Consiglio Nazionale delleRicezche -

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

CACHE COHERENCE IN MULTICACHE
SYSTEMS

Lanfranco Lopriore

Progetto Finalizzato “Materiali e Dispositivi per
I’Elettronica a Stato Solido”

Nota interna B4-58
Dicembre 1988

CACHE COHERENCE IN MULTICACHE SYSTEMS

Lanfranco LOPRIORE

Istituto di Elaborazione dell’Informazione
Consiglio Nazionale delle Ricerche,
via Santa Maria 46, 56100 Pisa, Italy

In tightly-coupled multiprocessor systems featuring a cache for each processor, an
important problem is the maintaining of coherence between the multiple copies of shared
data items which may be generated in different caches. The paper presents a multicache
coherence protocol which is based on a software control over the cache activities,

Keywords: Cache, coherence, multicache system, multiprocessor system, shared memory.

1. Introduction

In a tightly-coupled multiprocessor system, high memory bandwidth is essential to
reduce access conflicts to the shared main memory [4]. The bandwidth of a single cache
used by all processors in the system is usually insufficient fof more than two processors
[9]. Contention of the memory path can be significantly decreased by associating a private
cache with each processor [2], especially if the copy-back memory update algorithm is
used instead of the store-through algorithm [10]. In store-through, when a write occurs,
data modifications are immediately reflected in main memory [7]. In copy-back, a write
only modifies the cache, and main memory will be updated later, when the line involved
in the write is replaced as a consequence of a cache miss [9]. Of course, memory traffic is
much higher with store-through. - |

In a multicache system, multiple copies of the same shared data item may exist in
different caches at the same time. An important problem is the maintaining of coherence
between these copies [5], [11]. The classical solution uses a high-speed auxiliary data
path between the caches [3], [9]. When a write is performed to a given cache, the write
address is sent over this data path to all the other caches. On receiving the address, each

of these caches performs a search for the corresponding line. If the search is successful,

the line may be either invalidated or updated. However, in most processor architectures,
the average rate of memory write accesses is between 10 and 30 percent of the total
memory accesses, with even higher peak rates. The resulting high traffic on the auxiliary
data path is likely to cause significant performénce degradation for more than two
processors [3].

Using a different approach, multicache coherence can be obtained by means of a
software control over cache activity. In this paper, we will present a coherence protocol
for large tightly-coupled multiprocessor systems following a software-controlled

approach.

2. Multicache coherence

We will refer to a multiprocessor system in which processors Py, P, ..., Py access a
shared main memory via an interconnection network (Fig. 1). A private cache Kj is
associated with each given processor P;. An address generated by P; is transmitted to Kj,
where it is mapped into the corresponding cache line by using a line selection algorithm,
e.g. set-associative mapping [8]. If a cache miss occurs and no free line is available, a line
is found for replacement by means of the usual hardware mechanisms, e.g. status bits
[9]. The contents of this line are then transmitted to main memory, following the copy-
back algorithm, and the line is used for storage of the incoming data.

Let us now consider two processes py(® and py0) running on processors P; and P;,
respectively, and sharing access to a data item S. If we allow S to be cached freely, two
different copies SO and SO of S are generated in Kj and K;, in lines Lg® and Lg0). If
pu® modifies the value of S, modification is carried out in S, but not in SO, and a
coherence problem follows.

Our solution uses a cache featuring three operating modes, the normal, bypass and
shared modes. The cache is able to execute a set of commands. These are stored in

memory as a part of the program code. A processor P; fetching a command transmits it to

the corresponding cache K;for execution. Examples of commands are the Normal,
Bypass and Shared commands. They cause transition of the cache to the corresponding
modes (Fig. 2).

A memory access performed when the cache is in the bypass mode is carried out
entirely in main memory; no cache search/update operation is carried out. A memory
access performed when the cache is in the shared mode sets a 1-bit tag, the shared tag,
which is associated with the line storing the data item being referenced (Fig. 3). The value
of the shared tag is inspected when the Save command is executed. Besides switching the
cache to normal mode, this command copies each line whose shared tag is asserted into
main memory, and then invalidates the line. Line invalidation clears the shared tag.

We will suppose that shared data items are correctly protected by critical sections
implemented, for instance, by means of semaphores and the Wait and Signal operations
[1]. Shared data items will be accessed in the shared mode. On leaving a critical section, a
Save command will be issued by the Signal operation. Let us refer again to data item S
shared by processes py(® and py0), and suppose that p,() enters the critical section
protecting S. When p,() performs an access to S, the cache is in the shared mode. It
follows that the access sets the shared tag Ts® of line Lg®. If p,() assigns a new value to
S, the write access is performed within Kj, in line Lg®. The new value is not copied
either into main memory or into line Ls(), however the critical section prevents process
py() from accessing S and using its outdated value. On leaving the critical section, p,()
issues a Save command. As Ts® is set, this command copies the contents of Lg(® into
main memory and invalidates Lg(®. Main memory now contains the new value of S,
which can be safely used by py(). As a consequence of the invalidation of Lg®, if p,()
re-enters the critical section, a miss is produced in K; by the first access to S. The value of
S is now taken from main memory, thus causing K; to reflect the modifications which

pv®) may have performed to this value.

A final issue is the implementation of semaphores. We enforce coherence in accesses
to these shared data items simply by making them noncacheable. This will be obtained by
using the bypass cache operating mode. Before accessing a semaphore, the Wair and
Signal operations will use the Bypass command to switch the cache into bypass mode.
They will use the Normal command to return the cache to normal mode after
accomplishing the access.

Let us now suppose that line Lg® contains not only shared data item S, but also a
data item D local to process py(®. Suppose also that py() assigns a new value to S. On
leaving the critical section protecting S, py() issues a Save command which copies this
new value from line Lg0) of Kj into main memory. However, line Ls® may still be valid
when py() is in the critical section, for example, as a consequence of an access performed
by pu® to D. It follows that if Lg(® is selected for replacement and copied back into main
memory, the new value of S will be discarded on a miss occurring in Kj. We may
conclude that shared and local data items cannot coexist in the same line. Similar
considerations apply to shared data items protected by different critical sections. A
solution is to reserve a memory space of an entire line for each shared data item. Clearly,

\

this solution leads to memory fragmentation.

3. Performance considerations

A simple software-controlled solution to the multicache coherence problem is to flush
the entire contents of a given cache Kj every time a critical section exit operation is
executed by the corresponding processor Pj. This solution can be implemented by
equipping the cache with a flush command. However, owing to the effects of cache
refilling on the miss ratio, cache flushing has high execution time costs [6]. Our protocol
achieves the same results with no flushing. We pay the execution time of a Save

command. This execution time is a function of the number of lines whose shared tag is

asserted. Depending on the degree of coupling between the processes, these lines may
represent a comparatively small portion of the process working spaces.

Of course, utilization of the bypass mode for large data bases would be a source of
significant time performance degradation. However, this is not the case for semaphores.
The time cost of making these small-sized data items noncacheable is quite acceptable.

As far as storage requirements are concerned, the Save command is only used by the
Signal operation and the Bypass command is only used by the Wair and Signal
operations. It follows that the memory cost for storing these commands is low. Each
access to a shared data item will be preceded and followed by a Shared command and a
Normal command, respectively. Clearly, it is possible to reduce space requirements by
grouping shared data accesses and using a single Shared/Normal command pair for each
group. In a different approach, the Shared command is inserted in the Wait operation, and
the effects of the Normal command are produced by the Save command included in the
Signal operation. This approach minimizes the space cost for command storage and also
simplifies object code generation. However, all memory accesses in the critical sections
are now made in the shared mode. It follows that the Save command in the Signal
operation will transfer to main memory all the lines referenced in the critical section being
abandoned, whether they contain shared data items, or not. Clearly, this increases the
execution time of this command.

Finally, as seen in the previous section, allocation of shared data may lead to memory
fragmentation. A worst-case estimate of the average cost of this fragmentation is (z-1)/2
storage units for each shared data item, z being the cache line size. This suggests that a
small line size should be used. Of course, space could be saved by grouping short shared
data items protected by the same critical section into a single line, but this complicates the

compiler algorithms.

4.

Concluding remarks

We have presented a multicache coherence protocol for tightly-coupled

multiprocessor systems. In our approach, cache activities are controlled explicitly by the

software through a set of cache commands. No auxiliary data path is required for

communication between the caches. This eliminates a source of performance degradation.

We have briefly analyzed the cost of the protocol in terms of execution times and space

requirements. An important result is that cost is independent of the number of processors.

This fact suggests that the solution we propose for the multicache coherence problem is a

valid alternative, especially when considering large multiprocessor systems.

References

(1]

(2]

(3]

(4]

(3l

)

(7]

(8]

(9]

(10]

(1]

G. R. Andrews, F. B. Schneider, “Concepts and Notations for Concurrent Programming,”
Computing Surveys, Vol. 15, No. 1 (March 1983), pp. 3-43.

J. Archibald, J.-L. Baer, “Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model,” ACM Transactions on Computer Systems, Vol. 4, No. 4 (November 19806),
pp- 273-298.

L. M. Censier, P. Feautrier, “A New Solution to the Coherence Problem in Multicache Systems,”
IEEE Transactions on Computers, Vol. C-27, No. 12 (December 1978), pp. 1112-1118.

D. R. Cheriton, G. A. Slavenburg, P. D. Boyle, “Software-Controlled Caches in the VMP
Multiprocessor,” Proceedings of the Thirteenth Annual International Symposium on Computer
Architecture, Tokyo, Japan, June 1986, in: Computer Architecture News, Vol. 14, No. 2 (June
1986), pp. 366-374.

M. Dubois, F. A. Briggs, “Effects of Cache Coherency in Multiprocessors,” IEEE Transactions on
Computers, Vol. C-31, No. 11 (November 1982), pp. 1083-1099.

L. Lopriore, “Virtual Address Cache With No Reverse Address Buffering,” Proceedings of the
IELE, to appear.

A. V. Pohm, O. P. Agrawal, High-Speed Memory Systems, Reston/Prentice-Hall, 1983,

A. J. Smith, “A Comparative Study of Set Associative Memory Mapping Algorithms and Their
Use for Cache and Main Memory,” IEEE Transactions on Software Engineering, Vol. SE-4, No. 2
(March 1978), pp. 121-130.

A. J. Smith, “Cache Memories,” Computing Surveys, Vol. 14, No. 3 (September 1982), pp.
473-530.

P. Sweazey, A. J. Smith, “A Class of Compatible Cache Consistency Protocols and Their
Support by the IEEE Futurebus,” Proceedings of the Thirteenth Annual International Symposium
on Computer Architecture, Tokyo, Japan, June 1986, in: Computer Architecture News, Vol. 14,
No. 2 (June 1986), pp. 414~423.

W. C. Yen, D. W. L. Yen, K. S. Fu, “Data Coherence Problem in a Multicache System,” IEEE
Transactions on Computers, Vol. C-34, No. 1 (January 1985}, pp. 56-65.

Processor

Processor §
Py

Processor
Py

st

Interconnection network

‘ Main memory I

Fig. 1. Configuration of a tightly-coupled multiprocessor system featuring a cache for
each processor.

Save command
Normal command

Normal
mode

Save command
Normal command

Bypass command

Shared command Bypass command

Save command
Normal command

Bypass command

Shared
mode

Shared command

Shared command

Fig. 2. Diagram of the cache operating modes. Each edge shows the transition from
mode to mode resulting from execution of a cache command.

Normal mode (Cache)
Bypass mode (Main memory)
Save command

Line invalidation

shared tag = 0

Save command

Line invalidation Shared mode (Cache)

shared tag = 1

Normal mode (Cache)
Shared mode (Cache)
Bypass mode (Main memory)

Fig. 3. State diagram of a shared tag. Each edge shows the transition from state to state
resulting from a memory access, and specifies whether access will be carried
out in the cache or in main memory. Transitions are expressed as a function of
the cache operating modes. The diagram also shows the transitions which occur
as a consequence of line invalidation and of execution of the Save command.

