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Chapter 1
Intermittency-driven complexity in

signal processing

In this chapter, we �rst discuss the main motivations that are caus-
ing an increasing interest of many research �elds and the interdisci-
plinary e�ort of many research groups towards the new paradigm of
complexity. Then, without claiming to include all possible complex
systems, which is much beyond the scope of this review, we introduce
a possible de�nition of complexity. Along this line, we also introduce
our particular approach to the analysis and modeling of complex sys-
tems. This is based on the ubiquitous observation of metastability of
self-organization, which triggers the emergence of intermittent events
with fractal statistics. This condition, named fractal intermittency,
is the signature of a particular class of complexity here referred to as
Intermittency-Driven Complexity (IDC). Limiting to the IDC frame-
work, we give a survey of some recently developed statistical tools
for the analysis of complex behavior in multi-component systems and
we review recent applications to real data, especially in the �eld of
human physiology. Finally, we give a brief discussion about the role
of complexity paradigm in human health and wellness.
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1.1 What is Complexity ?

1.1.1 Complexity as emergence of self-organization

from cooperation

In the past, monitoring the activity of systems with many degrees of
freedom was typically limited to a very small portion of it, and often
only a single basic component could be observed or, on the contrary,
the overall activity of the system itself (bulk measurement) could be
measured, but without any knowledge about the detailed evolution of
the single components of the system. In the last two decades or so,
many research �elds have seen the development of new experimental
techniques opening the way to much more accurate and complete
observations of multi-component systems. More precisely, in many
research �elds it has become possible to get simultaneous observations,
with high time/space resolution, of all the single unit activities in
the network. As an example, the spiking activity of many neurons
linked through a network can nowadays be simultaneously observed
by means of large arrays of electrodes [1] or by recording calcium
�uorescence through a high-speed high-resolution camera mounted
on a microscope [2, 3]. In this example, the new experimental tools
make it available a large set of neuron spiking data that are recorded
in parallel from many units and with great accuracy (i.e., not bulk
measurements).
These large datasets are nowadays available in many research �elds:
sociology and economy (e.g., social networks, internet data, GPS mo-
bility data); biology and physiology with the �-omics� data (e.g., pro-
teomics, genomics, metabolomics, connectomics) [4�9]. The details of
a multi-component system are then known and typically represented
as a complex network (graph) of interacting units, de�ned as a set
of nodes and links among nodes, thus allowing for the analysis and
modeling of di�erent time and space scales of the system, ranging
from the single unit to the global dynamics.
Many recent studies are unveiling some common features and behav-
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1.1 What is Complexity ?

iors (e.g., emergence of self-organization, multi-scaling, self-similarity)
among data-sets collected from very di�erent multi-component sys-
tems. A general opinion is taking momentum in the scienti�c com-
munity that these common features could be the signature of some
�universal� behavior, which is generically denoted as complexity, while
the systems displaying such behavior are denoted as complex sys-
tems [9�13]. This new paradigm of complexity is triggering many in-
terdisciplinary research activities involving skill, expertise and ideas
from di�erent �elds: statistical physics, probability theory and statis-
tics, stochastic processes, nonlinear dynamical systems, network sci-
ence, data mining, signal processing.
In spite of the extensive use of the term �complexity� in hundreds of
papers regarding the study of multi-component systems, a de�nition
of complexity that is universally accepted in the scienti�c community
does not yet exist and a uni�ed view of how Complexity should be de-
�ned is probably still far from being reached. However, some aspects
that, as said above, are common to many multi-component systems,
are recognized to be signs or clues of complexity [7, 8, 10�14]:

� A complex system is a multi-component system with many de-
grees of freedom: individuals, particles, single units. Each unit
is a node in a network with a complex topology of links among
nodes, representing the (nonlinear) interactions among single
units.

� Multi-component and nonlinearity are not su�cient to de�ne
complexity. Complexity is associated with the emergence
of self-organizing behavior, i.e., the spontaneous formation
of self-organized structures that are triggered by some coop-
erative mechanism in the nonlinear dynamics. This emergent
behavior is not related to a master driving the system in a given
self-organized state but, on the contrary, the self-organizing be-
havior emerges, in some sense, �spontaneously� from the overall
cooperation on the single units1. A master can be some unit

1Cooperative dynamics in multi-component systems always need an external
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or hub in the network, or an external forcing, a�ecting directly
all the units, or a great majority of the units, of the multi-
component system, thus having a direct control over all the
internal dynamics.

� Non-reducibility: self-organized states have features and space-
time scales that are hardly obtained as a simple (linear) function
of an external forcing or by means of linear coarse graining pro-
cedures (e.g., average or weighted sum over single components).

� The spontaneous emergence of self-organization by the cooper-
ative behavior in a complex network and without a master is as-
sociated with self-similar, i.e., mono-fractal behavior, whose
signature is seen in the power-law relationships among di�erent
physical quantities. A multiscaling (multifractal) behavior
can also emerge in some physical observable quantities [15]. For
example, self-organized states display long-range space and/or
time correlation functions, given by slow power-law decays in
space and/or time. Consequently, the correlation exponents are
an important example of emergent properties. It is worth
noting that the association between self-organization (without
a master) and scaling is so ubiquitous that scaling exponents are
often used as an indicator of complexity and self-organization
itself.

The emergence of scaling exponents related to self-organizing behavior
is a intringuing and crucial aspect of complexity. Critical phenomena
are an example of complexity [16] where long-range correlations and
mono- or multi-scaling are always observed in combination with the
emergence of self-organized structures (e.g, clusters of di�erent sizes

energy source to sustain self-organization, i.e., the formation of coherent structures
from the disordered background. However, this does not mean that the external
forcing, even if pumping energy into the system, can control the inner mechanisms
triggering the emergence of self-organizing behavior. Thus, the external forcing is
not a master explicitly controlling the parameter of self-organized states, such as
time and space scales, but only an external energy supply.
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1.1 What is Complexity ?

in the Ising spin model). The origin of scaling behavior and long-
range correlations is well understood in this case. However, to our
knowledge, for a generic complex cooperative system without a mas-
ter the underlying mechanism determining the emergence of scaling
behavior is not yet clear. Heuristically, it is reasonable to suppose
that emergence of self-similar behavior is related to the absence of a
master (unit, hub or external forcing). In fact, when a master deter-
mines the dynamics of all the units, then the self-organized structure
should be driven by the same parameters, e.g., time and space scales,
of the master.
As an example, in the laminar motion of a liquid pumped in a pipeline,
a rotation is observed immediately downstream of the pump whose
angular velocity is related to that of the pump itself, with possible
di�erences can be related to the friction of pipeline wall. No scal-
ing behavior can be observed in this case. On the contrary, in co-
operative dynamics without a master, whatever the scale of motion,
self-organized structures emerge spontaneously and, in this case, long-
range correlations and, in general, mono- or multi-scaling behavior,
are always observed. Then, we can heuristically argue that the �spon-
taneous� emergence of a macroscopic, ordered structure from micro-
scopic units requires a set of intermediate levels of organization, from
a few units interacting over local domains and short time intervals
(small scales) to the global level (large scales)2. The need for interme-
diate levels of organization is essentially the reason why self-organizing
behavior is usually related to a scale-free condition and, thus, to the
emergence of self-similarity, mono-/multi-scaling and fractality.

From the above discussion about the general features of a complex
system, we here propose a de�nition where the scaling features are

2Roughly speaking, the emergence of self-similarity is probably the most e�-
cient way to carry information from the small to the large scales and this could
be the reason for the emergence of this intermediate organizing levels �lling the
gap from the microscopic to the macroscopic scales. However, this intringuing
problem is not well established and should deserve further investigations, which
are beyond the scope of this chapter.
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explicitly required, even if the simultaneous presence of cooperative
dynamics and absence of a master should be su�cient to justify the
emergence not only of self-organization, but also of the related scaling
features.

De�nition 1.1 (Complexity). A multi-component, nonlinear, sys-
tem is de�ned to be complex if
(i) the dynamics are cooperative and trigger the emergence of self-
organizing behavior;
(ii) there is not a master (unit or hub) whose features and parameters
can be directly linked to the features and parameters of the emergent
self-organized states.
(iii) The system's dynamics are monoscaling (self-similar) or multi-
scaling.

We do not claim to give here a general de�nition of complexity.
However, in the following we refer to systems satisfying the de�nition
of complexity given above, a de�nition which seems to include many
real multi-component systems spanning from socio-economic systems
to biological networks. The self-organizing behavior associated with
mono-/multi-scaling determines the ubiquitous emergence of power-
law dependence of di�erent physical quantities, such as: long-range
time and/or space correlations; the scale-free distribution of the av-
erage degree of nodes in a complex network; the avalanche size distri-
bution in self-organized critical systems; the cluster size distribution
in percolation [16].
Another aspect that has to be mentioned regards the transport prop-
erties, which are usually characterized by anomalous scaling, i.e., non-
linear time dependence in the growth of the variance. This condition
is also known as anomalous di�usion [13, 17�20]. Many authors refer
to the tools of fractional calculus to develop models that are able to re-
produce the the power-law behavior of di�erent observable quantities
and, in particular, the anomalous transport properties of a complex
system [17,21�25].

z
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1.1 What is Complexity ?

1.1.2 Metastability of self-organizing states:

intermittency-driven complexity

Another property is often observed in multi-component complex sys-
tems. This property concerns the stability of self-organized states,
which typically do not emerge as asymptotic equilibrium states, but
are characterized by metastability. In our opinion, this property,
which is often neglected or considered as a side e�ect, it is, on the
contrary, a crucial aspect deserving a great attention when dealing
with the emergence of self-organization. In more detail, we have the
following general observations [11,12,18,26�32]: :

(a) Self-organized states are usually metastable states, i.e., rela-
tively long, but not in�nite, life-times characterize these states.
The life-time is de�ned as the time interval between some birth
time (emergence of self-organizing behavior) and a death time
(decay of the self-organized structure).

(b) An ubiquitous observation in complex systems is that the tran-
sitions between a not-organized state to a self-organized one
(birth) and vice versa (death) are very rapid, usually leaving a
mark of their occurrence in some experimentally measured quan-
tities (e.g., neuron spiking activity). The overall behavior is then
given by an alternation of self-organized and not-organized con-
ditions whose passages are marked by fast transition events
among these two conditions. In some complex systems the rapid
transition can also occur between two di�erent self-organized
states.

(c) The fast transitions events often determines a fast memory
drop in the dynamics, so that self-organized states, and the
transition events themselves, are statistically independent from
each other. This is known as renewal condition [33].

The mathematical description of the metastability described above
refers to tools of probability theory and stochastic processes [13, 18�
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20,33�39]. In particular:

(i) The sequence of fast transition events among self-organized states
is described by a intermittent birth-death point process of
self-organization (i.e., coherence):

{
tn
}

; tn+1 > tn; t0 = 0; n =
0, 1, 2, ..., being tn the occurrence times of the n-th transition
event.

(ii) The life-times of coherent structures are de�ned by the time
intervals between two successive transition events: Tn = tn −
tn−1; n = 1, 2, .... These times, hereafter denoted as Waiting
Times (WTs), are mathematically treated as random variables
and studied through the tools of probability and statistics. An
ubiquitous feature of WTs is the emergence of a inverse power-
law tail in the Probability Density Function (PDF): ψ(τ) ∼
1/τµ [26�32], being ψ(τ) = Prob

{
τ ≤ T < τ + dτ

}
dτ .

(iii) Due to the renewal condition, the sequence of transition events is
mathematically described by a renewal point process, which
is de�ned as a point process whose WTs Tn are mutually inde-
pendent random variables [33]. Conversely, in the time interval
(tn, tn+1) between two events, i.e., in correspondence of a self-
organized state, the dynamics are strongly correlated3.

The inverse power-law tail in the WT distribution is the manifestation
of a self-similar behavior in the cooperative dynamics of the complex
system and is also a crucial emergent property, characterizing the
capacity of the complex system to trigger self-organization. Below we
will show how this emergent property can be exploited as a measure
of complexity, at least for the class of complex systems displaying
intermittency associated with metastable self-organized states.
Exploiting the above list, we can give the following

3Surprisingly, even in the presence of the renewal condition, a complex sys-
tem can display long-range correlation functions, and the slow power-law decay
of the correlation is connected to the inverse power-law decay in the statistical
distribution of the random life-times [26].
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1.1 What is Complexity ?

De�nition 1.2 (Fractal Intermittency). Given a complex multi-
component system, we de�ne as Fractal Intermittency (FI) the
condition emerging when the transition events between two metastable,
self-organized states are described by the stochastic point process de-
�ned in the above Points (i),(ii) and (iii).

We chose here to include also the renewal condition (i.e., statistically
independent events and WTs) in Def. 1.2, as this is, sometimes im-
plicitly, the de�nition applied in many theoretical and experimental
studies [26, 34�42]. However, the role of the renewal condition is not
yet clear and would deserve further investigations4. FI is the signa-
ture of a particular class of complex systems [12, 13, 20, 30, 31]. This
particular kind of complexity is de�ned by the following

De�nition 1.3 (Intermittency Driven Complexity). Let us con-
sider a complex system, i.e., a multi-component system satisfying Def.
1.1. We de�ne the Intermittency Driven Complexity (IDC) as
the particular class or subset of complex systems displaying Fractal
Intermittency, that is, the kind of metastability described in the above
points (a)-(c) and mathematically represented in the above points (i)-
(iii).

In the following we will limit ourselves to the class of complexity given
in Def. 1.35.

4It is rather intuitive that the fast transition events should always be associated
with a memory drop (low predictability) in the system itself, so that the events
should always satisfy the renewal condition. However, this is not experimentally
veri�ed in all complex signals. In spite of this, we are convinced that FI typically
involves renewal events and that the renewal process driving the complexity could
be sometimes hidden below a mixture of di�erent contributions to the intermit-
tency generated by the system, including also the presence of noisy, secondary
events. However, it is possible that an extension of the renewal condition to a
slightly non-renewal condition could be necessary in order to derive more robust
models and algorithms for data analysis based on the FI and IDC paradigms.

5This complex behavior is also known as Temporal Complexity [43�47], a term
underlining the di�erence of the intermittency-based complexity, focused on the
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1.1.3 How intermittent event are generated:

a dynamical explanation of metastability

We do not claim here that all complex systems belong to the IDC class.
However, it is also true that this kind of complexity seems to emerge
in a great majority of complex systems. In fact, fractal intermittency
is observed in many multi-component systems where cooperative dy-
namics triggers the emergence of self-organized structures, which are
typically metastable and self-similar. Examples of complex systems
displaying a fractal intermittent behavior are: ecological systems [51],
neural dynamics [52], blinking quantum dots [40, 41, 53], social dy-
namics [54], brain information processing [26,28,30,31,48,49,55�59],
atmospheric turbulence [19,20,22,39], earthquakes [60], single particle
tracking in cell biology [61�64], molecular biology [18].
In order to give a possible explanation of the dynamical origin of
metastability and of associated complex transition events, we refer to
the models discussed in Refs. [65�67]. These authors propose a dy-
namical model for the brain information processing, but the paradigm
of metastability introduced therein can be used also as a general
paradigm for complex transition events. The brain dynamics are here
modeled through a dynamical nonlinear system living most of the
time on a stable heteroclinic channel. This is essentially a set of tra-
jectories in the vicinity of a heteroclinic skeleton, consisting of saddle
points and unstable separatrices. As known, this determines a slow
motion towards the saddle points. This slow motion in the neigh-
borhood of the saddle point can be interpreted as a metastable state
that maintains its coherence (i.e., self-organizing behavior) for a long
time interval. As the dynamical system approaches the saddle point
a critical time occurs when the motion suddenly changes from a slow
to a fast one. In this passage, the system experiences a sudden accel-
eration and a consequent rapid motion towards another saddle point

study of the temporal structure of self-organization, with the more known ap-
proach focused on the topological and spatial features of complexity (e.g., the
degree distribution in a complex network, the avalanche size distribution) [47�50].
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1.2 Complexity in biology and human
physiology

(i.e., another metastable state). This critical time corresponds to the
fast transition event, also associated with a sudden decrease of pre-
dictability and, then, with the drop of self-organization and memory,
thus corresponding to the renewal property.
This very simpli�ed brain model also illustrate another important as-
pect of complexity, which is actually a crucial paradigm for living
systems. From nonlinear dynamical systems theory it is known that
the above situation is not really typical of so-called chaotic systems
(existence of a strange or fractal attractor), neither of systems with
well-de�ned stable points or structures, such as limit cycles giving rise
to perfect periodic patterns. Complexity is neither totally disordered
(completely random) nor totally ordered (completely deterministic) In
fact, in the above model, complex behavior is given by an alternation
of calm (laminar) and chaotic (turbulent) motions. Then, complexity
is a particular condition emerging in a intermediate region between
total disorder and total order, total randomness and total determin-
ism.

1.2 Complexity in biology and human

physiology

The emergence of self-organization in biological systems is nowadays
well established [12, 18, 43, 64, 68�70]. There is a lack of general lead-
ing principles, which is a very old problem of theoretical biophysics
with respect to other �eld where the theoretical research can refer to
guiding principles (e.g., the postulates of classical mechanics). Even
though, the search of complexity in biology and physiological is in-
creasing very rapidly, attracting the interest of many research groups,
as it can be seen from the rapid increase in the rate of publications
dedicated to these topics. For example, systems biology is a very
fascinating research �eld where the paradigm of complexity could
have deep implications. The meaning and the role of the complexity
paradigm in systems biology is deeply discussed in Ref. [71], a in-
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teresting paper facing the recent epistemological questions arising in
biology and reviewing the historical debate between the reductionist
and the holistic view in systems biology
The research activity in biology is very active since many years. Novel
experiments are continuously carried out and new experimental data
are often available, so that new �ndings are obtained and published
very rapidly. Biology research is nowadays so active that it is not
rare that some unexpected experimental �ndings determines the fail-
ure of existing paradigms and models, thus triggering the search of
new paradigms, interpretations and models. An important example
comes from cell biology and, in particular, the important �nding of
anomalous transport behavior in the cell environment, such as the
motion of lipids or proteins in the cytoplasm and on the cell mem-
brane [18, 61�64]. An interesting debate about the best modeling
approach to describe anomalous transport in the cell is taking momen-
tum in the �eld of statistical biophysics, as it is not yet clear which one
of two modeling approaches is the best candidate: (i) a intermittency-
based transport model (Continuous Time Random Walk, CTRW)
or (ii) a long-range correlated model (Fractional Brownian Motion,
FBM; Generalized Langevin Equation, GLE) [25,64,72].

1.2.1 The challenge of physiological complexity

The idea that an integrated view of the di�erent physiological func-
tions is becoming more and more necessary to better characterize the
healthy condition of a subject (positive or negative) is taking momen-
tum in the scienti�c community. Making reference to the availability
of -omics data, many research groups are focusing on the development
of complex network models. The goal is not only linking the functions
of di�erent tissues and organs, but also trying to �ll the gap between
molecular biology and the physiology of human body by means of
theoretical tools and instruments taken from di�erent �elds such as:
network theory, statistical physics, data mining, information science,

12
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1.2 Complexity in biology and human
physiology

signal processing [73,74].

In the following we give a brief survey of brain and heart physiology
in the framework of the complexity paradigm.

Brain

The brain is an important example and prototype of complexity. The
nodes of the brain network are the neurons, which are basic units
of information transport by means of electro-chemical activity, and
the astrocytes, mainly responsible for the nutrient supply [75], while
the (anatomical) links are given by synapses (connecting axons and
dendrites) and the metabolic pathway involving both astrocytes and
neurons. In recent years the role of astrocytes is being reconsid-
ered. Many studies are �nding that astrocytes could play a more
active role in brain dynamics, including the secretion or absorption of
neural transmitters and the propagation of intercellular Ca2+ waves
over long distances in response to stimulation [75�77]. In summary,
the topology of brain network is very branched and inhomogeneous,
while brain dynamics are very rich and span over many temporal
and spatial scales. Many research groups are focusing their atten-
tion on understanding the basic self-organizing mechanisms of the
neural information processing. This is done through the characteriza-
tion of di�erent signals measured in the brain, such as the functional
magneto-resonance imaging (fMRI), measuring indirectly the neural
activity through the oxygen supply by the blood �ow, and electroen-
cephalography (EEG), measuring the electrical neural activity.

In the last two decades, the Fingelkurts brothers deeply investigated
the brain dynamics and developed a conceptual multi-scale model of
the brain, the Operational Architectonics [58,59,78]. This is a model
of the brain information processing that is based on the emergence
of neural assemblies and operational moduli that are self-organized
and metastable. Information processing in the brain is probably the
most important example of IDC, as fast transition events and fractal
intermittency were found to characterize the brain collective behav-
ior [26,28,78,79]. In Operational Architectonics neural assemblies are
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associated with transient information �ow. The temporal evolution
of an assembly is given by a fast self-organizing event (birth), a rela-
tively long quasi-stationary period, and a critical time when the self-
organizing behavior suddenly decays. These sudden changes can be
detected through the EEG signal, thus qualitatively clarifying the re-
lationship between Operational Architectonics, Fractal Intermittency
and IDC.

Heart

The heart activity is usually recorded through the electrocardiogram
(ECG), which, similarly to the EEG, is the measure of an electrical
activity [80]. However, at variance with the EEG, the ECG has a
well-de�ned counterpart in autorhythmic features of the myocardial
heart activity, which is driven by a small set of cells having a pace-
maker function, denoted as the sinus-atrial node. This corresponds
to the master hub, controlling directly the heart rhythm, discussed
in the FI and IDC de�nitions 1.2-1.3. The ECG in a healthy subject
is given by the normal sinus rhythm (NSR), given by a well-known
sequence of waves: P, QRS complex and T. As known, the R wave
is given by a sharp peak in the ECG, which is so easily identi�ed
that is used to de�ne the heart beating as the sequence of RR time
distances, which are exactly the time intervals between two successive
R peaks. Thus, the heart rate is given as number of R waves (beats)
per minute. The NSR is identi�ed through a set of reference ranges
for some given features of these waves, mainly time intervals such as,
e.g., the time between the beginning of the P wave and that of the
QRS complex (QR interval, about 0.12 − 0.20 seconds) Then, stan-
dard criteria commonly used in the clinical practice to evaluate the
healthy/unhealthy cardiovascular status of a patient are given by the
mean morphological parameters of the P-QRS-T sequence.

Another important diagnostic parameter is given by the heart rate
variability (HRV), which involves variations in the RR sequence [81].
At variance with the mean morphological parameters, the HRV is
strictly connected with the correlation features of the ECG. This does
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not only add further information to the evaluation of the subject's
health condition, but it has also a potential predictive capability. At
a �rst sight the R peaks, being rapid transitions in the ECG signal,
could be considered as good candidates for a event-based description
of heart dynamics and the RR distances as the WTs in the IDC frame-
work. However, the RR time distances have slow variations from one
beat to the next, so that there is a strong correlation among R peak
events due to the quasi-periodicity of the RR time distances. This
violates the renewal condition and the inverse power-law distribution
of WTs in the FI and IDC de�nitions 1.2-1.3.

It is also worth noting that the well-de�ned sequence of waves P-QRS-
T, which is the manifestation of the controlling pacemaker function, is
not compatible with power-law correlations in the original ECG sig-
nal. Thus, the RR peaks are not genuine complex events compatible
with the IDC description. In fact, in HRV there are two kind of super-
posed dynamical systems. The �rst one is related to the sinus-atrial
pacemaker, is strongly synchronized, generates the RR sequences, and
is associated with the mechanics of the heart pump. The second, hid-
den, one is responsible for the HRV, operates through the modulation
of heart beating by other physiological systems, mainly the autonomic
nervous system (sympathetic and parasympathetic), and is associated
with the adaptability of the heart rhythm to internal and environ-
mental changes [81]. The non-complexity of the �rst dynamics, even
if producing the very coherent and self-organized structure of heart
pumping, is due to the presence of a master or control hub, i.e., the
pacemaker. On the contrary, the second, hidden, dynamics is respon-
sible for the complexity features of HRV. This concept is also denoted
as memory beyond memory [82] and involves a proper de�nition of
events marking the variations in the RR frequency. These genuine
complex events are mutually independent and, at the same time, re-
sponsible for the emergence of long-range, power-law, correlations in
the HRV.
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1.3 Measuring IDC in signal processing:

a survey of statistical tools and algo-

rithms

In the complexity �eld, the main goal of many research groups working
on complex systems is nowadays the development of algorithms, and
associated models, for the extraction and interpretation of useful in-
formation from the big bunch of available data. Then, the main focus
is on the development and testing of reliable and synthetic statistical
indices (e.g., data mining, network analysis [7, 9, 14]). Following Def.
1.1, we recall that the complexity paradigm is essentially based on
the concept of emergence. In particular, we mean here emergence of
self-organized structures from cooperative dynamics. The main idea
is that self-organized structures are the main contributors to di�er-
ent features of the complex system: transport properties; relaxation
curves; response to external stimuli, this last one involving the adapt-
ability to environmental changes (e.g., homeostasis in biology and
physiology).
Consequently, in the development of models and statistical tools for
data analysis and signal processing the main focus is on the character-
ization and simulation of emerging self-organized structures. In this
framework, the statistical indicators extracted from the data analysis
usually refer to some global property associated with the dynamical
evolution of coherent, self-organized structures. Along this line, a
complexity measure should characterize the ability of the system to
trigger self-organization from overall cooperation among units with-
out a master.
Coming back to Def. 1.1, point (iii) suggests the main direction in the
development of complexity indices, that is, the self-similarity (mono-
scaling) or multi-scaling, multi-fractal behavior of several observable
quantities. In practice, this leads us to exploit the power-law behavior
of several functions, such as, for example, the correlation function
or the power spectrum, as a measure of complexity. In the recent
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1.3 Measuring IDC in signal processing: a survey of
statistical tools and algorithms

literature many complexity measures were proposed and applied in
di�erent contexts and, in particular, in the processing of physiological
signals. The most involved research �elds are probably network theory
(network analysis) and data mining, involving information science
and statistics [5, 7, 9, 14, 83]. These measures are usually focused on
the topological or spatial structure of the complex network, involving
concepts such as metrics and distances (e.g., connectivity measures).

We refer the reader to the cited literature for the above measures,
while we focus here on the intermittency driven complexity (IDC).
The IDC class can usually be described in terms of the above topo-
logical measures, but other measures can be introduced in this case.
These measures essentially focus on the temporal structure of the
complex system, are clearly inspired to the metastability of the self-
organized states and, thus, exploit the intermittency measures and
other indices related to intermittency.

It is worth noting that these IDC-speci�c measures, involving the
temporal structure of the complex system, can be related with some
topological measures, but the two kind of measures could be also in-
dependent from each other. It is quite obvious that the existence of
these relationships (e.g., correlation) depend on the observed features
and on their dynamical evolution. As an example, let us consider the
motion of a random walker over a scale-free complex network [4], be-
ing the motion given by random jumps between connected nodes. As
known, the complex network is characterized by a scale-free degree
distribution with a given power-law decay. We expect that the tem-
poral features of the walker, such as di�usivity or return times, can
be related to some topological measure of the complex network. This
was proven by the authors of Ref. [84], who found that the scale-free
property of the network is inherited by the random walker, showing a
power-law decay in the PDF of the return times and they also found
an explicit relationship between the power exponents of the return
time PDF and of the degree distribution. This is a simple example
where temporal and topological measures can be related. However,
we again underline that this depends on the particular system under
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consideration and on its dynamical behavior.
In the following we give a brief survey of some IDC-speci�c complex-
ity measures, some of which were developed and/or applied by our
research group.

1.3.1 The search for critical events in signal pro-

cessing

According to Def. 1.3, IDC system dynamics trigger fast transition
events occurring at some critical time instant when it is almost prob-
able that also a sudden drop of memory occurs, a mechanism that is
related to the passage from two di�erent self-organized states. Then,
IDC-speci�c measures are based on the existence of these critical
events and on the possibility of extracting these events, i.e., their in-
tensities and, especially, their occurrence times, from the experimental
time series. In many complex systems (see, e.g., the �uorescence in-
termittency in Blinking Quantum Dots, BQDs, [40,41]) the emergence
of selg-organized states is quite evident and the de�nition of critical
event is also clear and unambiguous. In these cases a well-de�ned
event detection algorithm can be easily implemented.
This is not always the case, as it happens in brain dynamics or in
turbulence, where more evident transitions are mixed with many ones
that are much less evident. Even worst, the genuine complex events
can be hidden by the presence of more evident fast transitions in the
signal that, however, are not complex, which is the case of R peak
events in HRV [82]. Up to our knowledge, there is no general event
detection algorithm that can work for every system, but di�erent
methods can be applied depending on the particular kind of complex
system considered. Di�erent algorithms were in fact developed and
applied to BQDs [29, 40�42], atmospheric turbulence [39], HRV [82,
85�87] and human EEGs [26�28,57,78,79].

Brain events

The search for critical brain events is based on the Operational Ar-
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chitectonics model by Fingelkurts and Fingelkurts [57,78] and on the
associated event detection algorithm [79]. As said above, the concept
of metastable neural assemblies correspond to the existence of cru-
cial birth/death events. Neural assemblies and crucial events have a
direct manifestation in EEG records by means of an alternation of
relatively long-time quasi-stationary periods (neural assemblies) and
quasi-instantaneous fast transitions between a self-organized neural
assembly and a not-organized condition (death event) or vice versa
(birth event). In the not-organized condition the majority of neu-
rons near the EEG electrode is not �ring (hyper-polarization) or,
in any case, the local neural activity is not coordinated or synchro-
nized. Consequently, the fast transition can be detected in the signals
recorded by the nearest EEG electrodes. In Ref. [79] these fast transi-
tion events are denoted as Rapid Transition Processes (RTPs). After
the usual artifact removal, the event detection algorithm for RTPs is
applied to the single EEG channels according to the following steps:
(i) a Hilbert transform is applied to the EEG signal; (ii) a moving av-
erage is applied to the resulting transformed signal to obtain a sort of
local mean signal. (iii) The crossings between the transformed signal
and its local mean are computed and the associated crossing times
stored. These crossing events are candidates to become the critical
transition events that we are looking for. (iv) A local derivative is
evaluated. This can be done by just taking the two nearest sampling
times, let's say tn and tn+1, and evaluating the corresponding local
derivative of the EEG signal: (EEG(n + 1) − EEG(n))/(tn+1 − tn).
To avoid noisy e�ects, a local mean of the derivative is evaluated.
(v) The distribution of the local derivative (absolute values) at the
crossing times is computed. (vi) Finally, the RTPs are selected from
the totality of the crossing times considering only the extreme values
of the distribution, thus retaining only the crossing times with the
steepest derivative. In our applications, we chose to retain the 99th
percentile of the derivative distribution6. In the case of brain data,

6For further details about the RTP detection algorithm, we refer the reader to
Ref. [79] and to Refs. [26, 28] where our implementation is explained.
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RTPs represent the prototype of complex events that we are looking
for.

Heart events

The main goal of HRV analysis is characterizing the modulation of
heart beating by the autonomic nervous system. This is the main
focus of complexity studies as well, as HRV was found to display
long-range, power-law, correlations and, thus, fractal or multifractal
features [82, 88�91].
As discussed in Section 1.2.1, the R peaks are the wave of ECG that
are most used to evaluate the heart beating. In order to detect the R
peaks, and the associated QRS complexes, the algorithm are often di-
vided into two main steps: (i) ECG signal preprocessing; (ii) decision
rule for the QRS detection. The techniques used for Step (i) usually
include a bandpass �ltering to reduce noise coming by several sources,
such as power line noise and muscle noise. The range 5− 30 Hz usu-
ally covers most of the frequency content of the QRS complex [92].
Being Q,R and S sharp cusps, Step (i) can also include the evaluation
of the signal derivative and/or even the squaring of the �ltered signal,
or of its derivative, in order to enhance the extremal values corre-
sponding to local maxima/minima time points. The decision rule in
Step (ii) is usually given through an amplitude threshold, which is
ofter determined with some adaptive procedure. The reference time
point is generally selected to be the R-wave, and the sequence of R
peak occurrence times

{
t′n
}N
n=1

is given as the output of the detection
algorithm.
The associated RR time distances are then easily computed from the
sequence of R time points t′n and represent the basic feature exploited
for the estimation of HRV in terms of complexity measures [82,88,90].
We recall that, at the end of Section 1.2.1, we showed that the R peak
events are not complex events and do not satisfy the IDC de�nition
1.3, as they do not satisfy neither the renewal condition nor the emer-
gence of fractal WT statistics (inverse power-law WT distribution).
We again underline that this aspect is strictly connected to the pres-
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ence of a control or master hub (the pacemaker) and indicates the lack
of a spontaneous emergence of self-organization from cooperation in
the heart.
Even though, the sequence of R peak events remains the basic feature
used to characterize the HRV, even in the IDC framework. Roughly
speaking, we can say that the dynamics of the single heart beat is not
complex, while the variability in the heart beating (HRV) is complex,
at least in healthy subjects [74, 81]. For this reason, the authors of
Ref. [82] focused on a di�erent kind of event involving the variations
of RR distances. The algorithm works as follows:

(i) A coarse graining procedure is applied by approximating the
ideally continuous values of the RR distances by a set of discrete
values with some given step ∆T . More precisely, let us consider
the sequence of discrete values: T̃i = i ·∆T . Then, the n-th WT
is approximated by the nearest T̃i:

Tn → T̃i if T̃i −
∆T

2
≤ Tn < T̃i +

∆T

2
(1.1)

(ii) The selection rule is given by selecting the time tn when a jump
between two di�erent T̃i occurs, usually: T̃i → T̃i+1 or T̃i → T̃i−1

The event detection algorithm was shown to be robust in a neighbor-
hood of ∆T = 1/30 seconds.
It is worth noting that the heart events extracted with the above algo-
rithm are a prototype of the hidden complex events discussed at the
end of Subsection 1.2.1 and driving the heart pacemaker. However,
even this sequence of events contains both genuine complex events and
pseudo-events and this is probably due to the unavoidable presence
of false positives in the event detection algorithm [82].

1.3.2 Complexity measures for the IDC class

Les us recall that, according to Def. 1.1, a reliable measure of com-
plexity should be able to estimate the ability of the system to trigger
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self-organization. Always from Def. 1.1 we guess that the best ap-
proach is to evaluate the scaling features, i.e., the power exponents
(e.g., the critical exponents in critical phenomena). Complexity mea-
sures are often developed in the context of network science [5,9] or in
critical phenomena [8, 16,93] and usually refer to the topology of the
link structure or to concept associated with information transfer.
Before considering the IDC class, let us give two examples of topo-
logical measures of complexity. The most simple property that can
be evaluated in a complex network is probably the covariance ma-
trix. This can be used to give a �rst estimation of the connectivity
(without causality relationships among nodes) and it is often used to
de�ne an adjacency matrix by a thresholding technique applied to the
covariance matrix [50,94]. An important topological measure is given
by the degree distribution, which is de�ned as the distribution of the
number of link is whatever node of the network. In other words, if we
randomly choose a node, the probability distribution of the links of
this same node is de�ned as the degree distribution. A crucial result
is that, in scale-free complex networks, the degree distribution is a in-
verse power-law function, thus revealing some kind of self-organization
characterized by a self-similar behavior among di�erent scales in the
network structure.

From now on we refer only to complex systems in the IDC class. We
are interested in the temporal complexity generated by the sequence
of intermittent transition events, which, as already said, is modeled
through a birth-death, stochastic, point process of self-organization.
After the application of the event detection algorithm, we get the
experimental sequence of events:{

tn
}

; n = 0, 1, 2, ... ; t0 = 0 , (1.2)

being tn the occurrence time of the n-th event. The process is equiva-
lently de�ned by the sequence of WTs

{
Tn
}
with

{
Tn = tn−tn−1; n =

1, 2, ...
}
.

Then, the formal de�nition of the birth-death stochastic point process
of self-organization, associated with the above event sequence, is given
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through the following counting process:

N(t) = max
{
n ∈ N : tn ≤ t

}
. (1.3)

being N the set of positive integer numbers. The IDC indices must
refer to the statistical features of the point process N(t). However, in
the general case, the complete characterization of the point process
N(t) from an experimental dataset is practically impossible. In fact,
the process N(t) is rigorously and completely de�ned when all the
k-order statistical distribution of the sequences

{
tn
}
and/or

{
Tn
}
are

given7:

P1(τ) = Prob
{
Tn < τ ;n = 1, 2, ...

}
P2(τ1, τ2) = Prob

{
Tn1 < τ1;Tn2 < τ2;n1, n2 = 1.2, ...

}
P3(τ1, τ2, τ3) = Prob

{
Tn1 < τ1;Tn2 < τ2;Tn3 < τ3

}
P4(τ1, τ2, τ3, τ4) = ..........

The numerical estimation of these distributions from the data is not
only very demanding, but also clearly limited by the size of the sta-
tistical ensemble. For �nite statistical samples it is also well known
that the accuracy of the k-point distributions rapidly decreases as the
order k increases. Even the development of theoretical models with
general k-order statistics is a very di�cult task.
However, in many models the WT-PDF ψ(τ) = P1(τ) and the 1|1
conditional probability:

P1|1(τ1|τ2) = Prob
{
Tn1 < τ1|Tn2 < τ2

}
are su�cient to characterize, at least approximately, the point process
N(t). This is exactly true for a Markovian sequence of WTs, and
it is even more true for renewal point processes, whose conditional
probabilities do not depend on the previous history [33]:

P1|n (τn+1|τn, τn−1..., τ2, τ1) = P1(τn+1) = ψ(τn+1) .

7It is also possible to characterize the point process N(t) by using directly the
k-point statistical distribution of N(t) itself. The statistical features of N(t) and{
Tn

}
are clearly linked to each other.
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Being the WTs mutually independent variables, a renewal point pro-
cess N(t) is uniquely de�ned by the WT-PDF ψ(τ).
Let us now recall that, as given in Def. 1.3, the IDC of a complex
system is associated with the emergence of FI, which is de�ned in
Def. 1.2. By this de�nition, FI is described by a renewal process with
self-similar WT statistics, i.e., FI is associated with the emergence of
a power-law tail in the WT-PDF:

ψ(τ) ∼ 1

τµ
, (1.4)

which is, as said above, the signature of a self-organization with self-
similarity and, thus, without a master. As a consequence, the signa-
ture of IDC emergence is associated with:
(i) the occurrence of the renewal condition (at least approximately)
and
(ii) a power-law tail in the WT-PDF.
The power exponent µ is then a fundamental feature of the self-
organizing behavior of the system that has been denoted as complexity
index in recent literature [12,20,29,30]. With a more precise meaning,
we here denote µ as IDC index and we claim that it can evaluate the
capacity of the dynamics to trigger intermittent, complex events and,
thus, self-organized, metastable structures whose self-similar behavior
is not directly driven by a master.
The evaluation of the renewal condition and the computation of the
IDC index requires some speci�c algorithms of statistical data analysis
and signal processing. In the following we give a brief list of some
algorithms developed and/or applied by our group to evaluate the
renewal condition and the IDC index µ or scaling exponents related
to µ itself. For further details about these algorithms, we refer the
reader to the cited literature.

Analysis of Renewal Aging

Let us assume to observe a statistical ensemble of independent re-
newal processes with same fractal WT distribution. Suppose that the
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system's preparation (i.e., initial condition) is made at t = 0 and that
the starting time of experimental observation is some ta. Then, when
the WT-PDF ψ(τ) of the single renewal process has a slow inverse
power-law (i.e., µ < 3), the ensemble averages depend on the aging
time ta. In particular, the WT-PDF derived from the ensemble ψta(τ)
depends on ta and it is di�erent from the WT-PDF of the single re-
newal process, which corresponds to the WT-PDF for ta = 0 and is
denoted as brand new WT-PDF: ψ(τ) = ψ0(τ). The departure of
ψta(τ) from ψ0(τ) in a renewal process is a statistical feature that
was named renewal aging [35, 36, 38�42, 95, 96]. In general, aging is
a property of many complex systems associated with the very slow
relaxation of the initial conditions, also determining a departure from
the ergodic condition (e.g., weak ergodicity breaking [64]).
The above feature can be exploited to give an indication about the
�renewal content� of a time series or, in other words, if a point process
is also renewal. Usually only a single sequence of events is experimen-
tally available, so that the method has to start with the building of a
statistical ensemble. Then, given the series of event occurrence times{
tn
}
, the renewal aging algorithm works as follows:

(1) M sequences of aged events are built in the following way: the
�rst sequence is the original one; the second sequence is given
by the �rst one by removing the �rst WT; the third sequence is
obtained from the second one by removing the �rst WT of the
second sequence itself; and so on.

(2) A time window of duration ta is superposed to all sequences and
the �rst available event with tn > ta is taken, i.e., tn < ta < tn+1.

(3) The aged WTs are computed: WTm(ta) = tn − ta; m = 1,M .

(4) Given the sequence
{

WTm(ta)
}
, the experimental aged WT-

PDF ψexpta (τ) is evaluated. The brand new WT-PDF ψexp0 (τ) is
also evaluated.
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(5) In order to derive the aged WT-PDF in agreement with the re-
newal condition, we apply a random shu�ing to the experimen-
tal WT sequence. The new sequence has exactly the same brand
new WT-PDF ψexp0 (τ) of the original WT sequence, but the pos-
sible presence of inter-WT dependence has been destroyed, thus
the shu�ed WT sequence is renewal. Then, we repeat the steps
from (1) to (4) to evaluate the renewal aged WT-PDF: ψrenta (τ).

The comparison of the two WT-PDFs can be used to establish if
the experimental WT sequence is renewal or, if not, how it departs
from the renewal condition. The renewal aging analysis was imple-
mented also by using the corresponding Survival Probability Func-
tions (SPFs), which are de�ned by:

Ψ(τ) = Prob
{
WT > τ

}
=

ˆ ∞
τ

ψ(τ)dτ = 1−
ˆ τ

0

ψ(τ)dτ . (1.5)

Renewal, IDC index and di�usion scaling:
the EDDiS algorithm

The analysis of Event-Driven Di�usion Scaling (EDDiS) is based on
the building of event-driven random walks, also named Continuous
Time Random Walks (CTRWs) [97�99], and on the estimation of the
scaling exponents associated with the resulting di�usion process. In
the case of fractal intermittency, the relationships among the di�erent
di�usion scaling exponents and the IDC index µ are known. Then,
it is possible to derive independent estimations of the IDC index µ
that can be compared with each other. When the di�erences between
the values of µ so obtained are inside the statistical errors, we can
reasonably argue that the process is renewal and we also get a robust
estimation of the IDC index µ.
The EDDiS algorithm collects a number of di�erent methods for
scaling analysis and several theoretical results from the theory of
CTRWs that are well known in literature by many years (for a re-
view, see [13, 26] and references cited therein). However, the joined
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exploitation of these methods and results with the scope of evalu-
ating both the renewal condition and estimating the IDC index was
carried out by our group for the �rst time in Refs. [26�28] and the
�rst application was on ElectroEncephaloGram (EEG) data.
We give here a brief explanation of the algorithm and refer the reader
to Refs. [13, 20] and references cited therein for further details. The
EDDiS algorithm works as follows:

(1) Given the experimental sequence of events, three di�erent event-
drive random walks are built by applying three walking rules for
the instantaneous velocity ξ(t):

(i) Asymmetric Jump (AJ) walking rule: the walker makes a
unitary step ahead at every event occurrence time: ξ(tn) =
+1; ξ(t) = 0 if tn < t < tn+1.

(ii) Symmetric Jump (SJ) walking rule: similar to the AJ
rule, but the walker can make positive or negative jumps:
ξ(tn) = ±1, being the sign ± chosen with a coin tossing
prescription: Prob

{
+ 1
}

= Prob
{
− 1
}

= 1/2.

(iii) Symmetric Velocity (SV) walking rule: the walker moves
with constant velocity in a given direction, until a new
random direction is chosen in correspondence of an event
by a coin tossing prescription: ξ(t) = ±1 ; tn ≤ t < tn+1.
This walking rule is also known as telegraph signal.

(2) For each walking rule, the associated CTRW is given by the
di�usion variable:

X(t) = X0 +

ˆ t

0

ξ(t′)dt′ (1.6)

(3) We estimate two di�erent scaling exponent of the di�usion pro-
cess X(t):
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(a) the self-similarity index δ of the PDF of X(t):

P (x, t) =
1

tδ
F
( x
tδ

)
. (1.7)

The scaling δ is computed by applying the Di�usion En-
tropy (DE) analysis [100] (see Appendix A).

(b) the scaling exponent H of the second moment:

σ2(t) = 〈
(
X(t)−X

)2〉 ∼ t2H , (1.8)

where X denotes the the mean value of X(t). The scal-
ing H is computed by applying the Detrended Fluctuation
Analysis (DFA) [101] (see Appendix A).

The scaling exponents δ and H are theoretically exactly known in the
case of fractal intermittency with index µ (see Ref. [13] for and refer-
ences therein) and can be used as reference values for the estimation
of the system's IDC. In fact, as said above, these scaling exponents
can be jointly used to estimate the renewal condition and, indirectly,
the index µ [20]. However, δ and H can be also used directly as in-
dicators of IDC, as they were built on the basis of the sequence of
events extracted from the experimental times series.
The functional relationships δ = δ(µ) and H = H(µ) are summarized
in Figs. 1.1 and 1.2. Normal scaling is de�ned by δ = H = 0.5
and is the signature of absence of cooperation and memory, a con-
dition compatible with the central limit theorem and the emergence
of Gaussian PDF and markovian exponential correlations. On the
contrary, δ 6= 0.5 and/or H 6= 0.5 is associated with cooperation and
spontaneous emergence of self-organization, and the distance from the
reference value 0.5 is a measure of complexity. It is clear from ?? that
the interesting range is 1 < µ < 3, where anomalous di�usion scalings
are observed (for the SJ rule this occurs only in the range 1 < µ < 2),
whereas normal di�usion (H = δ = 0.5) emerges in the range µ ≥ 3.
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Figure 1.1: Scaling δ vs. complexity index µ for the three walking
rules: AJ (continuous line), SJ (dotted-dashed line) and SV (dashed
line).

The problem of noise and the PANDORA algorithm

The application of the EDDiS method was originally thought (i) to
obtain a second check about the renewal condition in combination
with the renewal aging method and (ii) to get a reliable estimation of
the IDC index µ [26]. However, we later understood that the EDDiS
method allows also to take into account the possible presence of noisy
secondary events in the experimental sequence in the estimation of the
IDC index µ. In fact, during the application of the EDDiS method, a
surprising normal di�usion regime was seen in the long-time behavior
of the SV-CTRW, even if the AJ-CTRW showed superdi�usion (H >
0.5) [26,27]. This observation was explained by assuming the presence
of noisy non-complex events generated by a Poisson process with event
rate rp, thus generating normal di�usion, mixed with the genuine
complex events, thus generating fractal intermittency. This model is
called Time Mixed Model (TMM). From this assumption, we found
that the long-time normal di�usion in the SV rule was related to the
exponential cuto� emerging in the WT-PDF of the mixed events.
This �rst result allowed us to explain the divergence among our �nd-
ings, based on the EDDiS method, and those of other authors, based
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Figure 1.2: Scaling H vs. complexity index µ for the three walking
rules: AJ (continuous line), SJ (dotted-dashed line) and SV (dashed
line).

on a best �t applied to the WT-PDF (see, e.g., [102]). In fact, the
presence of noisy events does not only introduce an exponential cuto�
in the tail of the WT-PDF, but can also a�ect its power-law decay, as
an apparent power exponent, completely di�erent by the genuine IDC
index of the complex process, can also appear in the WT-PDF [13,27].
This makes the application of the EDDiS method a very reliable sta-
tistical tool for the estimation of µ, a feature that is related to the
capacity of the event-driven di�usion processes, especially the AJ rule,
to separate the e�ect of noisy events from that of the genuine complex
point process [19,20].

Regarding TMM, we also found an interesting scaling law for the
long-time di�usivity coe�cient for the SV-CTRW:

D(µ, rp, T ) ∝ T µ−2 rµ−3
p ; µ > 2 , (1.9)

being rp the Poisson rate of event occurrence and T the WT scale after
which the complex behavior, marked by the passage to the power-law
decay 1/τµ, emerges in the WT-PDF. This scaling is valid for µ > 2
and in the limit of small ratios between Poisson and complex events.
In Ref. [13] we suggested a possible algorithm of time series analysis
that, exploiting Eq. (1.9), could be used to evaluate both the IDC
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index µ and the contribution of noisy events. This algorithm is here
denoted as Poisson Added Noise Di�usiOn Rescaling Analysis (PAN-
DORA). Given the experimental sequence of event occurrence times{
tn
}
, the PANDORA algorithm works as follows:

(1) Let us generateN random sequences of Poisson events
{
tkj
}
, j =

1, 2, 3, ... with the constrain that the occurrence time of the last
Poisson event must be less than the total duration time of the
experimental sequence. Each sequence has a di�erent Poisson
rate rk, k = 1, ..., N .

(2) Then, for each k, let us build sequences that are given by the
superposition of the experimental sequence

{
ti
}
and of the ar-

ti�cially generated Poisson sequence with rate rk.

(3) For each k, we apply the SV rule on the generated sequence of
events (real+arti�cial Poisson) and we evaluate the long-time
di�usivity coe�cient Dk = D(rk). In this way we obtain a set
of couples (Dk, rk) that can be plotted to get the graph of the
numerical function Dkvs.rk.

(4) It is known that the superposition of two Poisson processes with
rates rp and rk results in a global Poisson process with total rate
given by the sum of the single rates: rtot = rp + rk. When the
experimental sequence is a�ected by a Poisson noise with rate
rp, the Eq. 1.9 can be rewritten substituting the rate rp with
the total rate rtot:

Dk = D̃(rk; µ, rp, T ) ∝ T µ−2 (rp + rk)
µ−3 . (1.10)

A best �t procedure can now be used to evaluate the three
parameters of the function D̃(rk), i.e., the IDC index µ, the rate
rp of the noisy (Poisson) events and the complexity emergence
time T . It is also possible to apply a best �t with respect to
only two parameters: rp and T . In this case, µ is evaluated from
the EDDiS method.
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In order to validate the PANDORA algorithm, we simulated a se-
quence of complex events according to a fractal renewal process with
µ = 2.3. Then, we generated several TMM sequences where di�erent
Poisson processes with rates r were superposed to the simulated se-
quence. The long-time di�usivity coe�cients D(r) of the SV-CTRWs
were estimated for each r and the resulting function D(r) has been
reported in Fig. 1.3 (circles). The dashed line is a best �t with a
power-law function r3−µ, whose power exponent is in agreement with
that predicted by the theoretical result given in Eq. (1.10), thus con-
�rming the validity of our approach.
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Figure 1.3: Simulation study showing the application of the PAN-
DORA algorithm to an arti�cially generated sequence of complex
events with µ = 2.3. The di�usivity D(r) has been plotted with
respect to the rate r of the added Poisson noise (circles).
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1.4 Applications to real physiological
signals

1.4 Applications to real physiological

signals

The above algorithms (Renewal Aging, EDDiS and PANDORA), which
are based on the FI and IDC paradigms given in Defs. 1.2 and
1.3, were applied to di�erent experimental datasets, spanning from
BQDs [40, 41] and turbulence [19, 20, 39] to ECGs and EEGs. In the
following we give a brief survey of the applications carried out in the
processing of two physiological signals, the EEG and the ECG, un-
derlining the main results that were found within the IDC approach.

1.4.1 EEG complexity

As explained above, the Operational Architectonics model [78] in-
cludes concepts such as neural assemblies and operational moduli
that are in agreement with the paradigm of emerging metastable
self-organized states given in the IDC paradigm (Defs. 1.2 and 1.3).
Through the de�nition of RTP events that mark sudden changes in
the EEG traces and are associated with the fast transition events
among self-organized states, a RTP event detection algorithm was
also developed [79]. A version of this algorithm was implemented and
applied by our group to extract RTP events from observed human
EEG records collected in two di�erent experimental conditions: the
resting state condition and the sleep condition. Below we give a brief
survey of the main �ndings.

Resting state
As known, the resting state condition, or is obtained when the subject
is relaxed with closed eyes. This condition is typically characterized
by the simultaneous emergence of α-waves in several EEG channels.
From the RTP events of the single channels it is possible to de�ne
global events as the simultaneous occurrence of a given minimum
number of single EEG events. Both the single channel and the global
RTP events were analyzed through the EDDiS method to characterize
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the complexity and, in particular, to estimate the IDC of the human
brain during the resting state condition. The main experimental �nd-
ings regarding IDC are [26�29]:
(1)
The sequences of global RTP events are compatible with a renewal
fractal process for the global brain dynamics. The values of the global
IDC index are in the range 2.05− 2.4, while the values of the global
di�usion scaling exponents span over the interval 0.8− 1.
(2)
The probability of a EEG channel to be recruited into a global RTP
event is higher for EEG channels belonging to the Default Mode Net-
work (DMN) [103,104]. (3)
The EEG channels with high probabilities of being recruited into a
global event are also those with the most complex behavior, with high
values of the di�usion scaling δ that are compatible with superdi�u-
sion. As said above, these channels belong to the DMN. On the
contrary, the EEG channels with low δ (less complex or non-complex)
have low probabilities to be recruited in a global complex brain event.
(4)
The variability among subjects of the δ scaling indices is much smaller
for the EEG channels that are more complex (inside the DMN) with
respect to the EEG channels that are less complex (outside the DMN).
(5)
The IDC indices of single EEG channels in the DMN have almost the
same values of the global IDC index.

From these �ndings we can argue that the DMN drives the global
complex behavior of the brain in the resting state condition. The
small inter-subject variability suggests a sort of universal behavior of
the DMN during the resting state, a result in agreement with previous
�ndings, being the DMN the most active brain sub-network during
the resting state condition [103,104].

Sleep condition: conscious vs. unconscious

The EDDiS analysis was also applied to EEG data collected during
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sleep. 29 nights have been analyzed, focusing on the �rst cycle that is
usually the longest one [30�32]. As known, sleep is divided into cycles,
typically 4 or 5 per night, and each cycle is divided into four main
stages, de�ned on the presence of di�erent waves, or graphoelements,
and speci�c rhythms: N1, N2, N3 (also called Slow Wave Sleep, SWS)
and Rapid Eye Movement (REM) [55]. We focused on the �rst cycle,
and we considered also the pre-sleep WAKE condition, approximately
collecting the 30 minutes before the beginning of stage N1. Passing
through stages N1, N2 and N3 the subject goes from a shallow sleep in
the N1 stage to the deep sleep in the N3 stage (SWS). The SWS stage
is a unconscious state, as the brain dynamics are segregated during
this stage. On the contrary, during the REM stage, when dreaming
occurs, the bran is segregated and a global conscious state emerges
similarly to the WAKE conscious condition [55].

The main results regarding the IDC paradigm in the sleep condi-
tion are reported in Fig. 1.4, where the di�usion scaling exponents
H, associated with the global brain events, are compared for di�er-
ent sleep stages. The pre-sleep WAKE and REM stages show an
anomalous di�usion scaling H = 0.75, which corresponds, in the re-
newal condition, to µ = 2.5. On the contrary, the SWS (N3) stage
reaches the asymptotic normal scaling H = 0.5 after a short-time
transient. The N2 stage also reaches an asymptotic normal scaling,
but this occurs at times much longer than the SWS stage. In fact,
it is evident an extended short-time range with an anomalous di�u-
sion behavior. All these results are in agreement with the concept of
segregation-integration in the brain network, associated with emer-
gence of unconscious-conscious states. This con�rms that the global
IDC index and/or the related di�usion scaling exponents can be used
to estimate the connectivity features of the brain neural network.
Then, µ, H or δ can be used as indicators of consciousness.
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      N2 
   SWS 
   REM 

H= 0.75 
H= 0.5 

Figure 1.4: Comparison of the scaling H for di�erent sleep stages

1.4.2 ECG complexity

HRV is recognized to be a useful clinical tool for the evaluation of car-
diac autonomic changes. The relationship of HRV with the mortality
risk following myocardial infarction is well established since many
decades [105, 106]. More precisely, HRV is reduced in patients recov-
ering from a acute myocardial infarction and, further, the mortality
risk increases as the HRV decreases [107]. This important result was
found by time and frequency methods, such as the estimation of sig-
nal variance, usually applied to the RR distance sequence. Clearly,
a small variance indicates low HRV. However, it is well-known that
HRV is a�ected the parasympathetic and the sympathetic autonomic
systems. Further, even if these relationships are still not completely
understood and quite controversial, it is well established that the
heart-autonomic system interactions are strongly nonlinear, and the
overall coupled heart-autonomous system is reminiscent of a globally
cooperative, complex system. Consequently, it seems quite natural
to characterize the HRV in terms of complexity features extracted
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from the sequence of RR distances in order to improve the prognosis
of di�erent clinical conditions and, in particular, the distinction be-
tween health and disease. These methods do not strictly estimate the
amplitude of HRV, but its complexity by means of scaling exponents
and long-range correlation features associated with self-similarity, i.e.
fractality.
Following this idea, the authors of Refs. [86, 87] compared several
complexity measures, also denoted as nonlinear indexes, to investi-
gate the prognostic potentiality in patient with chronic heart failure
(CHF), thus highlighting the importance of HRV complexity mea-
sures in the prognostic strati�cation of CHF patients. Among others,
also the δ index, computed from the R sequence through DE (see Ap-
pendix A), was evaluated. The DE and the δ scaling were used also in
Refs. [82, 85] to evaluate the complexity and, thus, long-range corre-
lations, of RR distances. As said at the end of Subsection 1.2.1, these
authors assumed that the hidden dynamics, related to the autonomic
system and driving the heart pacemaker, is associated with the heart
events extracted with the algorithm discussed at the end Subsection
1.3.1. The main results of their analysis were:

(i) The comparison between δ, estimated with the DE, and µ, esti-
mated by the WT-PDF, makes evident the existence of hidden
dynamics, as the DE is able to detect the genuine scaling δ of
the hidden dynamics themselves.

(ii) The scaling δ can be used a measure of complexity.

(iii) Subjects with congestive Heart Failure (cHF) were compared
with healthy subjects and it was found two well disting regions
in the plane (δ, ε), being ε the rate of pseudo-events.

Another powerful complexity measure extensively applied to HRV
through the analysis of RR distances is given by the detrended �uc-
tuation analysis (DFA), evaluating the second moment scaling H
and whose algorithm and meaning is discussed in Appendix A. DFA
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quanti�es long-range correlations and, thus, the presence of (frac-
tal) power-law memory in the signal. The �rst application to HRV
proved the existence of universal fractal properties in healthy sub-
jects and loss of fractal, complex, self-organization in heart failure
patients [108]. In particular, it was found a general distinction be-
tween a short-time and a long-time behavior:

(i) In the range L < 11 beats, a short-term scaling exponent H1,
also denoted as α1, can be seen. Typical values for healthy
subjects are H1 ∼ 1.

(ii) In the range L > 11 beats, a long-term scaling exponent H2,
also denoted as α2 and di�erent from α1, is evident.

Many authors found evidence that the short-term scaling HΥ of heart
beating are related to the subject condition (health status, aging)
and can have prognostic capability better than that obtained by more
conventional measures of HRV (e.g., variance, power spectrum). De-
crease in the H1 scaling was shown to be associated with activation
of both vagal and sympathetic out�ow, thus resulting in a more ran-
dom behavior, i.e., lower complexity, of heart beating [109]. Healthy
elderly subjects display changes in the long-range correlation features
of HRV [110]. The authors of Ref. [111] found that altered short-
term DFA scaling in HRV precedes the onset of atrial �brillation in
patients without a structural heart disease. Similarly, changes in the
short-term scaling are observed in ectopic tachycardia associated with
disturbances in the autonomic system or in ectopic atrial pacemak-
ers [112]. The application of DFA to patients with acute myocardial
infarction (AMI) showed that lower values of short-term scalingH1 are
associated with a greater mortality [113]. DFA was observed to have
a prognostic value even in the case of patients taking beta-blockers
after acute myocardial infarction [114].
In general, all these studies indicate that, in subjects with several
heart diseases, fractal or complexity measures change towards values
indicating the presence of more random �uctuations and, thus, less
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complex behavior in HRV with respect to healthy subjects. Nonlin-
ear, complexity, indexes have some advantages over the conventional
measures of HRV in risk strati�cation purposes, such as (i) less de-
pendency on heart rate, (ii) less inter-individual and intra-individual
variations and (iii) smaller relative changes of individual values over
time [86,87,115,116] (see Ref. [117] for a review).

1.5 A brief discussion about wellness, health

and complexity

We conclude this chapter discussing an open issue in physiology,
biomedicine and physiological signal processing that will probably at-
tract the interest of the scienti�c community in the next years.
Diagnostic methods are based on chemical and physical analyses and
on evaluation of symptoms. When there are no symptoms and the
chemico-physical analyses give results within the normative values,
the subject is considered to be in a healthy condition. However, it
is very usual that the general health equilibrium of a subject with a
good general diagnosis could be a�ected by some subtle, hidden stress
working silently, i.e., much under the threshold of both subject self-
perception and medical analyses. This silent external stress can work
for years without any evidence, especially if it is almost continuous
in time (daily) and relatively weak in intensity. In fact, human phys-
iology is able to respond to a silent and weak stress factor by means
of homeostatic mechanisms determining a shift in the general phys-
iological equilibrium. This subtle, prolonged condition is probably
the most hard to be detected when looking at single physiological pa-
rameters, which are usually associated with the functioning of single
organs or tissues or with some cell metabolic process
The above discussion highlights the need for a integrated view of the
human physiology [74,118] and, thus, for a model coupling the single
physiological systems de�ned in the standard biomedical analyses.
This coupled model surely requires ideas and concepts taken from the
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complexity paradigm, as it is based on the emergence of self-organizing
behavior with scaling and self-similarity. Following this holistic view
("the whole is more than the sum of its parts�), but without neglecting
the complementary reductionist, analytic approach [71], future work
and e�ort will be probably devoted to the development of a integrated
model based on complexity paradigm. We expect that this is the best
approach to derive a reliable wellness index, which should be the
signature of a general healthy condition. The wellness index could be
considered a sort of pre-nosological global parameter, able to reveal
possible departures from a healthy physiological equilibrium. In this
view, the overall self-organization of the human body is the central
aspect to be understood, and we believe that wellness will probably
refer to some kind of global physiological complex self-organization or
physiological complex integration
An example of a physiological coupling, which is attracting the in-
creasing interest of many research groups [119�122], is given by the
heart-brain coupling, where self-similarity and scaling indices seem to
play a crucial role [91]. The �ndings in this new challenging issue indi-
cate that the IDC class of complex systems could play a crucial role in
the study of this integrated view in human physiology, both through
the theoretical development of IDC-based physiological models and
the applications of related signal processing tools.
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Appendix A
Di�usion Entropy and Detrended

Fluctuation Analysis

Given a di�usive variable X(t); t = 1, 2, ... (e.g., the event-driven
random walks of the EDDiS algorithm, Eq. (1.6)), we are interested in
evaluating the self-similarity index δ of the PDF, de�ned in Eq. (1.7),
and the second moment scaling H, de�ned in Eq. (1.8). δ and H are
evaluated by means of the Di�usion Entropy (DE) analysis [13,20,100]
and of the Detrended Fluctuation Analysis (DFA) [101], respectively.

Di�usion Entropy
Given the PDF P (x, t), the DE is de�ned as the Shannon entropy of
the di�usion process:

S(∆t) ≡ −
ˆ +∞

−∞
p(∆x,∆t) ln p(∆x,∆t)d∆x , (A.1)

where ∆t here denotes a time lag and not the absolute laboratory
time. Using the self-similarity condition (1.7), it is easy to prove that

S(t) = δ ln ∆t+ S∗ , (A.2)

where S∗ = −
´ +∞
−∞ F (x) lnF (x)dx. Notice that the scaling is in fact

asymptotic, namely it is only exact for t→∞, and an e�ective time
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T∗ can be introduced as an additional �tting parameter:

S(∆t) = δ ln(∆t+ T∗) + S∗. (A.3)

It is possible to estimate δ by considering the graph (∆t, S(∆t)) in a
log-lin plot and then �tting Eq. (A.3) to the data.
The computation of S(∆t) requires the evaluation of the PDF P (x,∆t).
This is done by considering a moving window of length ∆t, so that the
set of pseudo-trajectories Xr(k) = X(r+k)−X(r), with 0 ≤ k ≤ ∆t,
r = 1, 2, ..., is considered. The pseudo-trajectories all start from
Xr(0) = 0, and, for each ∆t, it is possible to evaluate the histogram
P (x,∆t) of the sequence X1(∆t), X2(∆t), ... and, then, the DE S(∆t).

Detrended Fluctuation Analysis
Given the di�usive variable X(t); t = 1, 2, ..., the DFA essentially
estimates the second moment of a proper detrended time series X(t)−
X(t). The detrending can be done with a n-order polynomial function
and the most simple algorithm uses a linear detrending by a least-
squares straight line �t [101]. The DFA algorithm works as follows:
(i) for each discrete time L, the time series X(t) is split into not-
overlapping time windows of length L: [kL + 1, kL + L], k = 0, 1, ...;
(ii) for each time window [kL+ 1, kL+L] the local trend is evaluated
with a least-squares straight line �t: Xk,L(t) = a

k,L
t+ b

k,L
; kL < t ≤

(k + 1)L; (iii) the �uctuation is derived in the usual way: X̃k,L(t) =
X(t)−Xk,L(t) = X(t)−a

k,L
t−b

k,L
; kL < t ≤ (k+1)L; (iv) the mean-

square deviation of the �uctuation is calculated over every window:

F 2(k, L) =
1

L

(k+1)L∑
t=kL+1

X̃2
k,L(t) =

1

L

(k+1)L∑
t=kL+1

(
X(t)−Xk,L(t)

)2
; (A.4)

and, �nally, averaged over all the time windows, thus getting F 2(L)
In the case of a self-similar process, it results: F (L) ∼ L

H
. The pa-

rameter H can be derived by a linear �tting applied to the function
z = Hy + C, with z = log(F (L)) and y = log(L). The DFA output
is H = 0.5 for the case of uncorrelated (white) noise (e.g., Brown-
ian motion), where the integrated process X(t) display the typical
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Gaussian PDF G(x, t) with so-called normal scaling of the variance:
〈X2〉(t) ∼ t. H 6= 0.5 is denoted as anomalous scaling, is a sig-
nature of long-range (power-law) correlations and, thus, cooperation
and complexity. In particular, H < 0.5, also denoted as subdi�u-
sion, corresponds to a anti-correlated (anti-persistent) signal, while
H > 0.5, also denoted as superdi�usion, corresponds to a positively
correlated (persistent) signal.
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