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Abstract

Optimal management of thermal and energy grids with fluctuating demand and prices
requires to orchestrate the generation units (GU) among all their operating modes. A
hierarchical approach is proposed to control coupled energy nonlinear systems. The
high level hybrid optimization defines the unit commitment, with the optimal transition
strategy, and best production profiles. The low level dynamic model predictive control
(MPC), receiving the set-points from the upper layer, safely governs the systems consid-
ering process constraints. To enhance the overall efficiency of the system, a method to
optimal start-up the GU is here presented: a linear parameter varying MPC computes
the optimal trajectory in closed-loop by iteratively linearising the system along the previ-
ous optimal solution. The introduction of an intermediate equilibrium state as additional
decision variable permits the reduction of the optimization horizon,while a terminal cost
term steers the system to the target set-point. Simulation results show the effectiveness
of the proposed approach.

Keywords: Hierarchical Control; Model Predictive Control; Optimal Management;
Thermal and Energy Grids;

1. Introduction

1.1. Motivation

The energy and utilities industry is facing a deep transformation, driven by environ-
mental policies, characterized by the transition from centralized generation systems to
distributed ones. This shift, supported by advanced digital technologies, requires the
introduction of new paradigms for energy management and control. This includes a rad-
ical change in the user role, the integration of different energy vectors, and the change of
focus for the definition of the control problems from the device level to a system level.
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First, decentralization of the energy production and the integration of small scale gen-
eration are promoting a paradigm shift in the consumers, which gain an active role
both on the modification of their consumption patterns, i.e. in demand-response pro-
grams, and by producing and dispatching locally their energy. In this new scenario,
the consumer is asked to abandon the perspective of ”Energy as a Commodity”, where
energy is considered always available and cost-effective on demand toward the paradigm
of ”Energy-as-a-Service”. The latter is envisioned as one of the main strategies to reach
the Circular Economy of the energy industries, together with industrial symbiosis - i.e.
utilization of excess energy and side streams - and local-level cooperation [1].
This shift is allowed by moving the focus of managing, optimization, and control prob-
lems from the device-level to the system level, e.g., as in smart grids. The generation
nodes are composed of multiple integrated units that require coordination and control
to fulfill the demand of the various consumers, which in turn may vary (in part) their
demand based on optimization criteria.
This also promotes a scenario in which the production of various forms of utilities is
more and more integrated. A step-ahead in system flexibility is built on a cross-sectorial
integration of different energy vectors and the development of tools and technologies that
enable efficient utilization of multi-dimensional energy systems [2]. For this reason, sig-
nificant research efforts must be devoted to alternative energy carriers, e.g., compressed
air, heating and cooling networks, and to their integration. This allows, e.g., to extend
the idea of smart grids to Smart Thermal Energy Grid (Smart-TEG).

In this work we focus on a local instance of the Smart-TEG, where an industrial con-
sumer, as in large companies and in industrial parks, includes an internal network of
generation units (GU), which are responsible to supply energy - in various forms - to the
production units.
Among the different configurations of a general thermal-energy grid, in this work we
select a plant with steam and electricity flows. Steam is chosen as an high energy carrier
since it is the most efficient media to transport thermal energy; it is extensively used
in different sectors, e.g. chemical, medical textile and food. Besides, it is employed for
the production of electrical power in Combined Cycle Power Plants (CCPP) and in co-
generative systems.
The integrated multi-utility configuration of the GU is here composed by a Fire-Tube
Boiler (FTB), for the generation of steam, and by an Internal Combustion Engine (ICE),
which operates as a combined heat and power system (CHP), providing both electrical
and thermal energy. The selected case-study presents an interlink of the two generation
systems: the thermal energy produced by the CHP can be diverted inside the boiler to
support steam generation, through a controllable valve.
While the thermal and electricity demand defined by the scheduling of the production
units must be fulfilled at any time, the mix between internally generated energy and net
exchange with the national grid must be optimized, as well as the commitment of the
generation units and their operating point.
In this context, the management and control of the integrated generation units become
a necessary element to operate them safely and efficiently - both from economic and
environmental perspective - as well as to balance the varying demand.
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1.2. State of the art

In the field of thermal power generation, many research efforts have been devoted in
the past decades both to solve regulation problems at a single device level and to address
optimization and high level control with reference to integrated generation systems and
cogeneration plants.

Several works cover dynamic control problems related to steam systems. Nowadays, the
deregulated electricity market and the integration of renewable sources in the generation
mix impose dramatic fluctuations of the power demand even for these plants. Steam
generators are nonlinear systems and the large variation of the demand profile imposes
them to cover a wide range of operating points, and this requires the design of advanced
control schemes for effective regulation.
Boilers, for example, are multi-input/multi-output (MIMO) systems for which control of
both water level and pressure is required, respecting process constraints. State of the
art control is classically done by decoupled PID loops on water level and pressure, gov-
erned respectively by feedwater flow rate and fuel flow rate [3]. Regarding drum boilers,
note that the water level control is a severe issue due to the so called shrink-and-swell
effect. Several works propose advanced strategies, e.g., [4], [5] and references herein. [4]
proposes a Dynamic Matrix Control (DMC) approach based on step-response models to
describe system dynamics. To deal with the nonlinearities of the system, in [6] the au-
thors present a hierarchical control structure with a high-level nonlinear model predictive
control (NMPC) based on the nonlinear plant model [7].
Other works, e.g., [8], [9] and [10], address the control of fire-tube boilers (FTB) with
similar control approaches but with a focus on the pressure loop, since in FTBs the level
control is a minor problem because of the much larger free surface of water.

High level optimization and control schemes of energy systems have also been studied.
As discussed in [11], a strong integration of decision-making layers is advantageous, but
also challenging, and therefore different approaches are available. For example, regard-
ing cogeneration plants, consisting of a Boiler-Turbine (BT) configuration, [12] and [13]
propose multi-layer architectures based on reference governor algorithms.
For optimal management of thermal systems systems, it is often necessary to schedule
activation, deactivation and transitional start-up/shut-down procedures, i.e., to define
optimal Unit Commitment (UC) problems [14], which is applied to different problems.
For example, for co-generative plants, in [15] the authors propose a direct Mixed-Integer
Linear Programming (MILP) formulation, while in [16] an hybrid system approach is pre-
sented for a Combined Cycle Power Plants island composed of a gas and a steam turbine
with a heat recovery steam generator. The work [17] presents a generalized formulation
to determine the optimal operating strategy for any industrial cogeneration plant, for
the equipment and load profiles of a typical petrochemical industry.
The work [18] addresses the high-level UC of generators and storage within a micro-grid
considering installation of a CHP, linking electricity and heat production, where the UC
problem is formulated as a linear programming; it only considers control of the aggregate
energy flows at the high level. Instead, in [19] a particle swarm optimization method is
used for the solution to a multi-objective UC problem of a CHP unit.

Also optimization of start-up procedures is a major issue for guaranteeing optimal and
safe system behaviour. While, in the past, shut-downs and start-ups of generation units,
e.g. CCPP, were mainly imposed by maintenance actions and activation procedures were
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seldom performed, at present these plants are mostly under-utilized and go through sev-
eral start-and-stop procedures to follow the demand. Optimizing the start-up procedure
can lead to reducing the start-up time, minimizing the operative cost, avoiding thermal
stress of the metal components, and reducing the environmental footprint, e.g., by lim-
iting the fuel consumption and the emissions.
Since the calculation of the optimal trajectory for the entire procedure is computationally
expensive for online implementation mainly due to the system non-linearity, many recent
works propose offline optimization procedures. Model-based optimization is proposed for
start-up procedures of coal-fired power plants [20], Heat Recovery Steam Generators [21]
(HRSG), and turbines [22], [23]. Nonlinear Programming (NLP) problems are proposed
in [24] and [25],and [26] for the open-loop optimization of a CCPP drum boiler, con-
sidering the thermal stress model. [27] and [28] present an extremely detailed model of
the thermal stresses for critical components, used for the off-line optimization of firing
curves.
However, the approaches based on offline optimization cannot manage possible distur-
bances or compensate for modelling errors, possibly leading to safety and reliability
concerns. On the other hand, closed loop approaches can assure disturbance rejection
and compensate drifting or model mismatch. In [29] a Nonlinear Model Predictive Con-
trol scheme is proposed, where the authors choose a prediction horizon that includes the
whole start-up. In view of this, although this approach is very promising, computational
complexity is still an issue.

1.3. Paper contribution and structure

In this paper a hierarchical scheme based on time scale separation is proposed to ad-
dress the optimal management and the control of the generation units of a smart thermal
energy grid, consisting of a FTB and a CHP. The hierarchical approach, similar to the
one applied in [30] to micro-grids, permits to tackle this structured problem, consisting
of both UC and dynamic control.
The main contribution of this research work is the extension of hierarchical approaches
- mostly studied in the context of electrical systems - to steam generating units. To
the best of our knowledge, this has not been previously investigated. In addition, to
comply with this aim, original modeling aspects related to boiler systems are presented,
as well as specific assumptions introduced for layer integration. Moreover, the proposed
method for optimizing the boiler startup, considering output measurements, is another
novel contribution of this work.
The objective of UC is to schedule the discrete transitions between the different operating
modes of the GU, based on a hybrid model of the system, to fulfill the utility demand
and minimize the operative cost.

Considering the result of the UC, the dynamic control algorithm aims at tracking the
operating point trajectories generated by the upper layer and at regulating the system
dynamics around these points rejecting disturbances. A model predictive control ap-
proach is proposed for this layer. For low-level control we focus on the FTB system,
which presents more challenging aspects than CHP regulation. CHP control, in fact, is
just aimed principally at maintaining the rotational speed of the motor in presence of
varying load.

We also propose a nonlinear MPC approach for the control of the boiler start-up, inspired
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by the tracking MPC presented in [31]. As it will be discussed, this allows to limit the
optimization horizon, therefore reducing the numerical complexity of the related opti-
mization problem. To achieve an efficient implementation of the NMPC, we use here a
parameter-varying linearisation of the nonlinear system, computed along the state/input
trajectory obtained at the precedent optimization cycle.

Preliminary results are proposed in [32] and [33]. In [32] the hierarchical control structure
for optimization of the GU behaviour is introduced. Differently from [32], in this paper
the discrete high-level model includes an additional operating mode: the stand-by. An
extensive analysis of process data has in fact highlighted the presence of a characteristic
operating mode, distinguishable from both productive modes.
In [33] the FTB start-up optimization method discussed here is introduced, for a simpler
boiler model and without integration in the comprehensive hierarchical control scheme.
In this paper we take several steps forward with respect to these preliminary works, also
as far as the models used for FTB dynamic control are concerned. In fact, here we con-
sider an enhanced dynamical model of the system, in which the parameters are identified
on available experimental data. Also, the FTB dynamical model is extended with the
inclusion of the steam header model, required to represent the actual configuration of
the system and the sensor location, and hence improving the description and reconstruc-
tion of available measurements. Furthermore, the problem has been addressed in a more
realistic set-up: the state feedback assumption has been removed and an observer has
been set up considering the available sensors.
The paper is organized as follows: Section 2 describes in detail the model of the GU,
presenting the subsystem models used at both low and high hierarchical levels, while
Section 3 describes in detail the proposed control structure. Section 4 presents the op-
timal predictive control method used in the lower level for start-up optimization, while
in Section 5 simulation results are reported. Finally, in Section 6 some conclusions are
drawn.

2. Models of the generation units

The GU case study considered in this work is composed of a CHP and a FTB phys-
ically connected together. Specifically, the hot exhaust gases of the ICE can be either
expelled in the air or directed inside the boiler thanks to a commanded valve. The resid-
ual thermal energy of the flue gases can thus be recovered in the FTB to sustain the
steam production with a lower primary input consumption.
The mathematical models of these systems are discussed in the following sections: first,
state-space models, derived from first principles and considered in the lower control layer,
are presented for the CHP and the FTB. Secondly, the hybrid models [34], used at UC
level, are described.

Different sampling times are used at the two different layers: the dynamic models used at
low level are discretized with a sample time of τL = 60 s, while at high-level the sampling
time is τH = 15 min. When necessary for better clarity, we will distinguish continuous-
time from discrete-time variables using the following notation. For a generic variable v,
v(t) denotes the value of v at time instant t ∈ R, while v[h] (respectively v[k]) denotes
the value of v at low-level discrete time step h ∈ Z (respectively high-level discrete time
step k ∈ Z).
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2.1. The CHP dynamic model in full operation mode

The CHP is a natural gas Internal Combustion Engine (ICE) connected to a three
phase synchronous generator, to provide electricity. The considered model of the ICE in
operation mode is derived from the works of [35] and [36]: a lumped parameter model of
a internal combustion engine, i.e. a mean value model, is connected to a static alterna-
tor. The dynamical model of the ICE considers two states, the angular speed ω of the
motor and the engine internal pressure pCHP. The inputs are the position of the throttle
valve, which is assumed to be directly related to the natural gas mass flow rate qCHP

g by
stoichiometric combustion assumption, and the electrical demand PCHP

e . In addition to
the state variables, another output channel is considered: the exhaust gas enthalpy HCHP

ex

that depends on the states of the system.
Stoichiometric ratio, volumetric and thermal efficiency are approximated by second order
polynomials of the systems states. Similarly, the heat transferred from the combustion
gases to the ICE walls, used to evaluate the remaining enthalpy of the exhaust gases is
simplified as a polynomial map considering motor angular speed and its internal pressure.
System parameters are derived from the physical and geometrical properties of the CHP,
starting from literature values, as in [35]. Moreover, the gain matrix has been fine tuned
based on available static data: in Figure 1 the static map obtained by available data is
compared to the corresponding map computed using the identified model. Values on the
x axis are adimensional for confidentiality reasons.
The local CHP controller, in this paper, is a standard PI controller acting on the throttle
valve input, i.e. equivalently to the natural gas flow rate qCHP

g , to regulate the angular
velocity ω to its nominal value ω̄ = 50Hz. The PI loop is tuned to obtain a settling time
is smaller than 1 s.
Thanks to this regulating loop, the CHP is characterized by one input only, i.e., the
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Figure 1: Relationship between qCHP
g and PCHP

e in steady-state conditions. Green dots: experimental
data; red dots: static map of the nonlinear model devised in Section 2.1; blue line: identified affine
relationship (19a). qCHP

g is adimensionalized for confidentiality.

electrical demand PCHP
e , while the gas flow rate qCHP

g and the exhaust gas enthalpy HCHP
ex

are to be considered as system outputs.
It is worth noting that the settling time of the system, 0.5 s about, is much faster than
the sampling time, τL, of the ”fast” MPC controller designed in the following (see Sec-
tion 3.2). Based on the MPC timescale, we can assume the ICE to be always in steady
state conditions, therefore we can model the CHP behaviour just considering the static
gains where the power produced by the ICE is equal to PCHP

e .
In addition, the system in full operation mode is constrained to work within a range of
produced power; as a consequence, the input qCHP

g is constrained to lie in a set, where

6



also a lower bound is defined.
qCHP

g ∈ [q̄CHP

g min, q̄
CHP

g max] (1)

where q̄CHP
g max > q̄CHP

g min > 0.

2.2. The boiler dynamic model

The mathematical model of the fire tube boiler, used for the lower level control of the
system and inspired by [37] and [38], is described in the following sections.

2.2.1. The boiler physical equations

In the peculiar configuration of the case study, because of the interconnection between
the CHP and the boiler, we consider here two sources of heat, i.e., the gas burner and the
exhaust gases diverted from the CHP. The set of equations - based on mass and energy
conservation laws - describing the system dynamics is

d

dt
[ρsVs + ρwVw] =qf − qB

s (2a)

d

dt
[ρsesVs + ρwewVw] =Qt,GAS

m→w +Qt,CHP

m→w + qfhf − qB

s hs (2b)

d

dt
[M t,GASCpT

t,GAS] =QB

g −Qt,GAS

m→w (2c)

d

dt
[M t,CHPCpT

t,CHP] =uexηexH
CHP

ex −Qt,CHP

m→w (2d)

where ρ is the density, V the volume, q the mass flow rate, T the temperature, h the
specific enthalpy and e the internal energy, of each system component denoted by its
relative subscript notation: gas (g), tubes (t), steam (s), water (w), and feed-water (f).
Equations (2c)-(2d) represent the energy balance of the heating tubes, where mt,GAS (re-
spectively, mt,CHP) denotes the mass of the tubes heated by the gas burner (respectively,
transporting exhaust gases from the CHP), while T t,GAS (respectively, T t,CHP) denotes
their temperature. Moreover, the status of the interlink valve (open/closed), which can
divert the flue gases from the CHP to the FTB is given by uex ∈ {0, 1} while ηex denotes
the rate of enthalpy of the exhaust gases that can be transmitted to the tubes.
The heat power of the gas burner is related to the natural gas flow rate qB

g by the following
relation

QB

g = ηBcLHVq
B

g

where cLHV is the lower heating value. The heat transmitted from the metal walls to the
water can be modelled as

Qt,GAS

m→w = β(T t,GAS − Tw)

Qt,CHP

m→w = β(T t,CHP − Tw)

where β is the heat transfer coefficient depending on the boiling two phase mixture of
steam and water, close to the tube walls, that induces a natural recirculation and the
interaction of numerous tubes in the bundle, based on Cooper correlation [39].
The conservation laws (2) can be simplified and further manipulated considering in the
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FTB two separated regions for water and steam and assuming the thermodynamic equi-
librium between the regions. It is thus possible to split the equation (2a) for the two
regions:

d

dt
[ρsVs] =qw→s

s − qB

s (3)

d

dt
[ρwVw] =qf − qw→s

s (4)

where qw→s
s is the steam released from the water region into the steam section.

By neglecting steam accumulation in the steam zone qw→s
s = qs and by writing the water

mass balance as:
d

dt
[ρwVw] = ρw

d

dt
Vw + Vw

d

dt
ρw ' −ρw

dVs

dlw

dlw
dt

we can simplify the formulation. The above approximation can be done assuming the
second term negligible and remembering that Vw + Vs = VTot is constant

dVw

dt
= −dVs

dt

Based on FTB geometry, is it possible to express the volume of the steam zone Vs as a
function of the water level, lw:

Vs = AsL '
4 + π

2
r2L− 2rLlw

The same separation in steam and water regions can be considered also for the energy
balance in eq. (2b). Recalling the assumption of thermal equilibrium for the two regions
and of saturated liquid, Tw = Ts, we can write the energy balance related only to the
water region:

d

dt
[ρwVwew] = Mw

d

dt
[ew] + ew

d

dt
[ρwVw]

The above energy conservation law for the water side can be expressed in terms of
water temperature by recalling eq. (4) and the thermodynamic relations for enthalpy,
dh = cpdT , and internal energy, de = cvdT .
The nonlinear dynamic model of the FTB boiler can be recast in the following form:

dT t,GAS

dt
=

1

M t,GAScp
[QB

g − β(T t,GAS − Tw)] (5a)

dlw
dt

=
1

2rL
[qf − qB

s ] (5b)

dTw

dt
=

1

ρwVw(lw)cv
[Qt,GAS

m→w +Qt,CHP

m→w + qfcp(Tf − Tw)− qB

s hs(Tw)] (5c)

dT t,CHP

dt
=

1

M t,CHPcp
[uexηexH

CHP

ex − β(T t,CHP − Tw)] (5d)

The FTB is equipped with a set of sensors, collecting the steam pressure ps and the water
level lw, assumed to be available by the internal controller. The output equation for the
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pressure can be defined by considering that the system works at saturated conditions,
therefore, the water and steam pressures satisfy the equality:

ps = pw = psat(Tw) (6)

where the function of the thermodynamic properties of the steam and water at saturation,
psat(T ), is defined based on the Industrial Formulation IAPWS-IF97 [41].

The state vector of the complete FTB model, x = [T t,GAS, lw, Tw, T
t,CHP]′, includes the

temperature of the heating tubes, the water level and its temperature. The flow rates of
feed-water, qf , natural gas, qB

g , and steam output, qB
s , are the manipulable inputs of the

model. It has to be noticed that, based on the operating mode of the system, the latter
input can be considered either an actual manipulated variable, e.g. as in start-up modes,
or a measured disturbance as in full operating mode, when steam outflow is defined by
the consumer demand.
The controlled output vector is composed by internal steam pressure and water level, i.e.,
y = [lw, p

B
s ], where the boiler steam pressure is computed by the nonlinear thermodynamic

map at saturation (6). The continuous time nonlinear model of the fire-tube boiler is, in
short:

ẋ = f(x, u, θ) (7a)

y = g(x, u, θ) (7b)

where θ is a vector collecting the uncertain system parameters, specified in the following
in Section 2.2.2. Input and state variables are all subject to constraints:

qf ∈ [0, q̄f max] (8a)

qB

g ∈ [q̄B

g min, q̄
B

g max] (8b)

qB

s ∈ [q̄smin, q̄smax] ∪ {0} (8c)

pB

s ∈ [p̄min, p̄max] (8d)

lw ∈ [l̄min, l̄max] (8e)

For control design purposes, the nonlinear dynamical model (7a) is discretized, with
sampling time τL, using the forth-order Runge-Kutta method. With some abuse of
notation, the so-obtained discrete-time model is

x[h+ 1] = fRK4(x[h], u[h], θ) (9)

where h represents the discrete time step.

2.2.2. Parameter identification

The parameters of the model are computed based on the physical and geometric
properties of the system. However, a fine tuning of some key parameters is conducted
based on available data.
The data available at present for parameter identification purposes, however, do not
correspond with all inputs and outputs of model (7): in fact, the pressure ps and the
water level lw measurements, as well as the steam flow rate qB

s are not logged and available
for identification. Nevertheless, in the steam header H, physically placed downstream of
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the FTB, a steam pressure pH
s and a flow rate qH

s sensors are present and connected to
the plant data acquisition and monitoring system. As a preliminary step to parameter
identification, therefore, we first derive the model, linking the state-space model (7)
variables with pH

s and qH
s .

Model adaptation for parameter identification.
The steam header is a conduct, modelled as a chamber acting as a small accumulator.
Here the mass conservation law and the compressible Bernoulli equation hold, i.e.,

dM

dt
= qB

s − qH

s (10)

1

2

(
qB
s

ρB
s A

B

)2

+ hB

s + ΨB

s =
1

2

(
qH
s

ρH
s A

H

)2

+ hH

s + ΨH

s (11)

where the superscripts B and H refer to the boiler outflow and the sensor location in the
steam header. M is the steam mass accumulated in the conduct, A is the conduct area,
h is the enthlapy and Ψ the potential associated with the conservative forces, i.e. the
gravitational fields, which contribution is negligible in this case, as constant.
First, eq. (10), under the isochoric assumption, allows to write the expression of qB

s in
(5b) and (5c) as a function of qH

s and the boiler variables as follows

qB

s = Vc

dρ

dt
+ qH

s (12)

where Vc is the conduct volume and the density time-derivative at the boiler exit is
computed as

dρ

dt

∣∣∣∣
s B

=
dρ

dT

∣∣∣∣
s B

dT

dt

∣∣∣∣
s B

(13)

After replacing (12) and (13) in (5), the resulting dynamic system is indicated as follows
for brevity

ẋ = f̃(x, ũ, θ) (14)

where ũ = [qf , q
B
g , q

H
s ] is the ”new” input vector. Secondly, by recalling that enthalpy is a

function of the pressure h = h(p), we obtain, from (11), the following Bernoulli equation

1

2

(
qB
s

ρB
s (pB

s )AB

)2

+ hB

s (pB

s ) =
1

2

(
qH
s

ρH
s (pH

s )AH

)2

+ hH

s (pH

s ) (15)

Equation (15), in turn, allows to derive the explicit expression of the header steam pres-
sure pH

s , regarded as a new output, as a function of the boiler system (14) variables x
and ũ. In short, we write pH

s = ỹ = g̃(x, ũ, θ).

Identification procedure.
The data at our disposal for identification purposes cover several days of plant operation,
logged by the data acquisition and monitoring system in a historical database. In addition
to the steam pressure and flow rate sensors located in the steam header, a flow-rate and a
temperature sensors are available on the feed-water conduct, as well as a flow-rate sensor
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located downstream of the junction from the main natural gas pipe: these sensors are
used for the identification of the parameters of the boiler model. Moreover, since the
variation of the feed water temperature is very limited, less than 1%, the average value is
used in the boiler model as a fixed parameter. To this aim, we selected data-sets related
to the last part of the boiler start-up. The system, in this particular process condition,
is more excited in terms of input variation and also the signal to noise ratio is larger,
since the output of the system varies significantly.
Moreover, the startup is characterized by a first part operated in open-loop, as the
activation procedure is initially manual, and by a second half in closed-loop, as the
regulator is triggered when water temperature reaches the regime value. The manual
procedure, depicted in Figure 15b, reveals that the gas flow-rate is set to three specific
levels based on the water temperature. The system operates in open-loop until Tw =
0.95T SP

w , that triggers the activation of the PI regulator.
Therefore, the dataset used for identification includes both data collected in open loop
and in closed loop operation.
The data-set used for training consists of arrays of N = 900 samples, sampled with a
sampling time of τid = 10 s, of variables ỹ and ũ. We denote such data as ũmeas[h] and
ỹmeas[h], where h = 1, 2, . . . , N .
The input sequence used for identification is analyzed to examine its persistent excitation
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Figure 2: Spectral density of the input data used in training for the identification of model parameters

(PE) properties. For example, if we analyze the spectral contents of the input signals,
as in Figure 2, we can conclude that, although they are primarily made of low-frequency
components, their spectrum is different than zero in a sufficiently wide frequency range.
Note that as the sampling time of the datalogger is τid = 10 s, the maximum frequency
in the spectrum is 0.1 Hz.
An optimization program is defined to minimize the error between the simulated output
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Figure 3: Input data for validation of the identification procedure. Data are adimensionalized for
confidentiality

and the available measurements as follows.

min
θ,x(0)

N∑
h=1

∥∥ỹ(τidh)− ỹmeas [h]
∥∥

s.t. ẋ(t) = f̃(x(t), ũmeas

[
bt/τidc

]
, θ)

ỹ(t) = g̃(x(t), ũmeas

[
bt/τidc

]
, θ)

θ ∈ Θ

The notation b·c denotes the floor function. The decision variable θ = [V H, AB, AH, η, β],
is a vector of uncertain model parameters, related to the steam header geometry, the
burner and the heat transfer efficiencies. The set Θ is defined by known physically con-
sistent upper and lower bounds of the parameters to be identified, e.g. while all the un-
known parameters are imposed to be positive quantities, efficiencies are also constrained
to be strictly less than one. Moreover for each data-set, the initial state is considered as
an additional optimization variable.
The validation has been performed in a similar process condition, extracted by the avail-
able historical data. In Figure 3, the input data of the validation set are shown. For
confidentiality reasons the data shown here are adimensional. The simulated and mea-
sured output trajectories, obtained in the validation phase, are compared in Figure 4.

2.2.3. Thermal stress constraint

One of the main limitations in the boiler operation (and in particular, the start-up) is
related to the thermal stress of the shell and the internal tubes. A large thermal stress,
due to a too steep increment of the temperatures, leads to a reduction of components’ life-
cycle, increasing the costs for inspections and maintenance. Therefore, thermal stresses
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Figure 4: Comparison of the simulated steam header pressure ỹ (solid red) and experimental data ỹmeas

(dashed blue)

have to be kept under control. The thermal stress σ can be modelled as follows.

σ = kt(Tshell)
dT shell

dt
(16)

kt is a function of the material properties and can be either constant or temperature-
dependent.
For the pressurized components, as the boiler shell, the maximum temperature rate
rT is defined by the European standard EN 12952-3 [42] and must fulfill the following
inequality. ∣∣∣∣βp(p− p0)

din + s

2s
+ βT

Eα

1− ν
cpρ

k
s2φfrT

∣∣∣∣ < σmax (17)

Variables p and p0 are the nominal and initial, respectively, pressures, din is the internal
diameter, s the wall thickness, the mechanical and thermal material properties -E, ν, α,
ρ, k, and cp- are, respectively, Young’s modulus, Poisson’s ratio, the thermal expansion
coefficient, the density, the thermal conductivity and the specific heat. Also, φf is the
cylindrical shape factor, which is a function of the ratio of internal and external diame-
ters. The first addend is the stress caused by pressurization, while the second one is the
thermal stress: βp and βT are the stress concentration factors, respectively for internal
pressure and thermal-based stresses. As suggested by [27] and references therein, we can
set βP = 0.51 and βT = 2.
The coefficient kt, which can be recovered by inspection from equation (17), is propor-
tional to the Young’s modulus and the thermal expansion coefficient, that are in general
temperature-dependent. However, for the temperature range considered in this specific
application, E = 1.82 105MPa and α = 1.35 10−5m2/s and kt can be considered constant.
The thermal stress inequality (17) can be formulated as a constraint on the rate of change
of the component temperature. In particular, in the model predictive control optimal
control problem, we will enforce the following inequality on the difference between the
wall temperature values at subsequent sampling times:

(Tw[h+ 1]− Twj[h])/τ ≤ rmax
T (18)

where τ denotes the used sampling time. The value of rmax
T is computed from equa-

tion (17) by imposing the maximum allowable stress. The bound (18) is imposed to Tw
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under the assumption that the latter is equal to the water temperature, which in turn is
assumed to be in equilibrium with the shell one. An analogous constraint on temperature
variation must be imposed on internal tubes, where we express the (18) inequality con-
sidering respectively T t,GAS and T t,CHP for the main burner tubes and the one connected
to CHP exhaust.

2.3. The CHP high-level hybrid model

The model used by the high-level optimizer, having a sampling time τH, must describe
the steady-state behaviour of the CHP in all its operation modes and the transitions
among them. To this end, a discrete hybrid model is used, which describes the time-
evolution of a set of continuous and discrete states, subject to both discrete (boolean)
and continuous inputs.
The discrete states, mCHP, correspond to the different CHP operating modes - shut down
(OFF), cold start (CS), hot start (HS), and production (ON) - thus we define the discrete
state to lie in the set M: mCHP ∈ {OFF,CS,HS,ON}.
The high-level model is based on the assumption that the evolution among the operating
modes can be described by temporal thresholds.
The dynamic state is therefore an interal clock, denoted with τCHP, that represents the
number of sampling times spent by the system in the present operation mode, where
τCHP ∈ Z+

0 .
A specific class of discrete hybrid automata (DHA) is the timed automata (TA) [34],
where the discrete states and transitions are governed by dwell-times and defined by
timed transition languages.
The continuous input, based on the closed-loop model described above, is the demanded
(and produced) electric power PCHP

e , while the model output is the pair (qCHP
g , HCHP

ex )
which depends on the discrete state mCHP and on the continuous input PCHP

e .
In particular, in the operating mode, i.e. mCHP = ON, the output pair of the CHP is
given by affine relationships with input PCHP

e :

qCHP
g = (PCHP

e − Pint)/γq
HCHP

ex = γhP
CHP
e

(19a)

Pint, γq, and γh are identified from data, as shown in Figure 1.
For what concern all the other operating modes, the outputs of the CHP are both null,
while a constant gas consumption is considered in both starting modes, q̄CHP

g CS and q̄CHP
g HS

respectively for the cold start and hot start mode.

(qCHP

g , HCHP

ex ) =

 (0, 0) if mCHP = OFF
(q̄CHP

g CS , 0) if mCHP = CS
(q̄CHP

g HS , 0) if mCHP = HS
(19b)

Regarding the transition between the operating modes, the feasible changeovers are de-
scribed by the directed graph depicted in Figure 5. As introduced, these transitions are
possible only after a defined dwell time, i.e. if the time spent in the current operating
mode τCHP(k) is greater than a proper threshold. In addition, the ON→ OFF transition
and the ones involving the system startup (OFF → CS and OFF → HS) are triggered
when a proper switching input signal uCHP

S (k) ∈ {0, 1} is set to 1.
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Figure 5: Finite State Machine of the internal combustion engine. Di-graph represents the system
modes and the possible transitions. Only decision variables are shown, however transitions are also
implied by dwell time conditions. Solid edges denote externally governed transitions, while dotted lines
show transitions induced by state guard conditions

The high-level model of the system is therefore expressed in the DHA framework. An
open DHA model is described by the tuple H = (M,X ,U ,W, f, h, Init ,Dom, E ,G,R).
The discrete modes are defined by the finite set M, while the continuous variables are
given by the finite set of real-valued variables X , as in (20a). The sets U and W include
the input and output variables, see (20b), considering both continuous and discrete ones.
The vector field f expresses the evolution of continuous variables and it generally depends
on the active discrete mode m, as for the output map h. The affine equations in (20d)
depend indeed on the active mode, and are detailed in (19). While Init is the set of valid
initial conditions, Dom represents the domain in which the discrete mode m is invariant.
The possible transitions between these modes are defined by the edges E , and transitions
are activated if the guard conditions - described by G - are met. The transition might
involve a reset of the continuous variable, which is defined in (20h) by R. Here in detail,
the model of the CHP in the DHA framework is reported:

M = {OFF,CS,HS,ON} X = {τCHP} ∈ Z+
0 (20a)

U = {PCHP

El , uCHP

S } ∈ R× {0, 1} W = R2 (20b)

f :M×X × U → X f(mCHP, τCHP, uCHP) = τCHP + 1 ∀mCHP ∈M (20c)

h :M×X × U → W h(mCHP, τCHP, uCHP) = aff(uCHP) (20d)

E = {(OFF,CS), (OFF,HS), (CS,ON), (HS,ON), (ON,OFF)} (20e)

Dom(m) =


{τCHP ≤ τOFF→HS} ∨ {uCHP

S (k) = 0}
{τCHP ≤ τCS→ON}
{τCHP ≤ τHS→ON}
{τCHP ≤ τON→OFF} ∨ {uCHP

S (k) = 0}

if mCHP = OFF
if mCHP = CS
if mCHP = HS
if mCHP = ON

(20f)

G(e) =


{τCHP ∈ (τOFF→HS, τOFF→CS]} ∧ {uCHP

S (k) = 1}
{τCHP > τOFF→CS} ∧ {uCHP

S (k) = 1}
{τCHP > τm→ON}
{τCHP > τON→OFF} ∧ {uCHP

S (k) = 1}

if eCHP = (OFF,HS)
if eCHP = (OFF,CS)
if eCHP = (CS,ON) ∨ (HS,ON)
if eCHP = (ON,OFF)

(20g)
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R(eCHP, τCHP, uCHP) = 0 ∀eCHP ∈ E (20h)

The values of τOFF→HS, τOFF→CS, τCS→ON, τHS→ON, and τON→OFF, are suitably-defined
thresholds, which characterize the time abstraction considered at the high level for the
operating modes. To delve deeper into the essence of these thresholds, a distinction
has to be done between them: τON→OFF is a value imposed by the user to avoid an
immediate shutdown after the system activation; τOFF→HS is determined by the minimum
time requirements for the shutdown process; the other thresholds are instead related to
the modeling approximation.
As a matter of fact, the duration of the startup time is not a fixed value, but is related
to the dynamic behavior of continuous variables and most of all depends on their initial
values. However, as a modeling design choice, the startup duration has been clustered
in two possible classes, cold startup and hot startup, which are characterized by two
durations, i.e., respectively τCS→ON and τHS→ON, due to the low/high value of the initial
state. This status is conditioned by the time spent in the OFF mode.

2.4. The boiler high-level hybrid model

The boiler model for the high level optimizer is also devised as a hybrid model which
describing the steady-state operation of the FTB for each functional mode.
The Finite State Machine of the FTB, see Figure 6, extends the one just presented for the

OFF

HS

CS

SB

ON 
V_close

ON 
V_open

𝑢𝑒𝑥

𝑢𝑆𝐵

𝑢𝑆𝐵

𝑢𝑠

𝑢𝑠
𝑢𝑠

𝑢𝑠

𝑢𝑠

Figure 6: Finite State Machine of the fire tube boiler. Di-graph represents the system modes and the
possible transitions. Only decision variables are shown, however transitions are also implied by dwell
time conditions

CHP, as the boiler has two production states - because of the interlink between CHP and
FTB - and a Stand-by mode. The operating production mode can be actively selected
by commanding the exhaust valve, uex, which can switch between two discrete values
(open/closed). When open, the CHP flue gases are diverted inside the boiler.
Moreover, as discussed in 3.2.1, the FTB can operate in any of the two productive modes
only between a minimum/maximum steam generation, where q̄min

s > 0. To address this
condition, the FTB includes another additional mode, which is a Stand-By (SB) status
commanded by the boolean input uB

SB. In this manner, the discrete state mB can lie in
the set MB = {OFF,CS,HS,SB,ONuex=0,ONuex=1}.
The high level model therefore presents two possible alternative reachable states when
the steam demand is not required: the OFF and the SB modes. The choice between the
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two determines a different evolution of the FSM to return on the operative modes and
it has a dissimilar impact on system consumption.
The SB mode, detailly discussed in Section 3.2.1, has a low but non-zero consumption of
natural gas, while it presents the advantage of being able to return to productive mode
almost instantaneously, just activating the controllable variable uB

SB. Instead, switching
off the boiler when the consumer demand is zero, determines a null fuel consumption
during idle. As a drawback, the FTB needs to execute the start-up procedures before
being ready to provide steam: thus the FTB cannot be responsive to a sudden steam
demand. The activation command, us must consider the mandatory dwell time related
to the CS (or HS) states.
The model, in the productive modes ONuex=0 and ONuex=1, is assumed to be in steady-
state conditions and under control, in such a way that ps = p̄s and lw = l̄w, where p̄s and
l̄w are suitable and fixed nominal conditions. In this way, the combustion gas flow-rate
required to guarantee the steam demand qB

g is a function of qB
s and, when uex = 1, of

the flue gas enthaply too, HCHP
ex . For simplicity, an affine relationship has been identified

and considered in the higher control layer:

qB

g = γ1q
B

s + γ2uexH
CHP

ex + γ3 (21)

where γ1, γ2, and γ3 are identified from the model static map, as shown in Figure 7.
In all the other operating modes, the produced steam flow rate is null or below qmin

s ,

q min q max
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Figure 7: Relationship between qBg and qBs in steady-state conditions. The identified static map (21)
is presented for different values of , uexHex in solid lines. Markers show the steady-state data of the
nonlinear model (5).

while a natural gas consumption is present in SB, CS and HS modes:

(qB

g , q
B

s ) =


(0, 0) if mB = OFF
(q̄B

g CS, 0) if mB = CS
(q̄B

g HS, 0) if mB = HS
(q̄B

g SB, q̄
B
s SB) if mB = SB

(22)

where q̄B
g CS and q̄B

g HS are given values of gas consumption for the start-up modes, while
q̄B
g SB, q̄

B
s SB are the average gas and steam flow-rates of the limit cycle occurring in the
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stand-by mode. Transitions are possible only if the time spent in the current operating
mode τB is greater than a proper threshold: in particular the dwell-time of the stand-by
mode is null, τB

SB = 0, therefore FTB can be very reactive to improvise steam demand,
while in stand-by condition.
Analogously to what discussed above for the high-level model of the CHP, the timed
transitions governing hot/cold startup are exclusively a modeling construction. The ac-
tual duration of the startup depends on the initial condition of the FTB, in particular the
water temperature, while its rate of change is limited by the thermal stress constraints,
as discussed in Section 4. The quick reactivity of the stand-by mode is substantially due
to the fact that this operating mode maintains the water temperature very close the its
set-point. Instead, when the FTB is shut down, the temperature decreases with an evolu-
tion well described by a first order dynamics. The internal temperature and therefore the
initial condition of the start-up procedure are almost entirely related on the time spent
by the FTB in OFF mode. Consequently, the duration of the start-up will be longer, the
longer the system has been shut off. To simplify the model, two possible start-up times
have been defined, clustering the behaviour of the system just in cold start-up and hot
start-up: τOFF→CS discriminates if the unit has been in OFF mode enough to experience
a water temperate below the chosen threshold, while the dwell times for cold/hot startup
modes are over-approximations of the actual cold and hot start-up times.
Also, both the switch-off and switch-on transitions are triggered when a proper switch-
ing input signal uB

S [k] ∈ {0, 1} is set to 1. As said, a binary command uB
SB[k] ∈ {0, 1} is

introduced to move the boiler in and out the stand-by mode.
Therefore, the input vector of the high level model is uB = {qB

s , H
CHP
ex , uB

S , u
B
SB, uex}, where

u ∈ U ⊆ R2
≥0 × {0, 1}3.

3. Hierarchical control

In this section we propose a control scheme that allows to satisfy the electricity and
heat demands in an economically optimal way, at minimum operative cost, considering
the combined heat and power generation unit composed of the CHP and the boiler
described in Section 2. The demand of steam and electricity is considered given and
known for a 24-hours horizon, as well as a price forecast. We enable the possibility to
exchange power with the electrical grid: the surplus of electricity produced by the CHP
can be sold, or, if negative, it can be bought from the market.
The hierarchical control structure here proposed includes a high optimization layer that
aims to optimize the performance of the integrated plant on a day-ahead basis with a
sampling time of τH = 15 min. The model used at the high level is sketched in Figure 8.
The high level optimizer receives as input the 24-hours ahead electric and steam demands
PD

e [k] and qD
s [k], respectively, for k = 1, . . . , 24 × 4, together with a forecast of the

electricity prices. Based on this, the optimizer determines the future modes of operation
of the systems mCHP[k] and mB[k], as well as the optimal production profiles PCHP

e [k],
qB
s [k] and the corresponding predicted combustion gas amounts qCHP

g [k] and qB
g [k] for the

whole future optimization time horizon k = 1, . . . , 24× 4.
The lower level is a fast regulating one with a sampling time of τL = 60 s, aiming to
control the dynamic variables of the subsystems.
For clarity, the symbol h will be used to denote the discrete time index in the fast time

18



CHP

in mode

mCHP

Boiler

in mode

mB

qB
g

qCHP
g

qB
s

uB
s

uCHP
s

PCHP
e

uex

HCHP
ex

uB
SB

Figure 8: Sketch of the high-level model

scale of the lower layer, while k will be used to denote the time index in the slow high-level
time scale.

3.1. The high level optimization problem

The high level optimizer objective is the minimization of the operating costs of the
plant on a windows of 24-hours, while fulfilling completely the electric and steam demands
in the context of a liberalized energy market. In addition to the subsystem operating
points, a further decision variable is considered in the high-level optimization, by includ-
ing the possibility either to buy electricity P Purch

e from the power grid, to support the
production of the CHP unit or to sell surplus of produced energy to the grid.
The need to consider, in an integrated fashion, both the ICE and the FTB originates
from the fact that a valve is present to divert exhaust gases from the CHP to a set of
tubes in the boiler. Note that it can be opened only when the engine is in production,
which translate in the following logical implication:

uex = 1 =⇒ mCHP = ON (23)

where mCHP is the operating mode of the internal combustion engine. To formulate the
high-level optimization problem, the two hybrid automata devised in Sections 2.3 and 2.4
have been integrated in a single Mixed Logical Dynamical (MLD) system [40] of the type:

xH[k + 1] = AHxH[k] +BH,1uH[k] +BH,2∆H[k] +BH,3zH[k]

yH[k] = CHxH[k] +DH,1uH[k] +DH,2∆H[k] +DH,3zH[k] (24)

EH,4∆H[k] + EH,5zH[k] ≤ EH,1uH[k] + EH,4xH[k] + EH,5

where the state, xH = [τCHP, χCHP

b , τB, χB

b ]′, is composed of real and boolean variables.
More specifically, χb is a boolean vector of suitable size to translate the discrete modes
mCHP and mB in a binary representation. The input of the MLD system uH= [uCHP

S ,
PCHP

e , uB
S , u

B
SB, q

B
s , uex, P

Purch
e ] is composed of, respectively, the switching signals and

the continuous inputs of the ICE and FTB subsystems, the divert valve command and
the electricity purchased from the grid. The output is yH = [Pe, q

CHP
g , qB

g ], where Pe =
PCHP

e +P Purch
e is the electric power both purchased and generated by the ICE and the other

are the gas consumed by the systems. ∆H and zH are, respectively, auxiliary binary and
continuous variables. Note that the last equation in (24) includes both the inequalities
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related to the logical relationships that regulate the switches between discrete states, and
the operational constraints (1) and (8). The cost function is given by:

JH = Cg −R (25)

where the fuel cost Cg is related to fuel consumption used to respect the utility demand
as follows:

Cg =
∑
k

(qCHP

g [k] + qB

g [k])λg (26)

The cost (26) considers also the costs related to the start-up modes {CS,HS} and stand-
by, due to the gas flow values defined in (19b) and (22) also for the non productive phases.
The revenue term R in (25) is related to the possibility of selling the electricity surplus
to the grid. It can take into account also the purchase of electricity, in case R < 0. By
splitting the deviation from the electrical demand in positive and negative fluctuation,
∆↑e, ∆↓e, it is possible to consider different prices for electricity, i.e., whether it is sold
or bought:

R =
∑
k

∆↑e[k]λ↑[k]−∆↓e[k]λ↓[k] (27)

with

∆e[k] = PCHP

e [k] + P Purch

e [k]− PD

e [k]

∆e[k] = ∆↑e[k]−∆↓e[k]

∆↑e[k],∆↓e[k] ≥ 0 ∀k

The optimization problem can be stated as follows, where the initial time is k = 1 for
simplicity reasons:

min
ξ(1)...ξ(NH)

JH

s.t. MLD model (24)

PCHP

e [k] + P Purch

e [k] ≥ PD

e [k]

qB

S [k] ≥ qD

S [k]

P Purch

e [k] ≥ 0

for all k = 0, ..., NH

where ξ[k] = [uH[k],∆H[k], zH[k]]′ and NH = 24 × 4 is the number of sampling times
included in the 24-hours horizon and qD

S is the steam demand. The high level optimization
generates the profiles of binary and continuous inputs that minimize the economic cost
function of the generation unit for the given utility demand.

3.2. The low level control

The low level control, presented in this section, aims to regulate the system to the
operating points prescribed by the UC layer. In this section, we focus on the dynamic
control of the boiler unit, as it must satisfy input and output constraints to operate
safely, as described in Section 2. The CHP unit has to just operate at a fixed rotational
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speed ω̄ = 50 Hz and physical constraints are not imposed, thus a standard PI controller
is in place. On the other hand, the low level control of the FTB is critical. In particular,
here we consider the control problem for the boiler in full operation modes ONuex=0 and
ONuex=1, while the proposal of innovative control strategies for the start-up mode will
be discussed in Section 4.
In operating condition, the water level lw and the steam pressure ps must be maintained
in the bounded ranges (8e) and (8d). Violating the lower bound in (8e) would expose
the boiler tubes outside the water, with their subsequent overheating and dangerous
consequences while, if the upper bound is violated, water or wet steam may enter the
distribution network. Concerning the pressure, the constraints are defined based on
the range acceptable by the steam consumers: the interval dimension is application-
dependent and the fallout from constraints violation stems from degradation of the steam-
user performance to the breakdown of the downstream systems. Note that the pressure
constraints can be straightforwardly converted to constraints on the water temperature
Tw, as the system operates at saturation.
The objective of the low-level controller is to enforce these limitations while steering the
boiler outputs to the nominal setpoints: a model predictive control can manage explicitly
the constraints on inputs and outputs to easily regulate MIMO systems.
The linear discrete-time model of the boiler (9) is used by the low level controller to
predict the system behaviour. For the control of the nominal operation, in production
mode, one fixed nominal linearization point has been selected. The state, input, and
output vectors of the state-space model are xL = [T t,g, T t,CHP, lw, Tw]′, uL = [qf , q

B
g ]′, and

yL = [lw, p
B
s ]′. At low-level, we consider the steam flow rate qB

s and the term uexH
CHP
ex as

measured disturbances: while the latter is not manipulable (since HCHP
ex is an output of

the CHP and the state of uex is selected by the high level optimizer), the former is indeed
manipulable, although a gas flow request qD

s is assumed to be given, to be fulfilled at any
time instant. However, this request may not be feasible in some cases, e.g., in transient
conditions and when the real demand is different from the forecast used for scheduling
at the high level. For this reason, it is beneficial for the low-level control to use qB

s as a
further degree of freedom, to be set equal to the demanded qD

s if possible.
The linearization point is characterized by the values xss

L , uss
L , yss

L , qss
s , and HCHP,ss

ex , while
the vectors of the corresponding linearized system

δxL[h+ 1] = ALδxL[h] +BL,uδuL[h] +BL,qδqs[h] +BL,exδvex[h] (28)

δyL[h] = CLδxL[h] +DL,uδuL[h] +DL,qδqs[h] +DL,exδvex[h] (29)

are defined as δxL = xL − xss
L , δuL = uL − uss

L , δyL = yL − yss
L , δqs = qB

s − qss
s , δvex =

αexH
CHP
ex −HCHP,ss

ex .
The main objective of the controller is, if possible, to fulfill the steam demand, δqDs [h] =
qDs [h] − qss

s , while regulating the output δyL to the nominal operating condition (0, 0).
The input setpoint is defined as δuopt

L = uref
L − uss

L , where uref
L is defined based on qDs [h]

and HCHP
ex [h] using suitable steady-state maps, e.g. (21). Note that, if the steam demand

qDs [h] and the real CHP exhaust flow rate profile HCHP
ex [h] are equal to the values assumed

at the high scheduling level, the required input setpoint δuL is the nominally optimal one
derived by the high level optimizer.
In addition, the controller must guarantee the operational constraints to be satisfied.
The model predictive controller defines the input by solving the following quadratic
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programming problem, at each time step h:

min
δuL[h],...,δuL[h+p],δqs[h],...,δqs[h+p]

JL (30)

s.t. model (28)− (29)
δxL[h] = δx̂L[h|h]

δqf ∈ [0− qss
f , qf,max − qss

f ]
δqB

g ∈ [qB
min − qB,ss

g , qB
max − qB,ss

g ]
δTw ∈ [Tmin − T ss

w , Tmax − T ss
w ]

δlw ∈ [lmin − lssw , lmax − lssw ]

where JL =
∑h+p
j=h ‖δyL[j]‖2WQ

+ ‖δuL[j] − δuopt
L [j]‖2WR

+ ‖δqs[j] − δqD
s [j]‖2WQs

and where

δx̂L[h|h] is the current state estimate obtained by a proper observer, see Section 3.3.
A slack variable can be introduced to further enforce the feasibility of the optimiza-
tion problem at all time instants. The matrices WQ, WR, WQs are properly-defined
positive-definite matrices; note that, in order to give priority to the fulfilment of the
steam demand, we can set WQs

>> λmax(WQ), λmax(WR).
At time instant h, the optimal values δuL(h|h) and δqs(h|h) are obtained: therefore,
the input uL[h] = uss

L + δuL(h|h) is applied to the real system and the steam flow rate
qB
s [h] = qss

s + δqs(h|h) is actually provided.
It is important to note that, if the steam demand qD

s [h] and/or the real CHP exhaust flow
rate profile HCHP

ex [h] differ from the values considered at the high scheduling level, the
steady-state points reached by the controlled system will possibly differ from the ones
selected by the high level optimizer. This, however, is not critical since, from the prac-
tical point of view, the major goal of the controller is to guarantee that the operational
constraints are enforced at all time instants.
The steady-state quantities, e.g. HCHP,ss

ex and qss
s , are defined based on the high-level op-

timization and depend on the forecast of the demand considered at high level. When the
optimization is executed, it typically considers a day-ahead prediction of the demand over
a 24-hour horizon, discretized by time step τH. This is in general a piece-wise constant
approximation of the demand forecast. During operation, more accurate predictions are
available, as well as a measure of the current/past demand mismatch with respect to the
profile considered in the optimization.
If, in any case, the actual values of qD

s [h] and/or HCHP
ex [h] differ dramatically from the ones

considered for the high-level optimization, the top-layer optimizer may be required to be
run again (with new and more reliable forecast of steam and electric power demands)
in order to recompute, for the following time steps, more realistic optimal set-points.
We define thresholds εH (or εq) that determine the maximum acceptable mismatch,
|HCHP

ex [h]−HCHP,ss
ex | < εH (or |qD

s [h]− qss
s | < εq), otherwise the computation of a new op-

timization at high level is triggered. In this scenario, it can be reasonable to use updated
forecast of the future demand.

3.2.1. Stand-by mode

As discussed, when the consumer demand is lower than the minimum level, i.e., when
qD
s < q̄min

s , the FTB can be either shut down or put in the stand-by mode. The stand-by
mode, activated by the boolean input uB

SB, is a low-power setting operation, characterized
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Figure 9: Limit cycle operation in stand-by mode

by a limit cycle, where the steam pressure is controlled to lie in a broad range and only
a minimum amount of steam is flowing to keep the distribution network warm. In this
mode, the FTB can be immediately restarted to follow the required steam demand, as
soon as the latter is restored above the minimum threshold.
Figure 9 shows available experimental data, where the limit cycle is characterized by a
low frequency fluctuation of the pressure - with a period of about 15 minutes - confined
in the range [p̄min, p̄max].
Pressure thresholds trigger a simple three-mode controller used to regulate the system
maintaining a low natural gas consumption.

• mode 1: as the pressure reaches its low limit, p̄min, the burner abruptly provide a
high heat impulse until nominal pressure level, p̄sp, is achieved;

• mode 2: the controller keeps the fuel flow rate steady to a low value, reducing the
pressure rise until the maximum value, p̄max, is reached;

• mode 3: the burner is set at the lowest firing mode, which causes a degradation of
the system pressure.

The controller strategy is identified from experimental data analyzing the relation be-
tween absolute pressure and fuel flow rate, as show in Figure 10. In the up-right corner
the pressure cycle is reported for clarity: the three regions are highlighted by different
shaded background patches, while pressure-fuel flow rate pairs are shown in black circles,
for rising pressure and in magenta squares, for decreasing pressures.
A PI controller is formulated to simulate the fuel profile for the first phase of the cycle:

qg[h] = q0

g +KP(p[h]− p̄PI) +KI

h∑
j=h′

(p[j]− p̄PI)

where the controller parameters, KP = 2.77,KI = 0.014, q0
g = 0.066, p̄PI = 9.7, are

identified from data and h′ is the switching time from phase 3 to phase 1, when the
integral error is reset to zero. In the other phases, a steady value of gas flow rate is
defined.
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Figure 10: Three-mode controller used in stand-by mode: scatter plot of the pairs pressure-fuel flow
rate for rising (black circles) and decreasing pressure (magenta squares). Three regions, with different
background colors, show the controller modes: mode 1 in light yellow, mode 2 in green, mode 3 in grey.
In the up-right corner the pressure cycle

3.3. State observer

In this paper, we consider a configuration of the system in which the state vector is
not fully accessible, in contrast with the previous work [33]: in this preliminary work,
the optimal startup procedure is investigated for a simpler boiler model with the main
assumption of full state available.
In this work, this assumption is removed in order to fit in a more realistic scenario.
In fact, here both the regulating MPC, for the production modes, and the LPV-MPC,
defined for the optimization of the start-up procedure, rely on the actual sensor existing
on the system in their real locations.
As described in Section 2.2, the fire tube boiler is endowed with a meter for the measure
of the water level and an internal pressure sensor. An observer is set up to reconstruct
the state vector based on the available measurements. A discrete-time Extended Kalman
Filter has been designed to this aim, as discussed e.g. in [45]. We assume that a process
and measurement noises, denoted respectively wpr[h] and wm[h], act on the discrete time
system derived in 2.2:

x[h+ 1] =fRK4(x[h], u[h]) + wpr[h]

y[h] =g(x[h], u[h]) + wm[h]

where wpr[h] and wm[h] are zero mean Gaussian noises with covariances XQ and XR,
compatible with the quantified measurement errors. Their values are reported in Section
5.2. Here the dependency of the model upon the parameter vector θ is discarded for
simplicity of notation.

4. Optimal start-up procedure

The control of the start-up mode differs dramatically from the dynamic control of the
production mode, regarding the objective and the constraints involved, but most of all
due to the increased importance of the system non-linearity, which precludes the direct
extension of the low-level control to the management of the start-up procedure.
We propose a nonlinear MPC approach for the boiler start-up. The proposed approach
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formulates the MPC problem including the additional optimization variable xss
h , which

represents a ”temporary” target steady state, reachable in NP discrete-time steps (i.e., at
the end of the optimization horizon), as the closest one with respect to the desired final
state. A further constraint is introduced to force the new decision variable xss

h to be an
intermediate equilibrium point. This can guarantee practically the recursive feasibility.
A formal proof of this feature is left for future research work.
This intermediate steady state is used as a terminal constraint and as a reference value in
the objective function. Thanks to this, the optimization horizon can be greatly decreased,
therefore reducing the numerical complexity, and, as a byproduct, to avoid the (often
complex) computation of a terminal positively invariant set and of a suitable terminal
cost and to guarantee recursive feasibility of the MPC optimization problem. Moreover,
this approach does not require to know the actual minimal duration of the start-up
phase.
This method, by considering only a small percentage of the entire start-up duration
in its prediction horizon, compromises the global optimality of the solution. However,
this suboptimality is mitigated by considering in the cost function a penalization of the
distance of the temporary steady-state with respect to the final nominal target, according
to the dynamic programming paradigm. The level of this performance degradation will
be evaluated numerically on the case study.

To achieve an efficient implementation of the NMPC, we propose here a parameter-
varying linearisation of the nonlinear system, computed along the state/input trajectory
obtained at the precedent optimization cycle. This reduces the nonlinear optimization
to a Constrained Quadratic Program (QP). This approach is referred here to as Linear
Parameter-Varying Model Predictive Control (LPV-MPC) and it is similar to the one
proposed in [48]. The main difference with [48] consists of how the trajectory around
which the system is linearised is computed. A strong connection with the Real-Time
iteration scheme proposed in [49] also exists. As a more general formulation of model
predictive control, LPV-MPC can be directly used both in start-up optimal control and in
the regulation of productive modes. However the boiler stabilization in nominal operating
condition is achievable in the most efficient way by switching to a simpler linear model
predictive control, where the prediction model is obtained by linearization at the nominal
operating point. The system (7) is integrated with the sampling time τS = 6 s for better
numerical accuracy. For control purposes, at each time step (say h), the discretized model
is linearized around the last available optimal state/input trajectories, e.g., x[i|h−1] and
u[i|h− 1], respectively, obtained at step h− 1 is, for i = h, . . . , Np − 1

x[i+ 1] = Ai|h−1x[i] +Bi|h−1u[i] + ζi|h−1 (31)

where

Ai|h−1 =
∂fRK4

∂x

∣∣∣∣
x[i|h−1],u[i|h−1]

Bi|h−1 =
∂fRK4

∂u

∣∣∣∣
x[i|h−1],u[i|h−1]

ζi|h−1 =fRK4(x[i|h− 1], u[i|h− 1])−Ai|h−1x[i|h− 1]−Bi|h−1u[i|h− 1]
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Figure 11: Linear Parameter-Varying MPC scheme of the FTB system

Given the final state target xT , the optimization program to be solved at time step h is
the following

min
u[h],...,u[h+Np−1],xss

h

h+Np∑
i=h

∥∥x[i]− xss

h

∥∥2

WQ
+
∥∥u[i]− u[i− 1]

∥∥2

WR
+‖xss

h − xT ‖2WQT

s.t. dynamics (31)

x[h] = x̂[h|h]

c(x[i], u[i]) ≤ 0 for all i = h, . . . , h+Np − 1

xj [i+ 1]− xj [i] ≤ σMaxτS for all j ∈ Jσ and for all i = h, . . . , h+Np − 1

x[h+Np] = xss

h

c(xss

h , u
ss

h ) ≤ 0

(32)

In the latter problem, x̂[h|h] is the estimated state obtained using the state estimator
described in Section 3.3 (designed at sampling time τS). Also, function c(·, ·) includes the
constraints (8). These constraints are also applied the terminal steady state condition
xss

h ; uss
h is the corresponding steady-state input. Finally, a hard constraint is enforced to

limit the thermal stress consistently with (18): it is applied to each component j of the
state vector that are correlated to thermal stress, included for simplicity in the set Jσ.
The choice of weighting matrices is not a trivial task. The weight matrices used in
the stage cost are usually diagonal matrices, here defined by considering the inverse of
the squares of the nominal values for each state and input channel, thus normalizing
the absolute contribution of each channel. This can simplify the tuning of the diagonal
entries of WQ and WR, that can reflect the preferences of the controller designer.
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For what concern the last term of the cost function, measuring the distance from the
actual target, the idea for tuning the weighting matrix is to emulate the approaches
presented for designing the terminal cost of MPC.
One of the classic approaches is based on the computation of an infinity horizon LQR
regulator, i.e., by considering the solution P of a discrete algebraic Riccati equation
associated to the system linearized at the end of the horizon ANP−1|h−1, BNP−1|h−1, with
the given WQ and WR.
Thus, WQT

can be selected to be WQT
= αP , where α is a designer tuning parameter.

5. Simulation results

In the following sections we validate the proposed hierarchical optimization approach
and the start-up optimal control through simulation, using the nonlinear models of the
GU presented in Section 2. The water and steam thermophysical properties, based on
IAPWS-IF97, are computed using [43].
The MLD model (24) is implemented using the hybrid system description language (HYS-
DEL) [44], where transition logics and switched affine systems are formulated directly
using mixed-integer inequalities [46, 47].
The optimal control is implemented in Matlab using YALMIP, with Gurobi 8.1.0 as a
solver for the MILP and QP problems. Simulations are performed on PC with a quad-
core processor and 16GB RAM. The closed-loop simulations are performed using the
nonlinear models presented in Section 2, for the boiler and the CHP. As concerning the
latter, the nonlinear model implemented is reported in the original papers [35] and [36].
The continuous-time ODEs are integrated using variable-step variable-order methods for
stiff ODEs (as implemented in Matlab ode15s routine) considering a interval of integra-
tion defined by the controller sampling time. The models used for control are linearized
model obtained from the nonlinear models by a prior discretization, using a Runge-Kutta
method of the 4th order.

5.1. Hierarchical optimization

First, we present the results on the hierarchical control scheme for a network composed
by a FTB and a CHP for electricity production. The steam generator is a three-pass
fire tube boiler working at a nominal pressure of 10 bar and with maximum steam flow-
rate of q̄s = 1200 kg/h, while the CHP is a 12 valve natural gas ICE producing up to
P̄CHP

e = 1200 kW. The FTB and the ICE are governed to supply the demanded steam
and electrical power, operating within the permitted ranges summarized in Table 1.
The electricity price is supposed to vary on hourly basis, see Figure 12, and its values

are taken from the historical database of day-ahead market of Gestore Mercati Energetici
(GME), the Italian company managing the energy market.
For the purpose of highlighting the effect of a different utility price ratio and to show
this in a unique graph, the price of natural gas is artificially increased at time k = 48.
A random realization of the fluctuating profiles of electricity and steam demands of the
consumers is generated for the simulation. For the higher layer, mode transition times
are reported in Table 2.

Figure 13 shows the results of the high level optimization. The first and the third
panels from the top describe the evolution of the operative modes of CHP and FTB,
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Table 1: Lower and Upper Bounds on the FTB and CHP Variables

Variable Minimum Maximum
PCHP

e 50% 100%
qB
g 12.5% 100%
qB
f 0 0.35 kg/s
qB
s 0 0.35 kg/s
ps 9.5 bar 10.5 bar
lw l̄w − 0.5% l̄w + 0.5%
σj 0 6
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Figure 12: Electricity price fluctuation [e/kWh] (top). Gas price [e/m3] (bottom). At k = 48 gas price
is increased to show by simulation the effect of relative electricity/gas price on the GU behaviour.

respectively, while the other two panels show the demanded and produced electricity and
steam, respectively. The electricity supply is split between the contribution of CHP gen-
eration (in dotted blue line) and electricity purchased from the grid (solid magenta). The
gas/electricity price ratio affects the optimal strategy of the GU: for k < 48, where grid
electricity is relatively more expensive, the CHP fulfils the electrical demand alone and,
whenever it is convenient, it sells the electricity surplus. In the opposite case, for k ≥ 48,
the CHP is maintained in minimum production mode, just to provide the diverted gas
into the FTB for steam production, while the remaining electricity demand is covered
purchasing power from the grid.
As discussed in Section 3.2.1, when steam demand is zero, the FTB can be either off

Table 2: Mode transition times of FTB and CHP DHA models

τ Boiler CHP
τOFF 1.0 1.0
τOFF→CS 5.0 3.0
τCS→ON 4.0 2.0
τHS→ON 1.0 1.0
τON 3.0 3.0
τSB→ON 0 -
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Figure 13: Simulation results of high level optimization: at τ = 48 the gas price is switched to high. i)
CHP operating modes. ii) Electricity demand and supply. iii) FTB operating modes. iv) Steam demand
and production.

or set in stand-by mode. The choice between the two strategies depends on the actual
duration of the demand interruption: the break-even point, which discriminate the op-
timal strategy, depends on the downtime and the average consumption in stand-by and
in start-up modes.
Historical data analysis has shown a reduction of more than 60% of natural gas usage
if the stop-and-start strategy is preferred to the stand-by mode, for a no-steam demand
of 5 hours. Clearly, a forecast of the future demand is required to optimally decide the
best operation mode sequence. In industrial scenarios, production scheduling can provide
useful information to build a proper forecast of the steam usage. The demand profile
in Figure 13 is characterized by two steam requests, interspersed with short and long
downtime periods, showing different strategies during the short pauses, when FTB is
switched to stand-by mode, and the longer periods with zero demand.
The reference trajectory computed by the optimization layer is provided to the low-level
MPC controller described in Section 3.2, which operates when the FTB is in produc-
tion modes. The linear model is computed around a single nominal operating point of
qs 0 = 0.5q̄s and HCHP

ex 0 = 0.5H̄CHP
ex . The MPC regulates the δqB

GAS and δqf to maintain
the steam pressure and the water level close to their set points and inside the valid
ranges, defined in Table 1. The advantages of a MIMO optimal controller at low level
is highlighted, through a comparison with a classic PID-based control scheme, based on
two separate control loops for level and pressure regulation. It shows the robustness of
the proposed hierarchical approach, by simulating different scenarios in which the de-
mand used for computing the low-level input set-points differs with respect to the one
calculated by the high level optimizer. In Figure 14 a simulation displays the behavior
of the low level controllers (the MPC in solid blue line and the PID, as a red dashed
line), where the nominal steam demand computed at the high layer is considered in the

29



-0.05%

0.00%

+0.05%

+0.10%

10.2

10.4

0.5

1

53 54 55 56 57 58 59 60 61
0

0.33

Figure 14: Low-level MPC (solid blue) and PID (dashed red) controllers. i) Water level. ii) Steam
pressure. iii) Produced steam flow rate. iv) Boiler gas flow rate. Nominal : k = [53, 57); Scenario a:
k = [57, 61], qs = qs HL − δqs.

period k = [53, 57), while a disturbed steam demand - lower than the one demanded by
the high layer - is considered in the second half of the simulation, where k = [57, 61).
While the MPC regulates in a fast way the system in both nominal and disturbed steam
demand, the PI controller - tuned to have comparable performances in the nominal case
- can correctly govern the level, but with degradation in pressure regulation.

5.2. Optimal start-up

A discrete time model is obtained from (9), with sampling time τS. The sensitivity
matrices are calculated by differentiation: symbolic calculations are used to pre-compute
off-line the Jacobians Ah, Bh, based on Automatic Differentiation tools.
The start-up optimization is done by solving the QP problem (32), with a prediction
horizon Np = 50 and the following weighting matrices: WQ = diag(0.1, 5, 20) ◦ wx,
WR = diag(0.01, 0, 0)◦wu and WQT

= diag(0.1, 5, 30)◦wx, where ◦ denotes the Hadamard
product, while wx, wu contain the inverse of the square of the maximum values of state
and input components.
The Extended Kalman filter has been implemented considering the following covariance
matrices for the noises: XQ = diag(10−2, 10−2, 10−2) and XR = diag(10−3, 10−3) and
with initial covariance estimateXP 0|0 = [1.5, 10−3, 0.15; 10−5, 10−3, 10−5; 0.15, 10−3, 0.15].
The state estimate x̂0|0 is initialized with the measured level and assigning to both the
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tube and water temperatures a prescribed initial value.
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(a) FTB start-up manual procedure - output vari-
ables. In the top panel: temperature of fire tubes
(solid) and the water temperature (dashed). In the
second, the thermal stress on tubes (solid), on the
shell (dashed) and its maximum value (dotted). In
the third, water level. All graphs are adimensional-
ized with nominal values, for confidentiality.
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(b) FTB start-up manual procedure - input variables.
In the top panel: steam flow-rate (solid), feedwater
flow-rate (dashed). In the bottom panel: gas flow-
rate. All graphs are adimensionalized with nominal
values, for confidentiality.

Figure 15: Manual FTB start-up

In current industrial practice, start-up procedure is still performed manually. There-
fore, a comparison of the proposed LPV-MPC optimal start-up with the typical manual
procedure, as extracted by historical data set, is here presented. The human operator
during the manual procedure is expected to gradually provide heat to the boiler, at dif-
ferent intermediate levels until a certain water temperature is reached, in order to reduce
the thermal stress on the components. The profiles of the manipulated variables, show-
ing the manual start-up strategy, are displayed in Figure 15b. The state variables of the
manual procedure are shown in Figure 15a: this conservative approach not only induces
a longer start-up, as reported in Table 3, it even does not guarantee the observance of
the thermal stress constraint which is slightly violated, as shown in the second panel of
Figure 15a.
The optimal solution based on LPV-MPC control is, instead, presented in Figure 16a
and Figure 16b, here compared with the solution of the open-loop NLP: in the former,
the output trajectories are shown, while the latter shows the computed optimal inputs.
The open-loop NLP is indeed equivalent to the first step of a closed-loop NMPC, thus
providing information about the computational burden required by a NMPC approach,
which would apply just the first input of the nonlinear program and then optimize again
at the next sampling time, starting from the new initial condition in a receding horizon
fashion.
The overall time required to reach the nominal operating condition is reduced by about
38% with respect to the conservative manual procedure. This time reduction is attained
by driving quickly the natural gas input closer to the maximum value, while guaranteeing
the respect of the constraints. As typical of MPC approaches, the improved performance
is obtained by pushing the system closer to the prescribed operating limits.
Moreover the LPV-MPC start-up, addressing directly the MIMO system, exploits conve-
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Figure 16: Optimal FTB start-up

niently the combined effect of the other manipulated variables in the overall optimization
of the start-up trajectory controlling, at the same time, the water level.
As shown qualitatively in Figures 16a-16b and quantitatively in Table 3, the LPV-MPC
method achieves almost identical optimality level with respect to the full horizon nonlin-
ear programming problem. In contrast, the proposed approach offers the main advantages
of a reduced CPU time - due to shorter prediction horizon and system linearisation - and
closed-loop control of the start-up process.

6. Conclusions

In this paper we have proposed a hierarchical control structure to optimize the be-
haviour of a Smart Thermal Energy Grid. The approach is presented on a plant with
steam and electric generation units, respectively a fire tube boiler and a combined heat
and power internal combustion engine. The higher hierarchical layer is devoted to opti-
mize the Smart-TEG static behaviour in a 24-hours window, considering a scenario with
price fluctuations and varying demands, by solving an hybrid optimization problem. The
solution to the unit commitment problem defines a schedule for the future modes of op-
eration of the systems, as well as the optimal production profiles and the corresponding
required combustion gas amounts. Then, at the lower level, a dynamic Model Predictive
Controller operates on each individual system to guarantee that the process constraints
are fulfilled, with special focus on the boiler. Simulation results are presented to show
the effectiveness of the proposed scheme.
Moreover, the low level scheme is extended with the dynamic control and optimization
of the start-up procedure. To address the nonlinearity of the system, we proposed a
Linear Parameter-Varying Model Predictive Control approach for the optimization of a
nonlinear system subjected to hard constraints. The method exploiting the linearisation

32



Table 3: Comparison of start-up procedures: manual start-up (historical data), open-loop NLP (simu-
lation) and closed-loop LPV-MPC (simulation).

Start-up Manual NLP LPV-MPC
type open-loop closed-loop
Duration [s] (99.3% of SP) 1678 1026 1032
Energy input [MJ] 1.272× 104 9.47× 103 9.32× 103

Thermal stress limit × X X
Prediction Horizon ≥ 172 50
Sampling time [s] 6 6
CPU time [s] (tot. OCP) � 600 0.36

of the system along the predicted trajectory is able to address nonlinear system with the
advantage of the computational time with respect to NMPC strategy, as approximation
of the SQP optimization stopped at the first iteration.
The approach is applied to the optimization of the start-up of a nonlinear fire-tube boiler.
The simulations showed the performance of the proposed scheme, comparing it to the
standard manual approach and a NMPC implementation.
Future work will address a number of open questions. For example, the dynamic control
and optimization of the boiler stand-by phase will be investigated. Even if the existing
stand-by controller guarantees that the FTB is maintained in safe operating region, with
at the same time a low consumption and a prompt reactivity to return to production
modes, the extension of MPC control to this mode might improve the overall efficiency
of the system.
Moreover, the usage of robust MPC approaches will be analyzed to take into account
and manage possible model uncertainties and unmodeled disturbances.
Also, we will consider, in the future, the optimization of a large system composed by a
number of similar generation units: this will possibly pave the way to tailored distributed
optimization and control schemes.
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[8] Feliu-Batlle, V., Rivas Perez, R., Castillo Garcia, F., and Sotomayor Moriano, J. (2005). Fire tube
industrial boilers. Fractional control. Automatica and Instrumentation, 365, pp. 90-95.

[9] Rodriguez-Vasquez, J. R., Perez, R. R., Moriano, J. S., and González, J. P. (2008). Advanced
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