth noting: all of the
new conformations provide higher ACC and NPV values for
inactivity thresholds ≥50 μM in the case of GLIDE used as
software and for all of the inactivity thresholds when GOLD is
employed. Notably, 7CN1 was responsible for performances in
line with those returned by 5VA1, in agreement with the picture

Figure 3. Top-scored docking poses returned by IFD simulations performed on five representative hERG binders: (A) CHEMBL271066, (B)
CHEMBL1257698, (C) CHEMBL3775456, (D) CHEMBL3422978, and (E) CHEMBL2146867. Ligands and important residues are rendered as
sticks, whereas the protein is represented as a cartoon. H-bonds are represented by dotted black lines, whereas the pi-stacking interactions and salt
bridge interactions are itemized by a blue and red line, respectively. For the sake of clarity, only polar hydrogen atoms are shown.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00744
J. Chem. Inf. Model. 2021, 61, 4758−4770

4764

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00744/suppl_file/ci1c00744_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00744?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00744?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00744?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00744?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


emerged from a three-dimensional comparison of the two
structures (data not shown), indicating the presence of very
similar binding pockets.
In other words, albeit obtained using electron microscopy

experiments performed in the presence of a blocker, this protein
conformation is outperformed by those derived by computa-
tional procedures as IFD and MD. More specifically, the best
performances are ensured by 5VA1-IFD-1 (ACCMAX = 0.77 ±
0.01 and NPVMAX = 0.79 ± 0.01) and 5VA1-MD-a (ACCMAX =
0.77 ± 0.01 and NPVMAX = 0.79 ± 0.01) if the software
employed is GLIDE, as well as 5VA1-IFD-1 and 5VA1-IFD-2
(ACCMAX = 0.75 ± 0.01 and NPVMAX = 0.77 ± 0.01 for both)
when GOLD is used. It is worth noting that the homology
models used as starting structures are also outperformed bymost
of the IFD and MD conformations. As far as the DS/IF-based
classifiers are concerned, such a trend is confirmed with the best
performances returned by 5VA1-IFD-1 (ACCMAX = 0.79 ± 0.01
and NPVMAX = 0.80 ± 0.01), 5VA1-IFD-5 (ACCMAX = 0.79 ±
0.01 and NPVMAX = 0.80 ± 0.01), and 5VA1-MD-a (ACCMAX =
0.79± 0.01 and NPVMAX = 0.81 ± 0.01) after using GLIDE and
5VA1-IFD-2 (ACCMAX=0.78 ± 0.01 and NPVMAX = 0.79 ±
0.01) when GOLD is employed. Notice that significantly worst
performances were returned by both 5VA1 and 7CN1 structures.
It is worth noting that, as already observed for the starting
structures, also for the 5VA1-IFD-x protein conformations, DS/
IF-based models (ACCMAX = 0.79 ± 0.01 and 0.78 ± 0.01 using
GLIDE and GOLD, respectively) outperform DS-based ones
(ACCMAX = 0.77± 0.01, KS-test p-value = 0.07, and 0.75± 0.01,
KS-test p-value = 0.004) using GLIDE and GOLD, respectively,
in terms of ACC.
Selection of the Best-Performing hERG Conformation.

The picture emerged from the discussed data suggests that the
best-performing classifiers are those developed accounting for
ligand-induced fit effects. However, based on the considered
quality metrics, it is still hard to select the best BS conformation
to be used for docking simulations. To make a final selection, we
also computed the area under the ROC curve (AUC) for all of
the classifiers developed using IC50 = 80 μM as the inactivity

threshold, being those ensuring the greatest performances
irrespective of the considered software program and method-
ology (DS and DS/IF-based). Figure 4 reports a plot of the
computed AUC values for different protein conformations.
Remarkably, DS/IF-based models significantly outperform

DS-based ones (KS p-values < 0.05), irrespective of the
employed protein conformation and the software program
with the best performances obtained by 5VA1-IFD-1 (AUC =
0.86± 0.01), 5VA1-IFD-5 (AUC= 0.86± 0.01), and 5VA1-MD-
a (AUC = 0.85 ± 0.01) when GLIDE is used and 5VA1-IFD-2
(AUC = 0.85 ± 0.01), 5VA2-IFD-3 (AUC = 0.85 ± 0.01), and
5VA1-MD-a (AUC = 0.84 ± 0.01) if GOLD is employed.
Furthermore, when conformations accounting for ligand-
induced fit effects are taken into account, satisfactory AUC
values are computed even without the IF integration with the
best performances ensured by 5VA1-IFD-1 (AUC = 0.84 ±
0.01) when using GLIDE and both 5VA1-IFD-1 (AUC = 0.83±
0.01) and 5VA1-IFD-2 (AUC = 0.83 ± 0.01) in the case of
GOLD employed as a software program. It is worh noting that
although from a methodological point of view, it should
remarked that the IF integration allows obtaining better
performances, models based on DS only should be preferred
from a practical point of view, especially when developed using
highly performing hERG protein models such as 5VA1-IFD-1.
Indeed, DS-based classifiers are characterized by higher
interpretability than DS/IF ones and can be employed by
interested users by simply comparing the docking scores
returned by the chemicals of interest with the DS thresholds
reported in Table 3.
It is worth noting that based on the discussed data, 5VA1-IFD-

1 can be reasonably considered as the hERG conformation of
choice for reliable docking simulations, and for this reason, was
made available, along with the other 5VA1-IFD conformations,
in the Supporting Information as a. pdb file. Remarkably, 5VA1-
IFD-1 is also the conformation returning the highest BS volume
(789.56 Å3), as reported in Table S5. Based on this, it is
reasonable to speculate that the larger the hERG BS, the higher
the ability, during the performed docking simulations, to

Figure 4. Two-dimensional (2D) plot reporting the AUC values computed for the classifiers developed using IC50 = 80 μM as the inactivity threshold
and (A) GLIDE and (B) GOLD as software programs.
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properly accommodate compounds with very different shapes
and sizes as those belonging to the hERG-DB.
IF-Based Analysis. Encouraged by the ability of the

computed IFs to improve classifiers’ performance, we conducted
an in-depth IFs analysis aimed to get insights into the structural
basis for high-affinity hERG−drug binding. To identify key
protein−ligand interactions, the distributions of the IC50 values
of compounds interacting/noninteracting with a specific residue
(1/0 in the interaction fingerprint respectively) were inves-
tigated using KS tests that allowed us to identify the interactions
responsible for a significantly lower value of IC50. In particular,
we performed the test 100 times for each residue on compounds
randomly drawn from the entire set of molecules to distinguish
general findings not specific for subsets of molecules. We
focused our attention on the IFs returned by the best-
performing conformation, namely, 5VA1-IFD-1. Table 4 shows
the residues sorted by the number of occurrences of significant
KS test p-values (p < 0.05) in the 100 trials (the occurrence is
shown in square brackets). The interested reader is referred to
Table S6 for data returned by all of the hERG protein models. In
particular, as evident in Table 4, some interactions established
with the side chains of F557 (hydrophobic and aromatic), M651
(hydrophobic), I655 (hydrophobic), and F656 (hydrophobic
and aromatic) were predicted to be crucial, being detected with
the highest number of occurrences of significant p-values
irrespective of the employed software program. It is worth
noting that the obtained data are in agreement with
experimental findings, mostly based on alanine-scanning
mutagenesis. F656, for instance, was proved to be crucial for
the blocking ability of cisapride by Chen et al.,104 while several
mutagenesis studies67,89 emphasized the importance of F557 in
the hERG recognition of different drugs. Finally, Kudaiberge-
nova et al. in a paper published in 2020 and reporting
experimental data returned by a mutant (i.e., M651T),105 put
forward, for the first time, M651 as another key residue for
hERG−drug binding.

■ CONCLUSIONS
In this work, we trained the first structure-based models of
hERG-related cardiotoxicity based on bioactivity data reported
in ChEMBL (version 25) and both docking scores and protein−
ligand interaction fingerprints returned by the software

programs GLIDE and GOLD for different protein structures
used as hERG structural models, including those recently
obtained through cryoelectron microscopy (PDB codes:
5VA155 and 7CN175). A total of 396 models were built based
on the support vector machine and the LASSO regularized
support vector machine and evaluated using different quality
metrics (i.e., ACC, NPV, and AUC). Remarkably, some models
returned performances comparable to ligand-based classi-
fiers,29,33,35−37 whose usage is often limited by their restricted
applicability domain and low interpretability. Finally, based on a
comparative analysis of all of the derived classifiers, we
concluded that the integration of docking scores and molecular
interaction fingerprints is a winning strategy to maximize model
performance, as the proposed method outperforms that based
on docking scores only. Importantly, much more reliable
docking-based predictions are obtained using a new protein
conformation returned by IFD simulations (made available in
the Supporting Information as a. pdb file) instead of the cryo-
EM model, as it is (i.e., PDB code: 5VA155), which is the usual
practice.44,56−62 From a methodological point of view, the study
represents the first attempt to incorporate the information
provided by docking poses in structure-based classifiers using a
LASSO SVM regularized strategy thus providing a new
computational workflow to be used in the context of predictive
toxicology.

Table 3. DS Thresholds for All of the DS-Based Models
Developed Using 80 μM as the IC50 Inactivity Threshold.
Notice that the DSs are Expressed by kcal/mol and kJ/mol, as
Returned by the Software Programs GLIDE and GOLD,
Respectively

GLIDE GOLD

hERG
conformation

DS threshold
(kcal/mol)

standard
deviation

DS threshold
(kJ/mol)

standard
deviation

5VA1 −6.012 ±0.003 −25.989 ±0.023
MthK-Homo −5.140 ±0.003 −30.792 ±0.016
KvAP-Homo −5.659 ±0.003 −28.162 ±0.012
5VA1-IFD-1 −8.967 ±0.004 −37.444 ±0.011
5VA1-IFD-2 −7.790 ±0.004 −34.812 ±0.016
5VA1-IFD-3 −8.131 ±0.004 −34.713 ±0.013
5VA1-IFD-4 −7.063 ±0.004 −28.768 ±0.015
5VA1-IFD-5 −7.068 ±0.003 −30.002 ±0.013
5VA1-MD-a −8.472 ±0.003 −37.384 ±0.019
5VA1-MD-b −8.349 ±0.003 −34.376 ±0.013
7CN1 −6.010 ±0.004 −28.807 ±0.019

Table 4. Interactions Responsible for a Lower IC50 Based on
the KS Test Performed on the IFs Returned by 5VA1-IFD-1

GLIDE GOLD

557_aromatic[100] 554_contact[100]
557_contact[100] 557_aromatic[100]
557_hydrophobic[100] 557_contact[100]
557_sidechain[100] 557_hydrophobic[100]
649_backbone[100] 557_sidechain[100]
655_contact[100] 648_contact[100]
655_hydrophobic[100] 648_sidechain[100]
655_sidechain[100] 649_polar[100]
656_backbone[100] 649_sidechain[100]
649_contact[98] 651_backbone[100]
651_hydrophobic[98] 651_contact[100]
651_sidechain[98] 655_contact[100]
652_backbone[93] 655_hydrophobic[100]
656_contact[91] 655_sidechain[100]
651_backbone[89] 656_aromatic[100]
656_aromatic[89] 656_backbone[100]
656_hydrophobic[89] 656_contact[100]
656_sidechain[89] 656_hydrophobic[100]
651_contact[89] 656_sidechain[100]
652_aromatic[32] 554_hydrophobic[99]
652_hydrophobic[32] 554_sidechain[99]
652_sidechain[32] 649_backbone[99]
649_polar[28] 649_contact[99]
649_sidechain[28] 655_backbone[99]
653_hydrophobic[25] 652_backbone[98]
653_sidechain[25] 651_hydrophobic[78]
655_backbone[14] 651_sidechain[78]
653_contact[9] 659_contact[66]
553_backbone[7] 659_hydrophobic[66]
553_contact[7] 659_sidechain[66]
623_backbone[5] 553_backbone[28]

553_contact[28]
650_contact[1]
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