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1 | INTRODUCTION

The article of Tian et al.! presents a very extensive review of Bayesian inferential procedures for the analysis of censored
data, providing useful guidances for setting prior distributions for log-location-scale distributions commonly used in
reliability applications, such as the lognormal, the Weibull, the loglogistic, and the Fréchet distribution.

Several kinds of censoring that arise in practical applications are discussed, In particular: (a) the right censoring,
which arises when the test ends before all units fail, (b) the interval censoring, which arises when failures are found only
at inspection times, so that all that is known is that a failure occurred between the last and the current inspection, and
(c) the left censoring, which arises when the unit is found to be failed at the first inspection time.

Large attention is devoted to the right censoring, distinguishing between time (Type 1) censoring, which occurs when
the test time is fixed and the number m of observed failures is random (and can be zero), and failure (Type 2) censoring,
which occurs when the test ends after a specified number m of units have failed, so that the test time is random. Clearly, a
complete sample can be viewed as a special case of the Type 2 censored sample, when m is set equal to the sample size n.

For such kinds of censoring, noninformative and weakly informative prior distributions are discussed. In particular,
the Jeffreys prior, the Independence Jeffreys prior, and the reference prior are proposed, under the very useful reparam-
eterization of the log-location-scale distributions in terms of the p-th quantile of the distribution, say ¢,, and of the scale
parameter o (or its reciprocal g = 1/0).

Possible combinations of the above mentioned noninformative or weakly informative prior distributions with infor-
mative prior distributions for ¢, and ¢ are also proposed and discussed. Among all these combinations, those based on
proper prior distributions appear to be of great interest and practical application when a Bayesian approach is used for
model selection, in particular by using the Bayes factor, as discussed in Section 2 of this short discussion.

2 | MODEL SELECTION AND BAYES FACTOR

Many of the proposed Bayesian methods for model comparison usually rely on the Bayes factor, originally developed by
Harold Jeffreys,? that allows one to quantify the evidence in favor of one statistical model compared to another.

In particular, given two competing models, say M, and M;, the Bayesian approach to model selection is based on the
posterior probabilities:

Pr {My|data} and  Pr{M;|data} =1 — Pr{My|data}, (1)

which measure the evidence in favor of models M, and M, respectively, given the observed data. Once the prior probabil-
ities Pr {My} and Pr {M;} = 1 — Pr {M,} that the model My (k = 0, 1) is the correct one have been expressed, the posterior
probability Pr {My|data} (k = 0, 1) results in:
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Pr {data|M;} Pr { M} k=
Pr{data|M,} Pr {M,} + Pr {data|M;} Pr {M;}

Pr {M;|data} = 0,1, ©)]

where Pr{data|M;} denotes the marginal probability of the observed data under the model M (k =0, 1), which is
obtained by integrating over the parameters space the product of the likelihood function & (data| ; M) and the joint
prior distribution for the vector 6 of the model parameters. For example, if model M, is the Weibull distribution of
Equation (3) in Tian et al.! reparameterized in terms of the p-th quantile ¢, (see equation (7) in Tian et al."), and the data
arise from a Type 1 right censoring test, then:

Pr {data|M,} =/ /Sf(dataup,ﬂ;Mo)n(tp,mMo) dt,dp
t, Jp

- [ (=) (F(2) oo [ma-n(2)])

B
X exp l(n —m)InQ1 —p)<tz> ] 7 (tp, BIMo) dp dtp, 3)
P
where & (datal t,, f; My) is the likelihood function of the observed data under the Weibull model, n is the sample size,
T is the censoring time, m is the (random) number of observed failures, ¢; (t; < T,i =1, ... ,m) are the observed failure
times, and = (tp, ﬂ|MO) denotes the joint prior distribution for the parameters £, and f of the model M,. The marginal
probability Pr {data|Mj} is sometimes called the marginal likelihood or the integrated likelihood.
Once the posterior probabilities (2) have been computed, a summary of evidence provided by the observed data in
favor of model M, is given by the Bayes factor By, (see, e.g., Kass and Raftery® and Campbell and Gustafson*), which is
defined as the ratio of the posterior odds of M to its prior odds:

_ Pr{My|data} / Pr {M;|data}
© Pr{Mo)/Pr{My}

By 4)
When the models M, and M; are equally prior probable, so that Pr {My} = Pr {M;} = 0.5, then the Bayes factor is equal
to the posterior odds Pr {My|data} / Pr {M;|data}. Moreover, from (2), we have that:

_ (Pr{data|Mo} Pr{M,}) / (Pr{data|M;} Pr{M;})  Pr{data|M,}

Bor = Pr {M,} / Pr {M;} - Pr{data|M,}’ ®

so that the Bayes factor is equal to the ratio of the marginal probabilities (3) and is independent from the prior probabilities
Pr {M,}. Thus, the Bayes factor is sometimes interpreted as the actual odds of the models implied by the data alone
(see, Berger and Selike®). However, the presence of the prior distributions = ( by, ﬁle) for the models parameters in the
marginal probability (3) prevents any interpretation from being in a non-Bayes context.

Large values of By; provide evidence in favor of the model M,, whereas large values of Byy = 1/By; provide evidence
against M. Appropriate bounds for 2 In(Bj) able to measure the evidence against the model M, can be found in Kass and
Raftery,® and are listed below:

21In(B,,) Evidence against M,

0-2 Not worth more than a bare mention
2-6 Positive

6-10 Strong

>10 Very strong

The above bounds are given on Bjg (and not on By;) because it is more familiar to speak in terms of evidence against
the model M, rather than in favor of it. Alternative bounds, given in that case for By, can be found, for example, in
Jeffreys® and in Lee and Wagenmakers.”
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In order to compute the Bayes factor, the prior distributions for the parameters of each model have to be specified. This
step is anything but trivial, first of all because the prior distributions must be proper in order to compute the marginal
probability Pr {data|M} of the observed data under the model M (k = 0, 1). Otherwise, the Pr {data|M}}, and conse-
quently the Bayes factor, would be computed up to an undefined multiplicative constant. Thus, if no information for a
model parameter is available, a proper noninformative or a weakly informative prior distribution must be used. To this
end, if the competing models belong to the log-location-scale family, the weakly informative prior distributions discussed
in Tian et al.! and provided in table 2 constitute a very useful summary of feasible prior distributions.

Moreover, the Bayes factor is quite sensitive to the choices of prior distributions. In particular, if the prior distribution
for a parameter of the model M, is strong but wrong, then the Bayes factor By; can provide evidence against the model M,
even if this model is the most appropriate to describe the observed data. Thus, strong prior distributions are suggested to
be used only if the prior distribution is expressed in terms of a parameter that indexes both the models. To this end, the
reparameterization suggested in Tian et al.! for the log-location-scale distributions in terms of the p-th quantile ¢, allows
strong prior information for the failure probability to be elicited, without taking the risk of unintentionally penalizing
one of the models. A useful choice of informative prior distributions for f,, able to describe any prior information for this
quantile, is provided in table 2 of Tian et al.!

Thus, a large number of the recommended prior distributions given in table 2 of Tian et al.! in order to make inference
on the parameters, and function thereof, of log-location-scale distributions, can be used to compute the Bayes factor and
then select the model that, within the family of log-location-scale distributions, best fits a given set of failure data. In
particular, all the combinations of a strong or weakly informative prior distribution for the quantile ¢, and of a weakly
informative or proper noninformative prior distribution for # = 1/¢ can be used for model selection, with the certainty
that: (a) the Bayes factor is not computed up to an undefined multiplicative constant, and (b) the use of a strong but wrong
prior information for ¢, does not cause the best model to be rejected.

3 | FURTHER DEVELOPMEMENTS

In some circumstances, the analyst possesses prior information on the reliability level at a given time 7, say R, =1 —
F(z; u, p), that can not be easily converted into prior information on a quantile of the distribution. Thus, it could be useful
to reparameterize the log-location-scale distribution in terms of # and R, that, in case of the Weibull distribution, means
to replace # with the expression = 7 /[— In(R)1? in (3) of Tian et al.,! so that the cumulative distribution function
becomes:

F(t:R,, f) = 1 — exp [ln(R,) (g)ﬂ > 0.

Once informative and weakly informative prior distributions on R, have been formulated, similarly to what was done
in Tian et al.! for the quantile ¢,, these prior distributions can be used together to the proper noninformative or weakly
informative prior distributions for g (or for ¢ = 1/) both for making inference and for model selection by using the Bayes
factor.

4 | CONCLUSIONS

The article of Tian et al.! proposes and discusses a large number of prior distributions for log-location-scale distributions
used in reliability applications. These prior distributions are formulated both in terms of the classical parameters, say
u and o, of the log-location-scale distribution, and in terms of ¢ and the p-th quantile ¢,. This last reparameterization,
when accompanied by a weakly informative or proper noninformative prior distribution for ¢ (or its reciprocal g = 1/0)
and by an informative prior distribution on the quantile #,, allows also to correctly perform a model selection (among the
log-location-scale family of distributions) based on the Bayes factor, that is in compliance with the requirements for prior
distributions: (a) all the prior distributions must be proper, (b) the prior distribution on a parameters indexing only one of
the competing models must be noninformative or weakly informative, and (c) a strong prior distribution can be used only
on a parameter indexing both the competing models, in their original or new parameterization, such as the p-th quantile
t, or the reliability level R, at a given time 7.
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