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Abstract

The problem of separating a superposition of di�erent, simultaneous signals from their mixture
appears very frequently in various �elds of engineering, such as speech processing, telecommunica-
tions, biomedical imaging and �nancial data analysis. In this work, we will confront the problem
of source separation in the �eld of astrophysics, where the contributions of various Galactic and
extra-Galactic components need to be separated from a set of observed noisy mixtures. Most of
the previous work on the problem perform a blind separation, assume noiseless models, and in
the few cases when noise is taken into account it is generally assumed to be Gaussian and space-
invariant. Our objective is to study a novel technique named particle �ltering, and implement
it for the non-blind solution of the source separation problem. Particle �ltering is an advanced
Bayesian estimation method which can deal with non-Gaussian and nonlinear models, and ad-
ditive space-varying noise, in the sense that it is a generalization of the Kalman Filter. In this
work, particle �lters are utilized with objectives of both noise �ltering and separation of signals:
this approach is extremely �exible, as it is possible to exploit the available a-priori information
about the statistical properties of the sources through the Bayesian theory. Especially in case of
low SNR, our simulations show that the output quality of the separated signals is better than
that of ICA, which is one of the most widespread methods for source separation. On the other
hand, since a wide set of parameters, which can take from a large range of values, has to be
initialized, the use of this approach needs extensive experimentation and testing.
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2 1 INTRODUCTION

1 Introduction

The signal separation problem is one of the most fundamental in engineering: in fact, it is of
interest to many applications, such as crosstalk removal in multichannel communications and
multipath channel identi�cation. Also consider, for example, the need of separating the superpo-
sition of di�erent, simultaneous audio and speech signals. Moreover, source separation techniques
are also used in medical science for functional magnetic resonance imaging (fMRI), electromyo-
grams (EMG), and magnetoencephalography (MEG), in �nancial science for the analysis of time
series, and in the context of feature extraction.

In this work we will confront the problem of source separation in the �eld of astrophysics.

1.1 The Astrophysical Problem

The European Space Agency (ESA) will launch a satellite called Planck in the year 2007: the
ultimate goal of this mission is to answer the most fundamental questions concerning the origins
of our Universe. How did it form? How old is it? Will the Universe continue its expansion
forever, or will it collapse into a Big Crunch?

Answers to these (and other) questions will be found via the analysis of the microwave
radiation coming from the vault of heaven. This signal is the superposition of many independent
astrophysical sources, and the �rst important step in our analysis will be their separation: the
Cosmic Microwave Background (CMB) is surely one of the most important sources to be analyzed,
as high-resolution and high-sensivity measurements of its anisotropies would enable cosmologists
to assess the validity of the present competing cosmological theories.

The signal measured in CMB experiments is however contaminated by several sources (Fig-
ure 1): together with the intrinsic noises due to the satellite microwave detectors, astrophysical
contaminants (the so-called foregrounds) are present because of di�erent phenomena. The most
relevant ones are due to several di�erent processes that occur in our Galaxy (the dust emission,
synchrotron and free-free radiation), while other contaminations come from extragalactic mi-
crowave sources and from the so-called Sunyaev-Ze'ldovich e�ect. Before achieving cosmological
information from the statistical analysis of the CMB anisotropies, all these components must
be separated from the intrinsic CMB signal. The Planck satellite will provide nine di�erent sky
maps, at di�erent frequencies between 30 GHz and 857 GHz, in order to have the oppurtunity
of analysing nine di�erent mixtures, which will be our only available observations: each of them
is a di�erent mixture of the above named sources, that is a superposition obtained through one
of the nine di�erent unknown mixing matrices. As also any other astrophysical source signal
carries information about relevant phenomena, the most proper approach is to try to extract
each source from the mixture maps by a source separation strategy, instead of looking just for a
CMB map as clean as possible, through a noise cancellation one.

1.2 PCA, ICA and IFA

A widely used blind technique in signal processing is Principal Component Analysis (PCA), which
is able to separate mixed variables, providing uncorrelated output signals, that is separation up
to second order statistics ([11], [23]).
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Figure 1: Introduction - The radiation observed by the satellite antenna is the result of the superposition
of various astrophysical components ([24]).

Another classical approach, which performs a blind source separation, is Independent Com-
ponent Analysis (ICA) [2], [9], [14], [39]. Assuming that all the source processes are statistically
independent, ICA techniques operate in order to transform the set of observed data and obtain
independent output signals, separated in all orders of statistics. Unfortunately this approach
does not provide good results, because noise is not taken into account in the ICA model: in
earlier experience on source separation in astrophysical images it has been observed that this
algorithm has a signi�cantly deteriorating performance when the noise level is increased [36].

Indeed, we possess some information about the statistical distributions of the sources and
noise, so we are not forced to follow a completely blind approach, as this knowledge can be
somehow exploited. A method that incorporates prior information about the sources is called
Independent Factor Analysis (IFA), and has been introduced both in signal processing [37] and
neural networks literature [7], and recently it has been studied in the context of simulated but
realistic sky radiation maps, in order to identify its potentials and drawbacks [34].

1.3 Objective

In this work a di�erent approach, named Particle Filtering, will be studied and implemented in
order to solve the source separation problem in a di�erent promising way. Our objective is to
provide a new, robust, and elaborate solution to the astrophysical source separation problem,
as up to now the rest of literature has considered almost only stationary models, in absence
of noise. Particle Filters, also known as Sequential Monte Carlo Methods, were introduced for
the �rst time in automatic control by Handschin and Mayne [22] at the end of the 60's, but
these methods have been overlooked until the early 90's because of the low computational power
available. The renewed interest in these methods was due also to the progress in methodology
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described by Gordon et al. [21], Liu and Chen [35] and Pitt and Shephard [38].
Particle �ltering is an extension of Kalman �ltering, and it is general technique which can

deal with non-Gaussian and nonlinear models: its theory is well covered in [1], but only basic
and conventional particle �lters have been presented so far, and none of them was intended to
be used to separate astrophysical sources. The basic generic particle �lter algorithm has been
adapted and implemented in order to improve its performances to our purpose, using the a-priori
information available about the mixing matrix and the statistical properties of the sources.

On the plus side, the particle �lter is extremely �exible, and so very attractive, because one
has the opportunity of using many a-priori information about the statistical properties of the
sources as inputs; on the other hand, the use of this approach can be very tricky, as the user
needs to set a lot of parameters which can take a large range of values, as it will be explained
later. This is the reason why the use of this approach needs a lot of experimentation and testing.

The following section is about Particle Filters, from the description of the algorithm to its
implementation, through the Bayesian theory. The third section contains a brief introduction to
the astrophysical components that will be mentioned in this work, while the fourth one describes
the simulations done to test the algorithm. The conclusions are presented in the last part of this
work.

2 Particle Filtering

Filtering is the problem of estimating the hidden variables (called states) of a system, as a set
of observations becomes available on-line: the introduction of a state space formulation is a
fundamental step, because it allows to deal with non-stationarity, as it will be shown later.

In many real-world data analysis applications, prior knowledge about the unknown quantities
to be estimated is available, and this information can be exploited to formulate Bayesian models:
prior distributions for the unknown quantities and likelihood functions that relate these quantities
to the observations. Then, all inference on the unknown quantities is based on the posterior
distribution obtained from Bayes' theorem.

It is possible to express the model in terms of a state equation and an observation equation:

αt = ft(αt−1,vt);

yt = ht(αt,wt).

The state equation evaluates the state sequence: αt is the state at current step t, ft is a possibly
nonlinear function, αt−1 is the state at the previous step, and vt is called dynamic noise process.
The observation equation is characterized by a nonlinear function ht, and both the current state
αt and the observation noise realisation wt at time step t are taken into account to generate the
observation yt.

The Kalman �lter (KF) is an extension of the Wiener �lter, and it was presented by R. E.
Kalman in 1961 [30]: this �lter derives an exact analytical expression to compute the evolving
sequence of the posterior distributions, when the data are modelled by a linear Gaussian state-
space model. The obtained posterior density at every time step is Gaussian, hence parametrized
by a mean and a covariance.
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The best known algorithm that allows a non-Gaussian and nonlinear model is the Extended
Kalman �lter (EKF) [4], based upon the principle of linearising the measurements and evolution
models using Taylor series expansions. Unfortunately, this procedure may lead to poor represen-
tations of both the non-linear functions and the probability distributions of interest, so the �lter
can diverge.

The more recent Unscented Kalman Filter (UKF) is founded on the intuition that it is better
to approximate a Gaussian distribution, than approximating arbitrary non-linear functions [29].
Also this approach has, however, a limitation, that is it does not apply to general non-Gaussian
distributions.

A new technique to solve the general �ltering problem is introduced in this section: this
approach, named particle �ltering, uses sequential Monte Carlo methods, and it was introduced
for the �rst time in automatic control by Handschin and Mayne [22] at the end of the 60's, but it
has been overlooked until the early 90's because of the low computational power available. The
renewed interest in these methods brought to success in tracking problems (see [6] for a general
review), and very recently it has been applied also to perform source separation ([1], [5], [19]).
Sequential Monte-Carlo particle �lters are able to solve time or space varying mixing problems,
and allow for a complete representation of the posterior distribution of the states, so that any
statistical estimates (mean, variance, and so on...) can be computed.

2.1 The Bayesian Approach

This subsection is a brief overview of the Bayesian approach, which is the basis of Particle
Filtering. Given a set of observations y and the set of unknown sources α, we consider the
posterior distribution

p(α|y) =
p(y|α)p(α)

p(y)
where

p(y) =
∫

p(y|α)p(α)dα

and where p(y|α) denotes the likelihood and p(α) denotes the prior distribution. In order to
keep the the same notation used in literature [17], we use αt to denote both the random variable
and its realisation. Consequently, we express continuous probability distributions using p(dαt)
instead of Pr(αt ∈ dαt), and discrete distributions using p(αt) instead of Pr(αt = αt).

Given the posterior distribution, optimum estimators can be obtained, most notably the
Minimum Mean Squared Error (MMSE) and the Maximum A Posteriori (MAP) estimates of α:

α̂MMSE =
∫

αp(α|y)dα;

α̂MAP = arg max
α

p(α|y).

The aforementioned �lters (KF, EKF, UKF) rely on various assumptions to ensure mathematical
tractability. Unfortunately, real data sets are often very complex, typically high dimensional, non-
linear, nonstationary and non-Gaussian: except in some simple cases, the integration (MMSE)
or the optimisation (MAP) of the posterior are not analitically tractable. Moreover, classical
optimisation methods need good initialisations and are sensitive to local minima.
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On-line simulation based Sequential Monte Carlo (SMC) methods are a set of simulation-
based approaches which use variates from the posterior, and provide an attractive solution to
compute the posterior distribution of interest: at each time step, the posterior distribution is
approximated by a set of particles generated by an importance distribution π(α|y), chosen such
that it is easy to sample, and whose support is assumed to include that of p(α|y), as shown in
the next subsection.

2.2 Monte Carlo Particle Filters

Problem Statement

As stated before, we usually cannot obtain an analytic expression for the posterior distribution:
this is the reason why we have to resort to stochastic simulation. The unobserved signal (hidden
state) αt is modelled as a Markov process of initial distribution p(α0) and transition equation
p(αt|αt−1):

p(α0) for t = 0,

p(αt|αt−1) for t = 1, 2, 3, · · · .

We denote by α0:t
4
= {α0, · · · ,αt} and y1:t

4
= {y1, · · · ,yt} the signals and the observations

respectively, up to step t.
Our objective is to estimate recursively in time the posterior distribution p(α0:t|y1:t), its

associated features (including the marginal distribution p(αt|y1:t), known as the �ltering distri-
bution), and the expectations

I(ft) = Ep(α0:t|y1:t){ft(α0:t)}
4
=

∫
ft(α0:t)p(α0:t|y1:t)dα0:t

for some function of interest, like the mean of the sources, or their covariance.
At any time t, the posterior distribution is given by Bayes' theorem:

p(α0:t|y1:t) =
p(y1:t|α0:t)p(α0:t)∫

p(y1:t|α0:t)p(α0:t)dα0:t
.

A recursive formula for this joint distribution can be obtained as follows:

p(α0:t+1|y1:t+1) = p(α0:t|y1:t)
p(yt+1|αt+1)p(αt+1|αt)

p(yt+1|y1:t)
.

The marginal distribution p(αt|y1:t) also satis�es the following recursive equations (prediction
and update respectively):

p(αt|y1:t−1) =
∫

p(αt|αt−1)p(αt−1|y1:t−1)dαt−1;

p(αt|y1:t) =
p(yt|αt)p(αt|y1:t−1)∫

p(yt|αt)p(αt|y1:t−1)dαt
.
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Monte Carlo integration methods have the great advantage of not being subject to any linearity
or Gaussianity constraints on the model, and they also have appealing convergence properties.
The basic idea is that a large number of samples drawn from the required posterior distribution
is su�cient to approximate the posterior distribution itself, and to approximate the integrals
appearing in the "prediction and update" equations mentioned before.

Importance Sampling

Assume that N >> 1 random samples {α(i)
0:t; i = 1, · · · , N}, called particles (hence the term

particle �lters), have been generated from the posterior p(α0:t|y1:t): a Monte Carlo approximation
of this function is thus given by:

pN (dα0:t|y1:t) =
1
N

N∑
i=1

δα(i)
0:t

(dα0:t),

where δα(i)
0:t

(dα0:t) denotes the delta-Dirac mass located in α
(i)
0:t. The following estimate of the

function of interest I(ft) can be obtained straightforwardly by:

IN (ft) =
∫

ft(α0:t)pN (dα0:t|y1:t) =
N∑

i=1

ft

(
α

(i)
0:t

)
.

Unfortunately, it is usually impossible to sample e�ciently from the posterior distribution at any
step t, since it is, in general, multivariate, non-standard, and only known up to a proportionality
constant. A classical solution consists of using the importance sampling method [20], which
introduces an arbitrary importance function (also referred to as the proposal distribution or the
importance sampling distribution) π(α0:t|y1:t). Provided that the support of π(α0:t|y1:t) includes
the support of p(α0:t|y1:t), we get the identity

I(ft) =
∫

ft(α0:t)w(α0:t)π(α0:t|y1:t)dα0:t∫
w(α0:t)π(α0:t|y1:t)dα0:t

,

where w(α0:t) is known as the importance weight:

w(α0:t) =
p(α0:t|y1:t)
π(α0:t|y1:t)

.

Consequently, it is possible to obtain a Monte Carlo extimate of I(ft) using N particles {α(i)
0:t; i =

1, · · · , N} sampled from π(α0:t|y1:t):

ĪN (ft) =
1
N

∑N
i=1 ft

(
α

(i)
0:t

)
w

(
α

(i)
0:t

)
1
N

∑N
j=1 w

(
α

(i)
0:t

) =
N∑

i=1

ft

(
α

(i)
0:t

)
w̃

(i)
t ,

where the normalised importance weights w̃
(i)
t are given by:

w̃
(i)
t =

w
(
α

(i)
0:t

)
∑N

j=1 w
(
α

(i)
0:t

) .
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This integration method can be interpreted as a sampling method, where the posterior distribu-
tion is approximated by:

p̄N (dα0:t|y1:t) =
N∑

i=1

w̃
(i)
t δα(i)

0:t

(dα0:t).

It is clear that importance sampling needs all the data set y1:t before estimating p(α0:t|y1:t).
That makes this method not adequate for recursive estimation, because, whenever new data
yt+1 become available, the importance weights over the entire state sequence need to be recom-
puted. As the complexity of this operation increases with long sequences, recursive techniques
for overcoming this problem have been studied.

Sequential Importance Sampling

Our aim is to estimate the posterior density function p(α0:t|y1:t) without modifying the past sim-

ulated trajectories {α(i)
0:t−1; i = 1, · · · , N}. This means that the importance function π(α0:t|y1:t)

has to admit π(α0:t−1|y1:t−1) as marginal distribution, which happens when the importance
function is restricted to be of the general form:

π(α0:t|y1:t) = π(α0:t−1|y1:t−1)π(αt|α0:t−1,y1:t)

= π(α0)
t∏

k=1

π(αk|α0:k−1,y1:k).

This importance distribution allows the importance weights to be avaluated recursively:

w̃t ∝ w̃t−1
p(yt|α(i)

t )p(α(i)
t |α(i)

t−1)

π(α(i)
t |α(i)

0:t−1,y1:t)
.

The only constraints on the selection of the importance function are those that have been men-
tioned so far. It follows that a wide choice for π(α0:t|y1:t) is allowed.

Selection

Unfortunately, for the importance distributions of the form speci�ed before, a degeneracy phe-
nomenon may occur: after a few iterations, all but one of the normalised importance weights are
very close to zero. This happens because the variance of the importance weights can only increase
(stochastically) over time, as demonstrated in [1]. As a result of the degeneracy phenomenon,
it is indispensable to include one more step (called selection) in the particle �lter algorithm.
The purpose of this procedure is to discard the particles with low importance weights, and to
multiply the particles having high importance weights: the idea is that of associating with each

particle (say α̃
(i)
0:t : i = 1, · · · , N) a number of "children" N

(i)
t , such that

∑N
i=1 N

(i)
t = N , in

order to obtain N new particles {α(i)
0:t : i = 1, · · · , N}. For each particle, if N

(j)
t = 0, then α̃

(j)
0:t

is discarded, otherwise it has N
(j)
t children at step t + 1. More formally, the weighted empirical

distribution p̄N (dα0:t|y1:t) =
∑N

i=1 w̃
(i)
t δα(i)

0:t

(dα0:t) is replaced by the unweighted measure

pN (dα0:t|y1:t) =
1
N

N∑
i=1

N
(i)
t δα(i)

0:t

(dα0:t),
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where N
(i)
t is the number of o�springs associated to the particle α

(i)
0:t. After the selection step,

all the importance weights are divided by N ; since they do not depend on any past values
of the normalised importance weights, all information regarding the old importance weights is
discarded.

There is a variety of selection schemes, including Residual Resampling [31], Strati�ed Sampling
[31], and Multinomial Sampling, also known as SIR (Sampling Importance Resampling) [21]: all
of them can be implemented in a number of operations which is proportional to the number of

particles N , and their aim is to provide the coe�cients N
(i)
t such that pN (dα0:t|y1:t) is close to

p̄N (dα0:t|y1:t), in the sense that, for any function ft,∫
ft(α0:t)pN (dα0:t|y1:t) ≈

∫
ft(α0:t)p̄N (dα0:t|y1:t),

according to di�erent criteria.
As we can see in �gure 2, the �ltering density is approximated by an adaptive stochastic

grid. This is a direct consequence of the Monte Carlo approach, where the particles interact
with each other randomly in time, and either give birth to children, or die out, depending on the
magnitude of their weights.

The Algorithm

Now it is possible to describe in outline the general particle �lter algorithm: as stated before,

the recursive Monte Carlo �lter operates on N particles {α(i)
0:t : i = 1, · · · , N}, given at step t−1,

and distributed approximately according to p(α0:t−1|y1:t−1). The algorithm has a structure that
can be divided into two main blocks, and it proceeds as follows at step t:

• Sequential Importance Sampling Step:

� For i = 1, · · · , N , sample

α̃
(i)
t ∼ π(αt|α(i)

0:t−1,y1:t)

and set
α̃

(i)
0:t = (α(i)

0:t−1, α̃
(i)
t );

� For i = 1, · · · , N , evaluate the importance weights, up to a normalising constant:

w
(i)
t ∝

p(yt|α̃(i)
0:t,y1:t−1)p(α̃(i)

t |α̃(i)
t−1)

π(α̃(i)
t |α̃(i)

0:t−1,y1:t)
;

� For i = 1, · · · , N , normalise the importance weights:

w̃
(i)
t =

w
(i)
t∑N

j=1 w
(j)
t

.
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Figure 2: Particle Filtering - The adaptive stochastic grid and the selection step, when the density
approximation is propagated from step t− 1 to step t ([41]).
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• Selection Step:

� Discard / multiply particles {α̃(i)
0:t : i = 1, · · · , N} with low / high normalised impor-

tance weights to obtain N particles:

{α(i)
0:t : i = 1, · · · , N}.

Although the computational complexity at each t step is proportional to N , the above algorithm
is parallelisable, so that e�cient implementation may be achieved by using parallel processors.
It is worth mentioning that there is an unlimited number of choices for the implementation of
this algorithm, as we have a lot of freedom both in the choice of the importance distribution and
of the selection schemes.

2.3 Implementation

In this subsection, the particle �lter is implemented considering the astrophysical context: our
aim is to operate a Bayesian source separation of the di�erent astrophysical components, given
a set of observation, providing MMSE estimators of each source through the knowledge of the
approximations of the posterior distributions computed by the particle �lter. We allow the
sources to have non-Gaussian distributions; the mixing-system is assumed to be non-stationary,
and we also take space-varying noise into account.

Model Speci�cation

Before illustrating the implementation of the particle �lter algorithm, we introduce the model
we will follow ([1]).

We consider instantaneous mixing of independent sources, each one modelled as a mixture
of a known number of Gaussian components: Kuruo§lu et al. [34] demonstrated that it is
possible to �t the curves of the astrophysical source distributions by a Gaussian mixture, using
an Expectation-Maximization (EM) algorithm (�gures 3 and 4). They tested the Gaussian
mixture approximation on the main astrophysical components, for 15 di�erent sky patches with
a 15◦ aperture (256 × 256 pixels), and they observed that in all cases the Gaussian mixture
model provides a good �t with three or �ve components only (see [34] for more details).

The mixing-system is assumed to be non-stationary, and we also take space-varying noise
into account. Let n be the number of sensors: each of the n observations y will be represented
as a row vector of t elements, where t is the number of the pixels we are taking into account.
The number of independent sources α is m (of course, each one is represented as a row vector
of t elements).

The general model for the observations is thus, at time t:

y1:n,t = Htα1:m,t + w1:n,t

where y1:n,t, α1:m,t and w1:n,t are column vectors, representing the n observations, the m sources
and the n additive noise samples at time t respectively. The n×m real valued mixing matrix Ht

varies in t, and we can re-parametrise it into a vector ht = vec{Ht} so that [ht]n(j−1)+1 = hi,j,t.
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Figure 3: Source Separation - Galactic dust: histogram and Gaussian mixture model �t. ([34]).

Now we are able to express the model in terms of state equation and observation equation,
in this way:

ht = Atht−1 + vt

y1:n,t = Ctht + w1:n,t

where At and Ct are (nm×nm) and (n×nm) real valued matrices respectively, and wt is a (n×1)
real vector. Ct can be expressed in terms of the source signal vector α1:m,t, as Ct = αT

1:m,t

⊗
In.

In absence of further prior information, we assume At = Inm, and of course Ct is unknown, as
it consists of the source signals to be estimated. The distributions of the dynamic noise vt and
the observation noise wt are assumed to be i.i.d. and mutually independent: vt ∼ N (0,σv) and
wt ∼ N (0,σw), with obvious notation. The introduction of the state equation allows to deal
with non-stationary mixing matrices, as the coe�cients of h can be updated at every step.

In this formulation there is a scaling ambiguity, as we can multiply Ht by a non-zero constant
c and divide the sources α1:m,t by c and obtain the same observations: in order to solve this
ambiguity, we constrain Ht to have constant unity diagonal for Ht square (m = n), or set the
diagonal of sub-matrix Ha

m×m to unity if n > m:

Ht =

[
Ha

m×m

Hb
(n−m)×m

]
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Figure 4: Source Separation - Synchrotron: histogram and Gaussian mixture model �t. ([34]).

Model of the Sources

As the m sources are statistically independent of one another:

p(α1:m,t) =
m∏

i=1

p(αi,t).

Moreover, we can model each source by a �nite mixture of Gaussians, so:

p(αi,t|µi,j,t, σ
2
i,j,t) =

qi∑
j=1

ρi,jN (αi,t;µi,j,t, σ
2
i,j,t);

qi∑
j=1

ρi,j = 1,

where ρi,j is the weight of the jth Gaussian component of the ith source, and qi is the number of
Gaussian components for the ith source.

Now we will consider a hidden variable zi which takes on a �nite set of values Zi = {1, · · · , qi},
so that we can denote the distribution of αi,t as if at time t only the jth Gaussian component is
active, with probability ρi,j :

p(αi,t|zi,t = j) = N (αi,t;µi,j , σ
2
i,j)

At time t let z1:m,t
4
= [z1,t · · · zm,t]T . Given that the sources are statistically independent of one

another, α1:m,t have distributions:

p(α1:m,t|z1:m,t) = N (α1:m,t;µ(z1:m,t),Γ(z1:m,t)),
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where
µ(z1:m,t) = [µ1,z1,t , · · · , µm,zm,t ]

T

and
Γ(z1:m,t) = diag{σ2

1,z1,t
, · · · , σ2

m,zm,t
}.

It is possible to describe the discrete probability distribution of z1:m,t using the i.i.d. model: in
this case, the indicators of the states zi,t have identical and independent distributions. If we want
to introduce temporal correlation beween the samples of a particular source, we have to consider
the �rst-order Markov model case, where the vector of the states evolves as a homogeneous
Markov chain for t > 1:

p(z1:m,t = zl|z1:m,t−1 = zj) =
m∏

i=1

p(zi,t = [zl]i|zi,t−1 = [zj ]i) =
m∏

i=1

π
(i)
j,l ,

where π
(i)
j,l is an element of the qi×qi real valued transition matrix for the states of the ith source,

denoted by π(i). The state transition can be thus parametrised by a set of m transition matrices
π(i), i ∈ {1, · · · ,m}.

Given the observations yt (assuming that the number of sources m, the number of Gaussian
components qi for the ith source, and the number of sensors n are known), we would like to
estimate all the following unknown parameters of interest, grouped together:

θ0,t = [α1:m,0:t, z1:m,0:t, {µi,j,0:t}, {σ2
i,j,0:t}, {π

(i)
0:t}, {σ

2
w1:n,0:t

}],

where we recall that α1:m,0:t are the sources, z1:m,0:t is the matrix of the indicator variables which
determines which Gaussian component is active at a particular time for each source, {µi,j,0:t}
and {σ2

i,j,0:t} are the means and the variances of the jth Gaussian component of the ith source,

{π(i)
0:t} is the transition matrix for the evolution of zi,0:t, and {σw1:n,0:t} represents the standard

deviation of the observation noise.

Rao-Blackwellisation

In our case, referring to the model of the sources de�ned before, we want to estimate the wide
set of unknown parameters grouped together in

θ0,t = [α1:m,0:t, z1:m,0:t, {µi,j,0:t}, {σ2
i,j,0:t}, {π

(i)
0:t}, {σ

2
w1:n,0:t

}],

and we have also to consider that the mixing matrix is both space-varying and not precisely

known. The particles we should deal with will be thus {(h(i)
0:t,θ

(i)
0:t) : i = 1, · · · , N}, generated

according to p(h0:t,θ0:t|y1:t). An empirical estimate of this distribution is given by

p̄N (dh0:t,θ0:t|y1:t) =
1
N

N∑
i=1

δ
h0:t

(i) , δθ0:t
(i)(dh0:t, dθ0:t),

and, as a corollary, an estimate of p(ht, θt|y1:t) is

p̄N (dht,θt|y1:t) =
1
N

N∑
i=1

δ
ht

(i) , δθt
(i)(dht,θt).
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Figure 5: Particle Filtering - Graphical representation of the model ([1]).

It is possible to reduce the problem of estimating p(ht,θ0:t|y1:t) to a simpler one of sampling
from p(θ0:t|y1:t). In fact,

p(ht,θ0:t|y1:t) = p(ht|θ0:t,y1:t)p(θ0:t|y1:t).

Given an approximation of p(θ0:t|y1:t), an approximation of p(ht|θ0:t,y1:t) may straightforwardly
be obtained considering the following state space model for each particle:

h(i)
t = Ath

(i)
t−1 + v(i)

t ;

y1:n,t = Cth
(i)
t + w(i)

1:n,t;

where we recall that Ct can be expressed in terms of the source signal vector α1:m,t, as Ct =
αT

1:m,t

⊗
In. The posterior distribution of the state ht given the observations y1:n,t can be

recursively estimated in closed form using the Kalman �lter [30].

This technique, called Rao-Blackwellisation [13], leads to better results, as we are reducing
the size of the parameter set to be estimated by marginalising out the mixing coe�cients ht

using the Kalman �lter, so that the only distribution we have to estimate by particle �ltering is
p(θ0:t|y1:t).
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Prior Distribution as Importance Function

Referring to the approach de�ned before, the samples used to estimate the posterior density
functions of the parameters of interest have to be drawn from an importance distribution of the
general form

π(θ0:t|y1:t) = π(θ0:t−1|y1:t−1)π(θt|θ0:t−1,y1:t)

The best strategy is to choose, at step t, the importance distribution that minimises the variance
of the importance weights, given θ0:t−1 and y1:t. In [16] we �nd the proof that the importance
distribution we are looking for is:

π(θt|θ0:t−1,y1:t) = p(θt|θ0:t−1,y1:t).

From Bayes' rule, the optimal importance distribution may be expressed as

p(θt|θ0:t−1,y1:t) =
p(yt|θ0:t,y1:t−1)p(θt|θt−1)

p(yt|θ0:t−1,y1:t−1)
,

being

p(yt|θ0:t−1,y1:t−1) =
∫

p(yt|θ0:t,y1:t−1)p(θt|θ0:t−1)dθt.

Unfortunately it is not easy to sample directly from the optimal importance distribution, and the
above integral cannot be evaluated analitically, since
p(yt|θ0:t,y1:t−1) is a complex possibly non-linear function of θt. This is the reason why the
following sub-optimal method will be employed throughout, taking the importance distribution
at step t to be the prior distribution:

π(θ0:t|y1:t) = p(θ0:t) = p(θ0)
t∏

k=1

p(θk|θ0:k−1).

In this case, the importance weights can be computed recursively by

w̃
(i)
t ∝ w̃

(i)
t−1p(yt|θ(i)

t )

whose evaluation requires only one step of the Kalman �lter for each particle. Now it is convenient
to factorize the prior importance function:

p(θt|θt−1) = p(α1:m,t, z1:m,t,πt, {µi,j,t}, {σ2
i,j,t}, {σ2

w,K,t}|
α1:m,t−1, z1:m,t−1,πt−1, {µi,j,t−1}, {σ2

i,j,t−1}, {σ2
w,K,t−1})

= p(α1:m,t, z1:m,t,πt, {µi,j,t}, {σ2
i,j,t}|

α1:m,t−1, z1:m,t−1,πt−1, {µi,j,t−1}, {σ2
i,j,t−1})×

p({σ2
w,K,t}|{σ2

w,K,t−1})
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If now we consider a new variable, θ̃t, which excludes the observation noise variance, we obtain

p(θ̃t|θ̃t−1) = p(α1:m,t, z1:m,t,πt, {µi,j,t}, {σ2
i,j,t}|θ̃t−1)

= p(α1:m,t|z1:m,t, {µi,j,t}, {σ2
i,j,t})×

p({µi,j,t}|{µi,j,t−1}, zi,t)×
p({σ2

i,j,t}|{σ2
i,j,t−1}, zi,t)×

p(z1:m,t|z1:m,t−1,πt)×
p(πt|πt−1).

This hierarchical structure allows us to obtain an approximation of the distribution of the sources
exploiting the particles generated from the distributions of the other parameters, sampling subse-
quently from p(πt|πt−1), p(z1:m,t|z1:m,t−1,πt), p({σ2

i,j,t}|{σ2
i,j,t−1}, zi,t), p({µi,j,t}|{µi,j,t−1}, zi,t),

and �nally obtain the particles of the distribution p(α1:m,t|z1:m,t, {µi,j,t}, {σ2
i,j,t}).

3 Astrophysical Background

Cosmology is the scienti�c study of the large scale properties of the Universe as a whole. It
endeavours to use the scienti�c method to understand the origin, evolution and ultimate fate
of the entire Universe. Like any �eld of science, cosmology involves the formation of theories
or hypotheses about the Universe which make speci�c predictions for phenomena that can be
tested with observations. Depending on the outcome of the observations, theories need to be
abandoned, revised or extended to accommodate the data. This section is an introduction to
the cosmological context; for a detailed description, more information can be found in [24], [42],
[12].

3.1 The Big Bang

One of the best known theories in Cosmology is the Big Bang, which is based on the idea that
our Universe started out much hotter and denser than it is now, and it has been expanding since
then. Extrapolating the history of the universe backwards using current physical models leads
to a gravitational singularity, at which all distances become zero and temperatures and pressures
become in�nite. What this means is unclear, and most physicists believe that this result is due
to our limited understanding of the laws of physics with regard to this type of situation.

This theory is based on observations of our universe, among which are two main evidences:

• the �rst one is the fact that external galaxies are receding in such a way that their recessional
speed is proportional to the distance they are away from us (this is called Hubble's Law
after Edwin Hubble who �rst noticed it in 1929). This observation is explained well by a
uniform expansion of the universe: if the universe is expanding, it must have started out
very small some time far in the past;

• the second evidence consists in the fact that, when we observe the night sky, we see an
excess of radiation which is called the Cosmic Microwave Background (CMB) radiation.
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Its existence was predicted by George Gamow, Ralph Alpher, and Robert Hermann in the
1940s, and was accidentally observed for the �rst time in 1965 by Penzias and Wilson, who
received a Nobel Prize for this discovery. The CMB is a very special light that �lls the
Universe: its formation occurred when the Universe was about only 300000 years old (a
very early time compared to 10-20 thousand million years - the extimated age of Universe),
when the galaxies had not formed yet, as it did not originate from one object in particular,
but from the whole Universe. Being a sort of "shockwave" of the Big Bang, it can be
detected today as coming from everywhere in the sky. This is the reason why, in literature,
the CMB is also called the oldest data set in the Universe [12]. Observing this "�rst light"
today is like seeing the Universe as it was only 300000 years after the Big Bang: for this
reason, the Planck satellite is a sort of "time machine" astronomers will use to travel back
in time, towards the beginning of space and time, in order to bring back precious data.

The Big Bang model says that the Universe started with a very dense and hot phase that
expanded and cooled itself; for hundreds of thousands of years the temperature was so high that
neutral atoms could not form, and thus matter consisted mostly of neutrons and charged particles
(protons and electrons). Electrons interacted closely with the light particles, and therefore light
and matter were tightly coupled at that time. As a consequence, light could not propagate
and the Universe was opaque. It took some 300000 years for the Universe to cool down to a
temperature at which atoms can form, that is about 3000 degrees. It happened what astronomers
call the recombination process: matter became neutral, and the Universe became transparent.
This allowed the light to travel freely, and that �rst light is what now we call the Cosmic
Microwave Background radiation.

Since the time when the CMB was released, the Universe has expanded becoming at the
same time cooler and cooler. The cosmic microwave background has been a�ected by the same
process: it has expanded and cooled down. When we say expansion we actually mean that space
has 'stretched' itself, and, with it, all length scales. Light is, after all, a wave, and when a wave is
stretched its characteristic length scale and its frequency change. Today, the cosmic background
can be detected at microwave frequencies, and the properly designed detectors of the Planck
satellite will examine it with an accuracy never achieved before: the Planck instruments will
detect the Cosmic Microwave Background by translating it into a temperature.

The waves of light are a form of energy, and temperature is a measure of this energy : the
higher the frequency is, the more energy it has, and the hotter it is. So the detected microwaves
can be also felt as a temperature: that is the same as saying that Planck will measure the
temperature of each part of the whole sky. The CMB consists of a perfect black body, and now
its temperature is already known to be 2.726 K all over the sky to three decimal �gures: this
degree of accuracy in the measurement may seem good enough, but it's not. In fact, thanks
to previous observations, scientists know that slightly hotter or colder "patches" appear in the
sky when measuring more precisely: one part in 100000, or 0.00001 degrees of di�erence. These
di�erences in temperature are nothing less than the imprints left in the CMB by the primeval
"seeds" of today's huge concentrations of matter (galaxies, galaxy clusters, ...), and this is the
reason why the analysis of the CMB is currently one of the most promising ways to understand
the birth and evolution of the Universe in which we live.
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3.2 CMB Missions

Probably still the most famous mission dedicated to this subject is the Cosmic Background
Explorer COBE satellite (launched by NASA in 1989) which made the �rst detection of the
CMB intrinsic anisotropies - that is not due to other astrophysical source disturbs. More detailed
measurements have been subsequently made using instruments placed on high �ying balloons
(the Boomerang experiment, in 1998, was one of them) that observed only small sections of
the sky. In June 2001, NASA launched a second space mission, called MAP, to make detailed
measurements of the anisotropies over the full sky.

Figure 6: Astrophysical background - The Planck satellite ([24]).

Planck is the �rst European mission to study the birth of Universe, and will be launched in
January 2007. Its primary objectives are the measurements of the CMB anisotropies and of the
amplitude of its structures, and test in�ationary models of the early Universe. Its instruments
will analyze the microwave portion of the electro-magnetic spectrum between 30 and 857 GHz,
with an angular resolution up to 30�. The information Planck has to gather lies precisely in
the pattern formed by these slightly hotter and colder regions. As a consequence, the Planck
detectors will have to be highly sensitive: engineers will have to push current technology to
its limits if they want to get useful scienti�c results (just to illustrate the challenge, Planck
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detectors will have to work at temperatures very close to the absolute zero, otherwise their own
heat emission will spoil the measurements).

Figure 7: Astrophysical background - Cosmic Microwave Background radiation as measured by COBE
(left), and simulated to Planck resolution (right) ([32]).

3.3 The Dipole Anisotropy

As introduced before, tiny �uctuations of the order of a few micro-Kelvins are present in the
intensity of the CMB radiation, and their analysis will reveal how matter and energy were
spatially distributed at the time of atomic recombination. However, the most in�uent anisotropy
present in CMBmaps is not generated by primitive inhomogenities or astrophysical contaminants,
but to the so-called dipole anisotropy, which is due to the motions of the Earth (around the
Sun), the Solar system (around our galaxy), and the Milky Way (which moves towards the Virgo
Cluster). Nevertheless, the distortion caused by the dipole anisotriopy can be removed easily,
exploiting the knowledge about direction and velocity of these motions.

3.4 The Foregrounds

The aim of this subsection is to introduce the main CMB contaminants that are present in sky
maps. We divide these components into Galactic and Extragalactic foregrounds, depending on
their origin.

Figure 8: Astrophysical background - The contribution of Galactic dust ([42]).
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Galactic Components

• Thermal Dust: The thermal dust emission is the strongest Galaxy contribution at high
microwave frequencies, in particular at the high Planck ones. It is produced by small dust
grains (the size is of a few µm) that absorb the ultra-violet light, which is re-emitted in
the far-infrared.

• Spinning Dust: The spinning dust emission has been proposed recently as a mechanism to
account for the anomalous dust-correlated emission at low frequencies. However, strong
uncertainties are still present, and the Planck mission could help to resolve them.

• Synchrotron: The synchrotron emission is due to charged relativistic particles, accelerated
by the magnetic �eld of the Galaxy. It carries information about the structure of the mag-
netic �eld, the spatial and energy distribution of relativistic electrons, and the variations
of electron density, electron energy, and magnetic �eld introduced by supernova shocks.

• Free-Free: The free-free emission, or bremsstrahlung, is the most unknown of all Galactic
emissions, since it is the dominant one in a short interval, where the Galactic signal is, in
any case, quite weak by itself. This emission is due to the interaction of un-bound very
hot electrons (Telectron ∼ 104K) with ions.

Figure 9: Astrophysical background - The contribution of synchrotron ([42]).

Extragalactic Components

• Point Sources: The e�ect produced by Point Sources (PS) appears in the small scales of
the CMB �uctuations, and it is a very important contaminant generated by extragalactic
microwave sources like radio galaxies, infrared galaxies and quasars.

• The Sunyaev-Ze'ldovich E�ect: When the CMB photons cross the hot electron gas inside a
galaxy cluster, they su�er the so-called inverse Compton scattering that modi�es the CMB
spectrum. This phenomenom is known as the thermal Sunyaev-Ze'ldovich (SZt) e�ect.
This means that the SZt is not a foreground like the Galactic ones or the PS emission, but
it could be considered as a secondary CMB anisotropy, because the involved photons are
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the CMB ones. However, since we are focussing on the component separation problem in
CMB images, we consider this e�ect like another CMB contaminant. Moreover, there exist
a Doppler e�ect due to the relative velocity of the Galaxy clusters related to the CMB,
too: this is called the kinematic Sunyaev-Ze'ldovich (SZk) e�ect, whose detection is a very
di�cult issue, being up to 100 times lower than the SZt. The study of this e�ect is of high
interest, as it leads to put fundamental constraints on the cosmological parameters.

Figure 10: Astrophysical background - The contribution of extragalactic point sources ([42]).

3.5 CMB Intrinsic Anisotropies

After eliminating the dipole distortion and the foreground contributions, all the other anisotropies
are due to the CMB itself, that is to matter density primitive �uctuations. These intrinsic
anisotropies are essentially originated by three principal mechanisms [3]:

• The adiabatic e�ect is due to the fact that the primitive matter and radiation possess their
own �uctuations, generated before the recombination epoch: these �uctuations are the
original seeds of the structure of the Universe. This e�ect occurs at all angular scales, but
it is predominant only at θ < 1′.

• The Sachs-Wolfe e�ect was proposed in 1966, and it is related with a change in the early
photons frequency, due to �uctuations of the gravitational potential, because of density
matter perturbations. Its e�ects are present mainly at angular scales θ > 1◦.

• The Doppler e�ect is due to the fact that the particles which emitted the early photons
had a non-zero velocity. The anisotropies generated by this e�ect are present at angular
scales 0.1◦ < θ < 2◦.

The magnitude of these anisotropies at di�erent angular scales is studied through the analysis
of the CMB power spectrum, which is almost constant, except for a series of peaks (named
Doppler peaks) in correspondence of angles θ ∼ 1◦, where the acoustic e�ect is dominant. The
crucial point for Cosmology is that the position and height of these peaks depend on the value of
the fundamental cosmological parameters, such as the Hubble Constant, the cosmological density
parameters (related both to baryonic matter and to dark matter), and the cosmological constant,
whose values are known with great uncertainty at the moment.
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4 Numerical Experiments

4.1 Our Data

In order to test our algorithm [15] and its performance in the context of the Planck mission, we use
synthetic but realistic maps of the CMB and of some foregrounds, each of 256x256 pixels, which
have been generated according to the available a-priori information, at Planck's resolution. The
expected noise RMS maps at di�erent frequencies have been exploited to generate the additive
noise samples.

Astrophysical Sources

The simulated sky templates used in this work have been provided by the Planck Technical Work-
ing Group. The CMB �uctuations have been generated using the �at Cold Dark Matter (CDM)
model, whose anisotropies have a Gaussian distribution, in accordance with the standard cosmo-
logical theories. Much less is known about the statistical distributions of the other astrophysical
components: in our experiments, only Galactic dust and synchrotron emission have been taken
into account. For Galactic dust, existing sky maps obtained from di�erent frequency channel
measurements of the COBE satellite [25] have been used as spatial templates, from which the
speci�c emission values have been generated according to the hypothesized dust emission process.
As for Galactic synchrotron emission, maps have been obtained by extrapolating existing COBE
data, both for spatial resolution and for spectral emission.

The Mixing Matrix

In order to create realistic mixtures, we used the mixing coe�cients reported in [8], to obtain
the observations at 70 GHz and 100 GHz.

Noise Distribution

As it was stated before, previous approaches assumed noiseless models (for example, in [8] the
ICA method is used), and in the few cases when noise is taken into account it is generally assumed
to be Gaussian and space-invariant [36].

However, in our work noise is assumed to be Gaussian, space-varying, in accordance to the
fact that the value given to each pixel of the data maps is obtained from multiple measurements
by the Planck antenna in the same direction, and the number of multiple measurements is not
the same for pixels with di�erent locations (�gure 11).

4.2 Choice of the Filter Parameters

The particle �lter algorithm needs to be initialized, and a set of parameters and a-priori infor-
mation must be given as an input of the �lter itself. The following choices have been adopted to
test our algorithm:

• Number of Gaussian components:
The algorithm assumes that the CMB source has a Gaussian distribution, according to
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Figure 11: Simulations - RMS noise map for a sky patch of 256×256 pixels (top) and one possible noise
realization (bottom).

the theoretical astrophysical knowledge which implies a �at Cold Dark Matter model for
the CMB, whose anisotropies must have a Gaussian distribution. The foreground sources
are separated assuming that their actual distributions can be approximated by a mixture
of 3 or 5 Gaussians. Better approximations could be obtained by increasing the number
of Gaussian components for each source, although in this case much more computational
time would be needed. The active Gaussian component is selected through the indicator
matrix z1:m,t, whose distribution is in accordance to the model presented in section 2.3.

• Number of particles:
Simulations are performed by generating 70-100 particles at every sequential importance
sampling step. Also in this case, better results could be obtained by increasing the number
of particles.

• RMS noise matrices:
A-priori information about the space-varying noise variance has been exploited: a realistic
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256 × 256 matrix containing the noise variance of each pixel is given as an input to the
algorithm for each observation.

• Mixing matrix initialization:
The diagonal elements of the mixing matrix are constrained to unity. The other elements
have been initialized with a 20 % error with respect to the values used to generate the
mixtures.

• Starting values of the parameters:
The starting values of the means {µi,j,0:t} and the variances {σ2

i,j,0:t} of the jth Gaussian

component of the ith source are decided after a quick inspection of the histogram of each
source: the starting values of the means of the q Gaussian components of each source
are those which produce the q most signi�cant local maxima of each histogram. The same
qualitative approach is followed to give the starting values of the variances of each Gaussian
component. The indicator matrix z1:m,0:t, which determines the active Gaussian component
at a particular time for each source, is initialized with a discrete uniform distribution,

while the transition matrix {π(i)
0:t} for the evolution of zi,0:t is initialized with a continuous

uniform distribution. No starting values for the sources α1:m,0:t are needed, as the particles
that approximate the source distributions are generated using the particles of the other
parameters, following the hierarchical structure of �gure 5.

• Drift parameters:
The drift parameters are used to generate the particles that describe the distributions of
interest, so a correct choice is fundamental to obtain satisfactory results. In our simulations,
the following values of the drift parameters have been used: for the particle of the matrix

{π(i)
0:t}, a 3 % drift has been used, while small drifts of 0.0025%, or even smaller, have been

chosen for the means and variances of the Gaussian components.

Possible alternative choices for future research are discussed in the last section.

4.3 Choice of Priors

The particles related to z1:m,0:t are sampled from a Dirichlet prior, while those of {σ2
i,j,0:t} are

generated by an inverted-Gamma distribution, according to [1]. The particles for the estimation
of the other parameters of interest are sampled from Gaussian distributions, centered on the
values of the particles themselves at the previous step, with a variance which depends on the
value of the drift parameters de�ned above.

4.4 Simulations

In this subsection, we illustrate the results of the simulations obtained using the particle �ltering
technique. The standard residual resampling procedure has been employed to implement the
selection step, and we used the prior distribution as importance function, because of its appealing
properties, which have been described in the previous section.
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Figure 12: Simulations - Our simulated sources: CMB (top) and Galactic dust (bottom) on the Galactic
plane.

E�ect of the Choice of Drift Parameters

In this �rst simulation we will try to separate the CMB and the dust radiation on the Galactic
plane, exploiting the information contained in the observed mixtures at 70 GHz and 100 GHz
(�gures 12 and 13). In this example, the Signal to Noise Ratio (SNR) varies between -4dB and
+6dB: the dust signal is stronger on the Galactic plane, while the CMB radiation is predominant
elsewhere, and we recall that noise is space-varying.

Two-dimensional data matrices are reduced to vectors by scanning each image by columns. 70
particles are used to generate each approximated probability density function of the parameters
of interest, following the hierarchical scheme illustrated in �gure 5.

First, we want to emphasize the importance of a correct choice of the drift parameters, as too
small ones imply an unproper exploration of the distribution of interest, while a high drift implies
the fact that also the variance of the estimates of the sources will be high. In this example we
choose small values for the drift parameters: �gure 14 represents the plot of the dust signal and
its estimate. A sudden change of the statistical properties of the source signal implies a change
of the estimated statistical distributions, too, and a set of small drift parameters is unable to
explore a previously insigni�cant area of the statistical distribution itself which suddenly becomes
very signi�cant. In this case, the estimate was not able to �t the source.
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Figure 13: Simulations - The two observed signals. Notice that the Galactic dust component is much
more stronger than the CMB radiation, on the Galactic plane, both at 70 GHz (top) and at 100 GHz
(bottom).

ICA and Particle Filtering on the Galactic Plane

After some experimentation and testing, a satisfactory set of values for the drift parameters
has been found. This example shows the comparison between an ICA-based estimation and the
output of the particle �lter. The sources to be separated and the mixtures are those which have
been described in the previous example; the particle �lter has been forced to approximate the
distribution of the dust signal by means of a combination of 3 Gaussian components, sampling
70 particles for each parameter of interest, for each pixel.

In �gure 15 we show that the ICA approach is unsuitable for this separation problem: in
fact, in case of low SNR, the estimate of the Cosmic Microwave Background radiation consists of
a noise realization only, as it can be seen easily by comparing this ICA estimate with the noise
pattern shown in �gure 11.

On the other hand, in the particle �lter output it is possible to see the signal, which is also
certi�ed by the SIR (Signal to Interference Ratio) values (�gure 15):

SIR(CMB)part. �lt. = −0.32dB > SIR(CMB)ICA = −6.02dB
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Figure 14: Simulations - Plot of the one-dimensional signal representation of one column of the Galactic
dust image (blue), in correspondence of the Galactic plane. In case of an uncorrect choice of drift
parameters and initial source distribution, the algorithm (red) is unable to recognize a sudden variation
of the statistical properties of one of the source signals.

However, the output is very noisy and the separation is not completely satisfactory.

Scanning the Images

We experienced detrimental sudden variations in the source vectors, due to a non-optimal con-
version of the data matrices to one-dimensional vectorial representations. In fact, while scanning
an image column by column, from top to bottom, it is possible that the �rst pixel of a column
has a completely di�erent value from the �rst pixel of the previous column, so that the particle
�lter loses the track of the sources to be estimated. In the following simulation, matrices are
converted into vectors in order to keep the correlation between adjacent pixels, by scanning the
images column by column, one column from the top to the bottom, and the following one from
the bottom to the top, and so on.

CMB and Synchrotron Radiation on the Galactic Plane

Another simulation has been done with the aim of separating the CMB and the synchrotron
radiation on the Galactic plane (�gure 17), exploiting two mixtures observed at 70 GHz and
100 GHz (�gure 18), with a SNR = 10 dB. The particle �lter algorithm has been forced to
approximate the distribution of the synchrotron radiation with 4 Gaussian components.

The FastICA algorithm estimates the CMB more satisfactorly than the particle �lter, but
is not able to recover the synchrotron signal (�gure 19). The particle �lter recovers both the
signals, even if the estimates are still noisy (�gure 20).

SIR(CMB)part. �lt. = 8dB < SIR(CMB)ICA = 10dB
SIR(SYNCHR)part. �lt. = 1.64dB > SIR(SYNCHR)ICA = −7.74dB
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Figure 15: Simulations - CMB estimates: ICA (top) and particle �lter (bottom).
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Figure 16: Simulations - Galactic dust estimates: FastICA (top) and particle �lter (bottom).
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Figure 17: Simulations - The Cosmic Microwave Background (top) and the synchrotron radiation (bot-
tom) on the Galactic plane.
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Figure 18: Simulations - The observed images at 70 GHz (top) and 100 GHz (bottom).
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Figure 19: Simulations - ICA estimates of CMB (top) and the synchrotron radiation (bottom) on the
Galactic plane.
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Figure 20: Simulations - Output images of the particle �lter for CMB (top) and synchrotron radiation
(bottom).
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CMB and Synchrotron Radiation outside the Galactic Plane

The algorithm has been tested also with mixtures of CMB and synchrotron radiation, far from the
Galactic plane (�gure 21). Five Gaussian components are used to approximate the synchrotron
posterior distribution, and 70 particles are generated at each step, for each parameter of interest.
In this case, the CMB radiation is predominant, as it can be seen in �gure 22. When the

Figure 21: Simulations - CMB (top) and synchrotron radiation (bottom) outside the Galactic plane.

SNR is high, ICA and particle �ltering have the same performance. In case of low SNR, the
FastICA algorithm cannot recognize the contribution of the synchrotron radiation, but it can
reconstruct the CMB signal with good accuracy, as it is shown in �gure 23. The particle �lter
provides the two output signals by exploiting the a-priori information concerning the distribution
of the two sources, that is the starting values of the means and the variances of each Gaussian
component, while initial random distributions are chosen for the indicator matrix z1:m,0:t and for

the transition matrix {π(i)
0:t}.

The signal-to-interference ratios for both the CMB and the synchrotron radiation are reported
below:

SIR(CMB)part. �lt. = 10.88dB > SIR(CMB)ICA = 10.55dB
SIR(SYNCHR)part. �lt. = 6.9dB > SIR(SYNCHR)ICA = −18dB
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Figure 22: Simulations - Observed mixtures of CMB and synchrotron radiation in as sky patch outside
the Galactic plane, at 100 GHz (top) and 70 GHz (bottom).
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Figure 23: Simulations - ICA estimates of CMB (top) and synchrotron (bottom).
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Figure 24: Simulations - Output signals of the particle �lter, related to CMB (top) and synchrotron
(bottom).

5 Results and Future Research

In this work we have introduced and implemented a new, general approach, named particle
�ltering, to solve the source separation problem in the astrophysical context. This method
is able to deal with non-Gaussian and non-linear models, non-stationary sources and space-
varying noise. The extreme �exibility of particle �lters allows to include all the available a-priori
information about the statistical properties of the sources to be separated, together with the
available a-priori information about noise, and, in case, about the mixing matrix.

In the previous section we demonstrated that the particle �lter provides better results in
comparison with one of the most widespread methods to perform source separation (ICA), espe-
cially in case of low SNR. We also showed that it is possible to improve the �ltering performance
by using a greater number of particles, and allowing more Gaussian components to approximate
each source distribution. Moreover, it must be considered the fact that, as we have already
stressed, particle �ltering is a highly �exible method: it will be possible to obtain better results
with more sperimentation, by changing importance function, trying di�erent values for the drift
paramenters, or using di�erent selection algorithms.
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5.1 Importance Function

A fundamental step in the implementation of the particle �lter algorithm is the choice of the
importance function, as it has been explained before: the use of the prior distribution as the
important fuction has been already discussed, and presented as an appealing solution to overcome
the analytic untractability of the optimal importance function. Unfortunately this choice gives
results which are not fully satisfactory, because this importance function does not allow us to
exploit any information about the observed data. Better results may be obtained adopting
di�erent choices of the importance function, in order to include the information derived from the
statistical distribution of the observations.

5.2 Drift Parameters

A set of constant drift parameters has been used to perform the simulations shown in the previous
section. However, �nding optimal values for these parameters is a very di�cult task: a trade-o�
has to be considered when choosing the drifts, as too small ones imply an unproper exploration
of the distribution of interest, while a high drift implies the fact that also the variance of the
MMSE estimates of the sources will be high. An alternate strategy would be to initialise the
drift parameters to high values, and let these values decrease gradually in magnitude. However,
the drift cannot become too small, because a sudden change of the statistical properties of one
of the sources could not be recognized by the algorithm, when it occurs. A good solution could
be the use of drift parameters which are able to adapt their magnitude step by step, exploiting
the information coming from the observations.

5.3 Selection Step

The results of our simulations have been obtained by employing the standard residual resampling
procedure to implement the selection step. While debugging the code, we experienced that only
a small percentage of the generated particles have signi�cant importance weights, which means
that this procedure does not avoid completely the degeneracy phenomenon. Future research
should focus on alternative implementations of the selection step by means of di�erent resampling
procedures.

5.4 Two-Dimensional Data

Another key-point to work on is the exploitation of the spatial correlation between pixels: in
the algorithm presented here, each image has been converted into a vector and then treated
as one-dimensional. To exploit the spatial information completely, we should extend our data
model to two dimensions taking into account both vertical and horizontal neighbours, which can
be achieved utilizing Markov Random Fields (MRF) [40].
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