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ABSTRACT

Identifying topologically well-defined communities that are also homogeneous w.r.t. attributes carried
by the nodes that compose them is a challenging social network analysis task. We address such a
problem by introducing EVA, a bottom-up low complexity algorithm designed to identify network
hidden mesoscale topologies by optimizing structural and attribute-homophilic clustering criteria.
We evaluate the proposed approach on heterogeneous real-world labeled network datasets, such as
co-citation, linguistic, and social networks, and compare it with state-of-art community discovery
competitors. Experimental results underline that EVA ensures that network nodes are grouped
into communities according to their attribute similarity without considerably degrading partition
modularity, both in single and multi node-attribute scenarios1.

Keywords Communty Discovery · Attributed Networks

1 Introduction

Among the most frequent data mining tasks, segmentation requires a given population, to partition it into internally
homogeneous clusters so to better identify different cohorts of individuals sharing a common set of features. Classical
approaches [1] model this problem on relational data, each individual (data point) described by a structured list of
attributes. Indeed, in several scenarios, this modeling choice represents an excellent proxy to address context-dependent
questions (e.g., segment retail customers or music listeners by their adoption behaviors). However, such methodologies
by themselves are not able to answer a natural, yet non-trivial question: what does it mean to segment a population for
which the social structure is known in advance?

A first way of addressing such an issue can be identified in the complex network counterpart to the data mining clustering
problem, Community Discovery. Node clustering, also known as community discovery, is one of the most productive
subfields of the complex network analysis playground. Many algorithms have been proposed so far to efficiently and
effectively partition graphs into connected clusters, often maximizing specifically tailored quality functions. One of the
reasons this task is considered among the most challenging, and intriguing ones, is its ill-posedness: there not exist a
single, universally shared, definition of what a community should look like. Every algorithm, every study, defines node
partitions by focusing on specific topological aspects (internal density, separation. . . ) thus leading to the possibility of
identifying different, even conflicting, clusters on top of the same topology. Generalizing, we can define the community
discovery problem using a meta definition such as the following:

Definition 1 (Community Discovery (CD)) Given a network G, a community c = {v1, v2, . . . , vn} is a set of distinct
nodes of G. The community discovery problem aims to identify the set C of all the communities in G.

Classical approaches to the CD problem focus on identifying a topologically accurate segmentation of nodes. Usually,
the identified clusters – either crisp or overlapping, producing complete or partial node coverage – are driven only by the
distribution of edges across network nodes. Such constraint, in some scenarios, is not enough. Nodes, the proxies for the
individuals we want to segment, are carriers of semantic information (e.g., age, gender, location, spoken language. . . ).

1Paper accepted at the 8th International Conference on Complex Networks and their Applications, 2019 - Lisbon, Portugal.
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However, segmenting individuals by only considering their social ties might produce well defined, densely connected,
cohorts, whose homogeneity w.r.t. the semantic information is not guaranteed. Usually, when used to segment a
population embedded into a social context, CD approaches are applied assuming an intrinsic social homophily of
individuals, often summarized with the motto “birds of a feather flock together". Indeed, such a correlation in some
scenarios might exist; however, it is not always given, and its strength could be negligible. To address such issue, in this
work, we approach a specific instance of the CD problem, namely Labeled Community Discovery:

Definition 2 (Labeled Community Discovery (LCD)) Let G = (V,E,A) be a labeled graph where V is the set of
vertices, E the set of edges, and A a set of categorical attributes such that A(v), with v ∈ V , identifies the set of labels
associated to v. The labeled community discovery problem aims to find a node partition C = {c1, ..., cn} of G that
maximizes both topological clustering criteria and label homophily within each community.

LCD focuses on obtaining topologically well-defined partitions (as in CD) that also results in homogeneous labeled
communities. An example of contexts in which an LCD approach could be helpful is, for instance, the identification,
and impact evaluation, of echo chambers in online social networks, a task that cannot be easily addressed relying only
on standard CD methodologies.

In this work, we introduce a novel LCD algorithm, EVA (LOUVAIN Extended to Vertex Attributes), tailored to extract
label-homogeneous communities from a complex network. Our approach configures as a multi-criteria optimization
one and extends a classical hierarchical algorithmic schema used by state-of-art CD methodologies.

The paper is organized as follows. In Section 2 we introduce EVA. There we discuss its rationale and its computational
complexity. In Section 3 we evaluate the proposed method on real-world datasets, comparing its results with state-of-art
competitors. Finally, in Section 4 the literature relevant to our work is discussed, and Section 5 concludes the paper.

2 The EVA algorithm

In this section, we present our solution to the LCD problem: EVA2. EVA is designed as a multi-objective optimization
approach. It adopts a greedy modularity optimization strategy, inherited by the LOUVAIN algorithm [2], pairing it
with the evaluation of intra-community label homophily. EVA main goal is maximizing the intra-community label
homophily while assuring high partition modularity. In the following, we will detail the algorithm rationale and study
its complexity. EVA is designed to handle networks whose nodes possess one or more labels having categorical values.

Algorithm Rationale. The algorithmic schema of EVA is borrowed from the LOUVAIN one: a bottom-up,
hierarchical approach designed to optimize a well-known community fitness function called modularity.

Definition 3 (Modularity) Modularity is a quality score that measures the strength of the division of a network into
modules. It takes values in [-1, 1] and, intuitively, measures the fraction of the edges that fall within the given partition
minus the expected fraction if they were distributed following a null model. Formally:

Q =
1

(2m)

∑
vw

[
Avw −

kvkw
(2m)

]
δ (cv, cw) (1)

where m is the number of graph edges, Av,w is the entry of the adjacency matrix for v, w ∈ V , kv, kw the degree of
v, w and δ (cv, cw) identifies an indicator function taking value 1 iff v, w belong to the same cluster, 0 otherwise.

EVA leverages the modularity score to incrementally update community memberships. Conversely, from LOUVAIN,
such an update is weighted in terms of another fitness function tailored to capture the overall label dispersion within
communities, namely purity.

Definition 4 (Purity) Given a community c ∈ C its purity is the product of the frequencies of the most frequent labels
carried by its nodes. Formally:

Pc =
∏
a∈A

max(
∑
v∈c a(v))

|c|
(2)

where A is the label set, a ∈ A is a label, a(v) is an indicator function that takes value 1 iff a ∈ A(v). The purity of a
partition is then the average of the purities of the communities that compose it:

P =
1

|C|
∑
c∈C

Pc (3)

2Python code available at: https://github.com/GiulioRossetti/EVA
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Algorithm 1 EVA
1: function EVA(G, α)
2: C ← Initialize(G)

3: Z ← αP + (1− α)Q
4: Zperv ← −∞
5: while Z > Zprev do
6: C ←MoveNodes(G,C, α)
7: G← Aggregate(G,C)

8: Zprev ← Z
9: Z ← αP + (1− α)Q

10: return C

Algorithm 2 EVA - MoveNodes
1: function MOVENODES(G, C, α)
2: Cbest ← C
3: repeat
4: for all v ∈ V (G) do
5: s← |P [v]|
6: sbest ← size
7: gbest = −∞
8: for all u ∈ Γ(v) do
9: Cnew ← C

10: Cnew[v]← C[u]
11: sizenew ← |Cnew[v]|
12: qgain ← QCnew −QC

13: pgain ← PCnew − PC

14: g ← αpgain + (1− α)qgain

15: if g > gbest or g == gbest and snew > s then
16: gbest ← g
17: sbest ← snew

18: Cbest ← Cnew

19: until C == Cbest

20: return Cbest

Purity assumes values in [0,1] and it is maximized when all the nodes belonging to the same community share a same
attribute profile.

The primary assumption underlying the purity definition is that node labels can be considered as independent and
identically distributed random variables: in such a scenario, considering the product of maximal frequency labels is
equivalent to computing the probability that a randomly selected node in the given community has exactly that specific
label profile.

EVA takes into account both modularity and purity while incrementally identifying a network partition. To do so, it
combines them linearly, thus implicitly optimizing the following score:

Z = αP + (1− α)Q (4)

where α is a trade-off parameter that allow to tune the importance of each component for better adapt the algorithm
results to the analyst needs.

EVA pseudocode is highlighted in Algorithm 1. Our approach takes as input a labeled graph, G and a trade-off value, α
and returns a partition C. As a first step, line 2, EVA assigns each node to a singleton community and computes the
initial quality Z as a function of both modularity and purity. After the initialization step, the algorithm main-loop is
executed (lines 5-9). EVA computation, as LOUVAIN, can be broken in two main components: (i) greedy identification
of the community merging move that produces the optimal increase of the partition quality (row 6), and (ii) network
reconstruction (line 7). In Algorithm 2 is detailed the procedure applied to identify the best move among the possible
ones. EVA inner loop cycles over the graph nodes and, for each of them, evaluate the gain in terms of modularity and
purity while moving a single neighboring node to its community (lines 18-24). For each pair (v, w) the local gain
produced by the move is computed: EVA compares such value with the best gain identified so far and, if needed, updates

3
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(a) Single attribute datasets (b) Multi-attribute case

Figure 1: Number of communities as function of α; in detail, (a) shows datasets with a single node attribute and (b)
shows the Amherst dataset labeled by the number of attributes considered.

the latter to keep track of the newly identified optimum: in case of ties, the move that results in a higher increase of the
community size is preferred (lines 25-28). Such a procedure is repeated until no more moves are possible (line 29).

As a result of Algorithm 2, the original allocation of nodes to communities is updated. After this step, the aggregate
function (Algorithm 1, line 7) hierarchically updates the original graph G transforming its communities in nodes, thus
allowing to repeat the algorithm main loop until there are no moves able to increase the partition quality (lines 8-9).

EVA Complexity. Being a LOUVAIN extension, EVA shares the same time complexity, namely O(|V |log|V |).
Regarding space consumption, the increase w.r.t. LOUVAIN is related only to the data structures used for storing
node labels. Considering k labels, the space required to associate them to each node in G is O(k|V |): assuming
k << |V | < |E| we get a space complexity of O(|E|).

3 Experiments

To experimentally evaluate EVA, in this section, we applied it to five real-world network datasets providing node
attributes. Moreover, we compared the obtained partitions, in terms of modularity and purity, to alternative ones
identified by state-of-art CD and LCD approaches.

Datasets. In our analysis, we included the following networks:

• Cora[3] (2708 nodes, 5279 edges) is a co-citation network among computer science research papers, each
labeled with one of 7 possible topics;

• G+ (22355 nodes, 29032 edges) is a subgraph of the Google+ social network[4] whose nodes are labeled by
their education (12 different levels);

• IMDB[5] (1169 nodes, 20317 edges) is a movie network, whose nodes are labeled with a binary value
identifying them as blockbusters or not;

• Sense2vec[6] (5309 nodes, 15170 edges) is a complex semantic network built on top of word vectors pre-trained
on Reddit comments. Node labels identify the word part of speech;

• Amherst (2235 nodes, 90954 edges) is one of the 100 networks of Facebook100[7]: nodes are labeled with five
different categorical attributes, each having multiple values. We identify with Amh1 to Amh5 the network
enriched by, respectively, 1 to 5 node attributes.

Nodes of the first four datasets are characterized by a single attribute having multiple values, e.g., |A| = 1, while, for
the last one, five attributes compose each node profile, e.g., |A| = 5.

Analytical Results. To evaluate EVA, we focus on answering the following research questions:

1) does increasing α affect the number of identified communities?

2) does increasing α affect partition topological quality to favor purity?

3) does the number of attributes in the node profile affect EVA communities?

4
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(a) Cora (b) G+ (c) Sense2vec

(d) Amh3 (e) Amh4 (f) Amh5

Figure 2: Modularity-Purity as function of α. Trend lines represent the mean values over 10 executions, the surrounding
areas the respective inter-quartile ranges.

Partition set cardinality. We applied EVA to each dataset varying α in [0,1], with steps of 0.1, thus obtaining 11
partitions, each of whom we identify as Cα. It should be noted that, by definition, we can easily characterize the
partitions in the two limit cases: (i) C0 corresponds to the LOUVAIN partition; (ii) C1 identifies the locally biggest
connected components whose nodes share the same label profile. It should be noted that in a fully connected graph (as
well as in a strongly positive assortative one) imposing α = 1 generates a number of communities equal to the existing
combination of attribute profiles in the graph. We identify the number of community in Cα with |Cα|. To better compare
partition cardinality trends across datasets, we normalize each of them point-wise w.r.t. their |C0|. The results, visually
summarized in Figure 1, underline that EVA produces more fragmented partitions while increasing the value of α.

Modularity vs. Purity. Indeed, given the positive correlation between α and |Pα|, we need to study how to
set the former so to balance partition modularity and purity. To such extent, we studied how such measures vary w.r.t.
our control parameter, α – as shown in Figure 2(a-c), where we report the modularity and purity trends as a function of
α in a two y-axes chart. We observe that, until reaching high α values, modularity does not degrade considerably.
Moreover, the partitions obtained with α = 0.8 and α = 0.9 are the ones that usually better harmonize the two
quality functions. In particular, focusing on the α = 0.9 case, we can observe that in G+ a modularity decreases of
approximately 0.2 points, in Cora and Sense2vec of 0.04 and in IMDB the absence of such a degradation.

To better understand EVA performances on the analyzed datasets, such results are compared with the ones obtained by
five among CD and LCD state-of-art algorithms (LEIDEN, INFOMAP, LP, LOUVAIN, and SAC1): Table 1 reports the
complete comparison. Indeed, there are several reasons to compare EVA to standard CD algorithms exploiting only
topological information, among them:

i) quantify the modularity degradation w.r.t. those approaches that are designed to maximize such function
(i.e., LEIDEN[8] and LOUVAIN[2]). We can observe how such algorithms can guarantee slightly higher
modularity than EVA, at the cost of a huge gap in purity. Such behavior is probably due to the resolution
limit[9] that affects modularity optimization that in EVA is mitigated by a modified objective function that
reduces avalanche effects;

ii) evaluate if different topological partitioning criteria allow to, implicitly, identify community having high purity.
Indeed, INFOMAP[10] and LP[11], outperform modularity based CD in terms of purity. However, they are not
able to outperform EVA neither in purity nor in modularity.

5
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Modularity Purity
Cora G+ IMDB Sense2vec Cora G+ IMDB Sense2vec

LOUVAIN .80 .91 .71 .90 .75 .42 .73 .81
LEIDEN .80 .92 .71 .90 .75 .42 .72 .74
INFOMAP .63 .73 .69 .63 .86 .59 .82 .80
LP .64 .72 .65 .78 .90 .63 .82 .81
SAC1 .00 - -.002 .00 .49 - .68 .79
EVA0.8 .74 .82 .71 .89 .89 .90 .86 .94
EVA0.9 .76 .76 .71 .86 .96 .98 .94 .98

Table 1: Single-attribute: Modularity and Purity comparison. SAC1 was not able to terminate on the G+ in reasonable
time due to its high computational complexity.

Moving to the LCD playground, we compared EVA to SAC1[12], which adopts a similar rationale and is designed to
address the same problem. Table 1 underlines how SAC1 always produces the lowest modularity partition while not
outperforming EVA in terms of purity.

Indeed, to understand if the purities of the partitions identified by the compared algorithms are statistically significant,
we have to compare them to the ones we should expect by randomly clustering graph nodes. To do so, we performed
a z-test. We consider as null model, for each network, the frequency of the most frequent node attribute value. The
underlying idea is that the more the partition purity deviates from the null model, the less the attribute homophily within
each community could have also be obtained by randomly sampling the same number of nodes. Formally we compute
the z-score as:

z =
P0 − µc
σc

(5)

where P0 is the relative frequency of the most frequent attribute value, µc is the purity P as defined in Section 2 (for
each dataset, the values are reported in Table 1), and σc is its standard deviation. P0 of Cora is 0.29, P0 of G+ is 0.12,
P0 of IMDB and Sense2vec is 0.5 (with the difference that IMDB vertices can be labeled by two binary values equally
distributed among the network, while Sense2vec nodes attribute can assume more than two values while the half of
word vectors are labeled as nouns). Table 2 reports the z-score, and relative p-value, for all the datasets and compared
algorithms. We can observe how the purity of the partitions identified can be considered statistically significant for very
low p-values (with modularity based CD approaches registering the highest cut-off values, and LCD the lowest ones).

Multi-Attribute profiles. The last question regards the multi-attribute case: in particular, we are interested in
quantifying how the number of distinct node-attributes affects the number of communities identified as well as their
purity.

Indeed, we have already seen that increasing α the number of EVA communities increases as well in single-attribute
networks: Figure 1(b) confirms such trend also on multi-attribute ones. However, we can also observe that the number
of attributes considered deeply affects such a trend, at least for high values of α. Figure 2(d-f) shows the modularity
and purity trends for multi-attribute datasets. Even varying the number of attributes we can observe a relative absence
of considerable disruption of partition modularity and a progressive increase of its purity that, for α > 0.4 rapidly reach
saturation. Table 3 compares modularity and purity for four different instantiations of EVA on the Amh dataset while
varying the number of node attributes from 1 to 5. We can observe that both quality functions are stable w.r.t. the
number of attributes and that α = 0.8 offers a viable compromise to our aim.

z-score p-value
Cora G+ IMDB Sense2vec Cora G+ IMDB Sense2vec

LOUVAIN -2.18 -1.15 -2.13 -0.9 0.01 0.1 0.01 0.1
LEIDEN -0.22 -1.18 -2.13 -1.03 0.02 0.1 0.03 0.1
INFOMAP -2.98 -1.78 -1.80 -1.28 0.01 0.03 0.02 0.01
LP -3.40 -1.80 -1.60 -1.21 0.00 0.03 0.05 0.1
EVA0.8 -3.80 -5.78 -2.15 -2.98 0.00 0.00 0.01 0.00
EVA0.9 -7.80 -9.27 -3.63 -6.90 0.00 0.00 0.00 0.00

Table 2: Statistical significance of the Purity of the identified partitions.
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Modularity Purity
Amh1 Amh2 Amh3 Amh4 Amh5 Amh1 Amh2 Amh3 Amh4 Amh5

EVA0.1 .43 .43 .43 .43 .43 .49 .13 .09 .04 .03
EVA0.5 .43 .43 .43 .43 .43 .49 .73 .77 .79 .80
EVA0.8 .43 .42 .42 .42 .43 .95 .93 .95 .94 .96
EVA0.9 .42 .36 .38 .40 .40 .97 .95 .97 .95 .98

Table 3: Multi-attribute: Modularity and Purity comparison of EVA over Amh

4 Related work

In this section, a brief overview of previous studies addressing LCD is presented. As previously discussed, classic CD
algorithms deal only with the topological information since their clustering schemes are established by optimizing
structural quality functions. In this scenario, LCD is a challenging and more sophisticated task, aiming to balance the
weight of topological and attribute related information expressed by data enriched networks to extract coherent and
well-defined communities.

At the moment, an emerging LCD algorithm classification proposal[13] organizes the existing algorithms in three
families on the basis of the different methodological principles they leverage: i) topological-based LCD, the attribute
information is used to complement the topological one that guides the partition identification; ii) attributed-based LCD,
topology is used as refinement for partitions identified leveraging the information offered by node attributes; iii) hybrid
LCD approach, the two types of information are exploited complementary to obtain the final partition.

Examples of topological-based LCD are of three types, those that weight the edges taking account of the attribute
information[14], those that use a label-augmented graph[15] and those that extend a topological quality function in order
also to consider the attribute information[12, 16]. All three methodologies share the idea that the attribute information
should be attached to the topological one, while, in an attributed-based LCD, attributes are merged with the structural
information into a similarity function between vertices[12, 17]. Finally, examples of hybrid LCD approaches are those
that use an ensemble method to combine the found partitions[18] and those that use probabilistic models treating vertex
attributes as hidden variables[19].

5 Conclusion

In this paper, we introduced EVA, a scalable algorithmic approach to address the LCD problem that optimizes the
topological quality of the communities alongside to attribute homophily. Experimental results highlight how the
proposed method outperforms CD and LCD state of art competitors in terms of community purity and modularity,
allowing to identify high-quality results even in multi-attribute scenarios.

As future works, we plan to generalize EVA methodology, allowing the selection of alternative quality functions,
both topological (e.g., the conductance rather than the modularity) and attribute related – e.g., performing different
assumptions for the purity computation than the independence of the vertex attributes. Moreover, we plan to integrate
our approach within the CDlib project[20] and to extend it to support numeric node attributes.
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