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ABSTRACT

We present a new approach for managing the representation of discrete topographic surfaces at
variable resolution, which is based on a unified model encoding a history of either refinement or
simplification of a triangulation decomposing a plane domain. An efficient data structure is pro-
posed, which is obtained by interpreting the model containing all triangles of the history as a cell
complex embedded in three-dimensional space. A major feature of the model is the ability to pro-
vide efficiently a representation of the surface at resolution variable over the domain, according
to an application-dependent threshold function. Experimental results on real world data are pre-
sented, and applications to flight simulation are discussed.
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1 Introduction

The search for multiresolution representation schemes of spatial entities has recently become very popu-

lar. Multiresolutionmodels offer the possibility to represent and manipulate descriptions of spatial entities

at different levels of detail and accuracy, depending on the needs of each specific application. Since the

size of a description is somehow proportional to its resolution, the main advantage of a multiresolution

scheme is speedup in processing because of data reduction, whenever and wherever a representation at

low resolution is adequate to the needs of a given application.

Major applications of multiresolution models involve modeling generic surfaces embedded in 3D

space (Von Herzen and Barr, 1987; Dyn et al., 1990; Taylor and Barrett, 1994), topographic surfaces in the

context of Geographical Information Systems (De Floriani, 1989; Scarlatos and Pavlidis, 1992; De Flori-

ani et al., 1996; de Berg and Dobrindt, 1995), 3D objects for classical CAD and recognition (Fekete and

Davis, 1984; Ponce and Faugeras, 1987; Rossignac and Borrel, 1993), and volume data (Cignoni et al.,

1994a; Wilhelms and Van Gelder, 1994; Westermann, 1994; Cignoni et al., 1995a). All models proposed

in the literature are based on the general idea that a detailed digital model taken as input can be simplified

into an approximated representation: appropriate measures of fidelity to the original model are taken as

a quantitative mean to define multiple levels of resolution.

There are two major challenges underlying the construction of multiresolution models (Heckbert and

Garland, 1994): (i) to find effective and efficient algorithms for automatically building an approximated

representation of reduced size at a predefined level of resolution; (ii) to structure data into a comprehen-

sive framework that allows them to be manipulated at different resolutions according to the needs of a

given application or task. Such problems are often interrelated, since the construction of a solution for

the second problem can rely on algorithms and principles developed for the first problem.

Most methods for the approximated representation of surfaces use piecewise linear representations

based on triangulations, because of their adaptivity. Many practical methods to build approximated tri-

angulated surfaces follow heuristics that try to minimize the amount of data needed to achieve a given

resolution, by either discarding less significant points from a detailed model (simplification), or inserting

more significant points into a coarse model (refinement). Multiresolution models are usually based either
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on sequences of representations of the whole terrain at different resolutions, or on tree-like hierarchies,

where each node of a tree is a representation of a portion of terrain at a given resolution. Models from

both classes are usually built iteratively through the same techniques used to build approximated repre-

sentations.

A different approach has been recently proposed by Gross et al. (Gross et al., 1996), which controls the

level of approximation of the surface by local spectral estimates determined over a wavelet representa-

tion. A hierarchical multiresolution representation (a quadtree built over regular grids) is constructed on

the basis of the analysis of the wavelet transform coefficients, and allows the production of level of detail

representations of the mesh.

Multiresolution models usually support tasks such as the extraction of a representation at a given res-

olution, the solution of interference queries (point location, windowing), the navigation through the do-

main, and across resolutions (browsing). A further, important, yet not much explored operation is ren-

dering at variable resolution over different zones of the domain. A typical example is in landscape visu-

alization for either flight simulators, or environmental assessment (Kaneda et al., 1989): the detail of the

terrain model presented to the user may be variable, depending on the distance from the point of view.

Variable resolution allows a larger number of polygons to be rendered only in the areas where the visual

impact is at its most significant, thus speeding up rendering (see, Figure 1). A similar approach has also

been outlined in scientific visualization to sharpen resolution only in user-selected focus areas (Cignoni

et al., 1994a; Cignoni et al., 1994b). The main problem in providing a representation with variable reso-

lutions is to maintain the continuity of the surface where pieces of surface with different accuracies meet.

In this paper, we present a multiresolution model for triangulated topographic surfaces, called a Hy-

perTriangulation (HyT), which supports variable resolution, and is more compact and flexible than previ-

ous models. Our model is based on a structure that can maintain all significant refinement/simplification

steps in passing from either a coarse representation to a refined one, or vice-versa. Intermediate repre-

sentations are maintained implicitly in the model: an efficient data structure allows “on the fly” repre-

sentations to be retrieved at an arbitrary resolution, either constant or variable over the domain, while

guaranteeing the continuity of the resulting surface.
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The definition of the model is independent of the refinement/simplification algorithm used for its con-

struction, provided that representations whose resolutions are close to each other can be related through

local changes over the domain. Here, we present a construction algorithm based on a refinement tech-

nique; however, it is straightforward to build the structure from the output of a simplification algorithm

(Ciampalini et al., 1996).

2 Related work

The main idea underlying the construction of approximated terrain models is that a simplified model can

be built based on a reduced set of data. Most practical approaches to the construction of approximated

models are iterative, and can be classified into simplificationmethods (Schroeder et al., 1992; Turk, 1992;

Rossignac and Borrel, 1993; Hoppe et al., 1993; Taylor and Barrett, 1994) - i.e., methods that start from

the full resolution, and progressively reduce the dataset on which the model is based, in order to coarsen

resolution; and refinement methods (Fowler and Little, 1979; Von Herzen and Barr, 1987; Dyn et al., 1990;

Scarlatos and Pavlidis, 1992; De Floriani and Puppo, 1995; Cignoni et al., 1994a) - i.e., methods that

start from a coarse approximation based on a small dataset, and progressively insert new data, in order to

improve resolution. Both approaches rely on the concept of local update, and are essentially characterized

by criteria to select points that are to be inserted into [deleted from] the model at each iteration. The most

common approach is to base point selection on the impact, in terms of error reduction [increase], which

is caused by the insertion [deletion] of a point into [from] the dataset.

Most multiresolution models proposed in the literature are based on the application of iterative ap-

proximation algorithms, and on the organization of local updates in the context of a unified framework.

A comprehensive survey on multiresolution models can be found in (De Floriani et al., 1996). The few

existing models supporting variable resolution rendering are all very recent, and they were proposed in-

dependently, either during the same period in which the results presented here were developed, or later.

Preliminary results on the matter of this paper were given by the authors in (Cignoni et al., 1995b).

In the same period, a hierarchical representation was proposed in (de Berg and Dobrindt, 1995), which

is defined as a classical pyramidal model (i.e., a heap of triangulations at increasingly finer resolution),
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whose structure is essentially based on an earlier scheme proposed in (Kirkpatrick, 1983) to support point

location. A Delaunay triangulation of the whole dataset is considered, which is simplified iteratively by

removing maximal independent sets of vertices of bounded degree. This approach privileges the theo-

retical efficiency of the resulting structure (e.g., point location in logarithmic time), while in practice the

compression ratio for each level of resolution might be worse than those obtained with heuristics proposed

in the literature. Indeed, while in this case the only criterion used to select features is to fix a unique set

of non-removable vertices, many other methods for approximated representations try to select for each

level of resolution those vertices that are likely to be relevant at that level. Furthermore, the levels of the

pyramid do not correspond to given accuracies, hence an explicit control of the accuracy is not provided.

The hierarchical representation comes together with a simple algorithm, which extracts in time linear in

its output size a representation at variable resolution based on a given threshold function. The algorithm

is based on a top-down traversal of the pyramid, and on a greedy construction of the result. Unfortunately,

the greedy approach, which accepts a triangle in the solution as soon as possible, does not warrant that

the desired accuracy is fulfilled everywhere: indeed, because of the configuration of a partial solution, the

algorithm can be obliged to accept new triangles whose accuracy is worse than required.

In (De Floriani and Puppo, 1995), a multiresolution model is proposed, which is described by a tree

of nested Delaunay triangulations. Tree models are somehow easier to handle because of their strict hi-

erarchical structure, but, on the other hand, the spatial constraints imposed by nesting have drawbacks,

both in terms of the number of triangles needed to achieve a given accuracy, and in terms of their shape

(slivery triangles often appear near the boundary of each node in the tree).

Two algorithms for variable resolution surface extraction from such a model are proposed. The first al-

gorithm is a simple top-down visit of a tree, which accepts a triangle as soon as its error lies below the

threshold. The resulting structure is a subdivision called a generalized triangulation, in which some trian-

gles are added new vertices along their edges. A triangulation of such generalized triangles is performed

next to obtain a triangulated surface, and the whole algorithm is completed in time linear in its output size.

However, the approximating function is changed by the triangulation of generalized triangles, hence the

accuracy of the final structure might be worse than desired. The second algorithm is essentially an adap-
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tation of the algorithm proposed here to tree structures, and it was designed later: such an algorithm re-

sults more complicated, since it needs special data structures to manage neighbour finding across different

nodes of the tree. Experimental results on variable resolution extraction were not presented.

3 Approximated Digital Terrain Representation

A natural terrain is mathematically described by an elevation function � : D � IR2 ! IR, defined

over a connected domain D on the XY plane. The surface described by the image of � is often called

a topographic or 21
2
D surface. In practical applications, function � is sampled at a finite set of points

P = fp1; :::; png � D, known as the set of representative points in the digital terrain. In this case the

function � can be defined piecewise over a subdivision� of D with vertices in P .

When a triangular subdivision is adopted to partitionD, piecewise linear functions are a common choice

to compute the elevation of points that are not in P . One such model is called a Triangulated Irregular

Network (TIN): TIN models of 21
2
D surfaces can be adapted to the characteristics of the surface, they

can be built on scattered data, and they are widely used in many different fields, such as Geographical

Information Systems, finite element analysis, robotics, computer graphics, and visualization.

Since a TIN is fully characterized by the plane triangulation underlying it, plus the elevation value at each

of its vertices, hereafter we will always work on the plane triangulation, by considering triangles that form

the actual surface only for the purpose of rendering or error testing.

3.1 Approximation error

As we pointed out in the introduction, the construction of an approximated representation is based on

the possibility of selecting a significant subset of data from either a regular or a scattered dataset. The

selection is almost always based on some measure of the error in representing a given surface through a

simplified model. In the case of TINs, many alternative norms can be adopted to measure the distance

between a surface represented by a TIN built over the whole dataset, and the surface corresponding to a

reduced model based on a subset of data. A simple and common choice is to measure such errors by the

maximum distance between the actual elevation of a datum and its approximated elevation in the reduced

representation. The relevance of a given datum p in the current representation is related to the increase
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[decrease] in the error as a consequence of the deletion [insertion] of p from [into] the model.

Another critical issue is the preservation of point and lineal features, such as ridges, valleys, peaks,

and pits. Features can be identified by sharp discontinuities in the gradients of adjacent facets. Such fea-

tures may be largely preserved if, while constructing the multiresolutionrepresentation, a measure of like-

lihood is adopted, which tends either to maintain or to insert points belonging to features. For instance, the

selection heuristic can take into account the discontinuity on the gradient that is introduced [eliminated]

with the insertion [deletion] of a point.

Several algorithms for approximating terrains were analyzed and compared by (Garland and Heck-

bert, 1995). On the basis of a number of tests they concluded that the best practical solution, in terms

of error minimization, and number of triangles in the approximation, is the greedy insertion algorithm,

which is the same approach we adopted. Our implementation is described in the following subsection.

In order to be generic, we assume that at each step a score can be computed for each datum that is not a

vertex of the model. This score may be dependent on the norm used to measure the approximation error,

and on any other parameter involved in point selection, as discussed above. In order to preserve the effi-

ciency of the method, whenever the TIN is updated it must be possible to compute such a score only at the

points involved in changes. Moreover, for each such point p, it must be possible to compute its score in

constant time, based only on local information (e.g., on the triangle of the current model covering p). We

also assume that the approximation error of the TIN is updated while the score for each point is computed,

at no extra cost.

In the simplest case, the score is the absolute value of the difference between the approximated and

the actual elevation at p, while the current approximation error coincides with the maximum score over

the triangulation. In a more sophisticated selection scheme, the score of pmay be evaluated by weighting

the surface error at p with the difference of the gradients of the facets incident at p after its insertion: the

higher is such difference, the more p is likely to characterize the surface.

3.2 A refinement algorithm

The method we adopted in this work builds an approximated TIN through a refinement technique based on

an on-line Delaunay triangulation of points on the XY domain, which is derived from an early method
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proposed in (Fowler and Little, 1979). This approach is called the Delaunay Selector, and an efficient

implementation is described in (De Floriani et al., 1996). Here, we give only a summary of the method.

Let " � 0 be a tolerance value, let P be a finite set of points in IR2, and let � be the elevation function

known at the points of P . An initial triangulation � is built first, whose vertex set is composed of all

extreme points of the convex hull of P : such a triangulation covers the whole domain of the sampled

data.

The triangulation is refined through the iterative insertion of new vertices, one at a time: at each it-

eration, the point of P with the highest score is inserted as a new vertex, and � is updated accordingly.

The refinement process continues until the error of � goes below ". A pseudo code description of the

Delaunay Selector algorithm is shown in Figure 2.

Note that, as with most refinement techniques, the insertion of a single point during the Delaunay se-

lector does not necessarily cause a decrease in the approximation error (simplification techniques have a

symmetric behaviour). However, the convergence of the method guarantees that the approximation will

improve after a number (expectedly small) of vertices have been inserted. Henceforth, we will call a

refinement step a minimal sequence of consecutive point insertions such that the error of the resulting ap-

proximation is smaller than the error in the previous step. The area of the domain involved in a refinement

step is always a polygonal region (which may be unconnected and/or multiply connected), which we will

call the refinement region. The refinement region at a given refinement step is always bounded by edges

that belong to both the triangulation before refinement, and the triangulation after refinement.

4 HyperTriangulation

Let us suppose that a Delaunay Selector is being run with an error tolerance " = 0: the final structure

generated by the algorithm will be a model at full resolution. If we consider all models built at interme-

diate refinement steps, we have a whole sequence of triangulations f�0; : : : ;�ng, where �0 is the initial

triangulation,� = �n is the full resolution model, and 8i = 0; : : : ; n, the TIN associated with triangula-

tion �i approximates the full resolution with an error "i. The sequence of error tolerances monotonically

decreases: "0 > "1 > : : : > "n = 0.
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If all such triangulations were piled up into a layered model, such as the Delaunay pyramid (De Flori-

ani, 1989), a high number of layers would be obtained, and many triangles would appear several times in

different layers. Our alternative approach is to store a sort of history of the incremental refinement process

into a unique structure, which avoids replicating triangles that belong to more than one layer, while en-

coding adjacencies also between triangles that would appear in different layers. In fact, the concept of

layer is not present in our structure: it makes sense only in the comparison with pyramidal models.

Our model maintains a history that is independent of the construction algorithm (indeed, the same

model can be built through a simplification technique that iteratively demolishes a triangulation), and is

simplified with respect to the previous ones. Moreover, being not based on a strict hierarchy, our model

is superior to tree-like models, such as the one proposed in (De Floriani and Puppo, 1995), since it avoids

drawbacks caused by spatial constraints (see Sect. 2).

Let us consider the refinement region that is re-triangulated in passing from �i�1 to �i. Triangles of

�i�1 and �i can be classified as follows:

� living triangles: the triangles that are not changed during refinement (i.e., triangles outside the re-

finement region, that belong both to �i�1 and �i);

� dead triangles: old triangles destroyed while updating the triangulation (i.e., the triangles of �i�1

that belong to the refinement region);

� newborn triangles: new triangles created while updating the triangulation (i.e., triangles of �i in-

serted into the refinement region).

Note that usually most triangles are living, because the incremental insertion process acts only locally.

By definition, the set of dead triangles and the set of newborn triangles respectively form two triangula-

tions of the refinement region. Such triangulations share the edges that bound this region. Hence, instead

of simply replacing the triangulation inside the refinement region, as in the standard Delaunay selector,

we can “sew” along such boundary edges the patch formed by the newborn triangles over the triangulation

formed by the dead triangles, while saving the dead triangles below the newborn ones. The refinement

proceeds by iteratively sewing a patch at each refinement step.
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In order to make the whole structure understandable, we embed it in 3D space: the triangulation �0

lies on the XY plane, while at refinement step i the new vertices inserted are raised up along the Z axis

at elevation i, and the new patch is welded onto the old triangulation at the boundary of the influence

region: this can be visualizedas a “bubble” popping up from the triangulation(see Figure 3). The resulting

structure is a 2D simplicial complex embedded in 3D space, such that at each step the current triangulation

is formed by the triangles of the upper surface of the complex. Note that the elevation of vertices in the

HyperTriangulation has no relation with their elevation on the terrain surface. This structure is called a

HyperTriangulation (HyT): it maintains both the topological information collected during the refinement

process, and information on the error of each triangle, which is useful for extracting representations at

arbitrary resolutions.

Note that now different triangulations of the sequence �0; : : :�n are not stored explicitly and inde-

pendently, but they are interconnected in order to store only once any portion that is common to different

triangulations. This fact makes the model quite compact. Each intermediate triangulation is encoded im-

plicitly in HyT. In order to show this, let us define the following two attributes for each triangle t in HyT:

� "b: birth error the global error reached by the triangulation just before triangle t was created (some

value larger than "0 if the triangle belongs to the initial triangulation);

� "d: death error the global error of the triangulation just before t was destroyed (zero if the triangle

belongs to the complete triangulation).

The birth and death errors allow to detect those triangles in HyT that were contained in the triangu-

lation �i, produced as an intermediate result of the refinement process of the Delaunay Selector, which

satisfied approximation error "i. Consider a triangle t in HyT, which satisfies the following inequality:

t:"d � "i < t:"b; (1)

where t:"b and t:"d are the birth and death errors of t, respectively: t is called an "i-alive triangle. From

the definition above and from (1) it follows that all "i-alive triangles must belong to �i. We show that �i

is in fact formed only by such triangles.
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Let p be a point in the domain D of the HyperTriangulation HyT. For the sake of simplicity, let us

assume that p does not lie on the projection of any edge of HyT on the XY plane (points that lie on pro-

jected edges can be treated exactly the same way, but the proof is more technical). We define the set of

triangles that cover p as:

Tp = f t 2 HyT : p 2 t̂ g (2)

where t̂ is the projection of t on the XY plane. For each Tp there exists an ordering t1; t2; :::; tn on the set

of its elements such that:

8i : ti:"b > ti:"d = ti+1"b > ti+1:"d where 1 � i < n; (3)

Indeed, whenever a newborn triangle containing p is generated during construction, the triangle con-

taining p in the current triangulation must die, and the birth error and death error of the newborn and dead

triangle, respectively, must coincide. More informally, for each point p of D there must exist only one

triangle in HyT whose projections in the XY plane contain p and which is "i-alive. Hence, the set of

"i-alive triangles cover the whole domain, and thus there cannot be other triangles in �i.

Since the birth and death error of each triangle in HyT will be used to efficiently extract terrain rep-

resentations from HyT (see Section 5), they will be encoded explicitly in the model.

5 Encoding and traversing HyperTriangulations

In this section we describe how to encode and move through HyperTriangulations. In the following de-

scription, we mimic the traversal functions provided with the facet-edge, a data structure for representing

cell complexes in three dimensions (Dobkin and Laszlo, 1989). Actually, we are only interested in the

2-skeleton of a three dimensional complex, i.e., the 2-simplicial complex formed by all triangles sewn

onto the HyT during refinement.

In the facet-edge data structure, an atomic entity is associated with each pair that is identified by a

face and one of its edges: the so-called facet-edge. This structure is equipped with traversal functions

that permit to visit the complex. These functions are used to move from a facet-edge to an adjacent one,

either by changing edge or by changing face (note that in 3D space more than two faces (triangles) may

be incident at each edge).
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Let t be a face (triangle) of a cell complex C, and let e be one of the edges of t. The facet-edge te

denotes two rings in C: the edge-ring is formed by all the edges of the boundary of t; the facet-ring is

formed by all the faces incident at e (see Figure 4). The traversal functions enext and fnext permit to

move from one facet-edge to the next along the edge-ring and the facet-ring, respectively.

In order to make the data structure more suitable to our needs, we modify it by adding more traver-

sal functions. We add two descriptive functions to each facet-edge, birtherr and deatherr, that report

the birth and death error of the triangle to which it belongs, respectively. We also note that the triangles

incident at a given edge e of the HyT can be subdivided into two groups, namely, those formed by faces

whose projection on theXY plane lie to the left and to the right of the projection of e, respectively. There-

fore, e can be considered as formed of two half-edges, where each half-edge corresponds to the group of

facet-edges incident into it from one of its sides. Similarly, the facet-ring is actually subdivided into two

half-facet-rings, each corresponding to a half-edge. Henceforth, a half-edge and its corresponding half-

facet-ring will be referred to interchangeably.

Let he be a half-edge, let fel and feh be the facet-edges at the lowest and highest level in its corre-

sponding half-facet-ring, respectively: the life of he is defined as the interval containing all values " such

that there exists some facet-edge in its corresponding ring that is "-alive, i.e., interval [feh:"d; fel:"b].

We add two other descriptive functions, hebirth and hedeath, which report, for a given facet-edge, the

birth and death of the half-edge at which it is incident.

When traversing the HyT, we may need to move through two different domains: the spatial domain

D and the error domain [0; "0]. In the former case, we may need to cross an edge e by moving from one

of its half-edges to the other. More precisely, we are interested to move from one triangle incident into

a half-edge, to another which is incident into the other half-edge, and which has a compatible accuracy

(i.e., an accuracy for which both triangles are alive). In the latter case, we may need to adjust the accuracy

by moving to the facet that either precedes or follows the current one in the half-facet-ring.

Each half-facet-ring is encoded as a bidirectional chain, which is identified with the corresponding

half-edge. In order to maintain elements of these two chains connected across the edge, we add another

traversal function, fother, which connects a facet-edge te with the facet-edge on the opposite side of e
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that was either created together with te, or had minimal error when te was created.

In summary, for each facet-edge we define the following traversal functions:

� enext: next facet-edge in the edge-ring (on the same face);

� fnext: next facet-edge in the half-facet-ring (with lower error);

� fprev: previous facet-edge in the half-facet-ring (with higher error);

� fother: the compatible facet-edge on the other half-edge.

Figure 5 shows a side view of the facet-edges in Figure 4. The two arrows represent the two parts of the

edge-ring. Figure 6 shows how the facet-edges are connected through the function fother; the numbers

represent the values of death error for the facet-edges. Note that the fother function does not induce a

symmetric relation between facet-edges (i.e., e.fother.fother does not necessarily coincides with e).

6 Extracting triangulations from HyT

If a HyperTriangulation is encoded following the guidelines given in the previous Section, it is possible

to efficiently extract triangulations defining TINs such that:

1. the approximation error is either constant over the domain D, or variable according to a function

E() defined on D, where E(p) is the error tolerance accepted at each point p, and

2. the continuity of the surface extracted is guaranteed everywhere.

Algorithms for the extraction at constant and variable resolution, respectively, are described in the fol-

lowing subsections.

6.1 Extraction at constant approximation

Let "0 be the error corresponding to the bottom of the HyT, and let " be an arbitrary value such that 0 �

" � "0. As we have seen in Section 4, a TIN at constant accuracy " will be formed by all triangles of the

HyT that are "-alive, i.e., such that t:"d � " � t:"b. Such a triangulation can be extracted from the HyT
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through a topological visit, starting from a triangle t that is "-alive, and moving to adjacent triangles that

satisfy the same relation.

A pseudo-code of the algorithm is presented in Figure 7. The algorithm traverses the HyT, moving

from triangle to triangle through the traversal function fother. A list ActiveStack keeps the facet-

edges that must be visited: the algorithm stops when the list becomes empty, i.e., when the whole domain

has been traversed. The ActiveStack is not handled exactly like a stack, since elements can be either

pushed onto its head or appended to its tail, while they are always popped from the head. The rule for

inserting elements in the ActiveStack is the following: if a facet-edge is "-alive it is pushed onto the

head, otherwise it is appended to the tail. This mechanism ensures that all the elements of a given bubble

are visited before the algorithm moves to a different bubble.

During traversal, we mark a half-edge each time one of its corresponding facet-edges is visited: in

this case, all facet-edges of the corresponding group are considered marked. Facet-edges incident into a

half-edge are packed in the data structure: therefore, each half-edge can be marked, and each facet-edge

can be tested for mark in constant time.

The first triangle t to visit is extracted through a suitable procedure. In the simplest approach, a sorted

list containing one triangle for each of the n levels of accuracy of the HyT can be maintained. The list

is scanned to find the initial triangle in a time linear in the number of levels preceding the level of the

extracted triangulation. A more efficient approach is to maintain a balanced search tree rather than a list,

thus achieving logarithmic time. In both cases, the worst case time complexity is bounded by the size of

the triangulation extracted: indeed, the construction mechanism of the HyT warrants that a triangulation

will have at least as many triangles as the value of its level in the HyT.

The ActiveStack is initialized with the neighbours of t that are reached with function fother. At

each cycle, a facet-edge is popped from theActiveStack, it is visited, and its accuracy is tested against

threshold " (denotedeps in the pseudo-code). If the facet-edge is not "-alive, it means that the border of a

bubble has been processed, thus function fnext is used iteratively to climb bubbles incident into the same

half-edge until a facet-edge that is "-alive is found. The corresponding triangle is added to the output, and

its three half-edges are marked as visited, while all its neighbours through function fother that were not
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visited yet are added to the ActiveStack. The algorithm stops when the ActiveStack is empty,

which means that the whole domain has been traversed.

The time complexity of this algorithm depends on the number of triangles of the extracted triangula-

tion, and on the number of facet-edges visited by the climbing loop. Indeed, let e be the current facet-edge

popped from the active stack. If e is either marked or is "-alive, then it is processed in constant time, other-

wise the fnext function is used iteratively to climb to the desired level of the same half-edge. Let e0 be the

facet-edge found by the climbing loop. The neighbours of e0 that belongs to the same bubble are directly

addressed by the fother function. Therefore, the mechanism for adding elements to the ActiveStack

warrants that the whole bubble to which e0 belongs will be visited before the climbing loop is called again.

This means that the climbing loop is called at most once for each bubble that is traversed by the algorithm.

Moreover, at each cycle of the climbing loop a bubble is discarded, which is never visited again. There-

fore, the total number of cycles of the climbing loop is at most equal to the number of bubbles traversed

by the algorithm. Since such bubbles are either at the same level of the triangulation extracted or below

it, their number is bounded by the number of triangles in the triangulation extracted.

We conclude that the worst case time complexities of both the location of the initial triangle, and of

the traversal phase, are at most linear in its output size. Thus, the worst case complexity of the whole

algorithm is linear in its output size, and therefore optimal.

6.2 Extraction at variable approximation

The extraction of a surface with a variable approximation error over the domain can be performed through

a similar traversing strategy. We describe an algorithm that is suitable whenever the approximation error

follows a function E : D ! IR of the class:

E(p) = fe(d(vp; p)) (4)

where fe : IR ! IR is a monotonically increasing function, d() is the standard Euclidean distance in

IR2, and vp is a fixed point called the viewpoint. This error function is adequate for applications such as

flight simulators: the farther the viewpoint, the larger the tolerance error that can be accepted for terrain
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representation.

In this case, the algorithm visits the HyT starting from the triangle that is closest to (or, possibly,

contains) the viewpoint vp, and satisfies the error function E(vp). Then, it proceeds as before by visiting

the HyT through adjacencies, while increasing the current error according to distance from the viewpoint.

The delicate point in this algorithm is to warrant that each time a triangle is added to the solution this is a

correct choice, i.e., that such a triangulation can be completed to cover the whole domain. In the previous

algorithm, this fact was ensured because the solution was known to be formed by all "-alive triangles.

Since such fact does not hold now, we will have to use a different criterion.

Let us suppose that we are at an intermediate cycle of the algorithm described in the previous section,

and let us call the current triangulation the partial solution built so far by the algorithm. Such a triangu-

lation covers a connected region that is bounded by a chain of edges. For each such edge e, there exists

a facet-edge in the current ActiveStack that is incident at e. The next triangle t that we insert will

belong to one of the half-edges corresponding to such facet-edges, and it will be a valid one provided that

the region external to the current triangulation can be covered by a triangulation containing t, and whose

error lies below the threshold function.

Let us consider the minimum birth error Bmin and the maximum death error Dmax among all half-

edges corresponding to the facet-edges currently contained in the ActiveStack, i.e.,

Bmin = minffe:hebirth : e 2 ActiveStackg (5)

Dmax = maxffe:hedeath : e 2 ActiveStackg (6)

If the new triangle that we add is "-alive for some " 2 [Dmax; Bmin], we will be certain that, in the worst

case, the external region can be triangulated by using all triangles that are "-alive. Indeed, the triangulation

at constant error " must necessarily contain all edges that bound the current triangulation. Moreover, if

" is lower than the minimum Emin of the threshold function over the border of the current triangulation,

then we will be also sure that such completion of the triangulation will satisfy the threshold everywhere,

since the threshold outside the current triangulation can become only larger. Since all the edges bounding

the current triangulations are Emin-alive, we are sure that Emin � Dmax. Therefore, the correctness is

warranted if we select at each cycle " = min(Emin; Bmin).
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In order to favour a rapid increase of the threshold, the algorithm selects at each cycle the active facet-

edge that correspond to the valueBmin, and searches its half-facet-ring to get a valid triangle. In summary,

the main steps of the algorithm at each cycle are:

1. extract from the set of active facet-edges the facet-edge fe whose corresponding half-edge has min-

imum birth error;

2. compute the new tolerance ";

3. find the correct facet-edge fe0 in the chain containing fe;

4. store unvisited facet-edges of the edge-ring of fe0 into the set of active facet-edges.

In order to obtain efficiently the current facet-edge fe, as well as valuesBmin andEmin, we maintain

all active facet-edges in two heaps MBH (Minimum Birth Heap), and MEH (Minimum Error Heap): the

minimum element in MBH is the facet-edge visited at each cycle, while the minimum element in MEH

is the one corresponding to the minimum of function E() on the border of the current triangulation. At

each step, the next facet-edge to be visited is selected by extracting the minimum element from the MBH,

and removing it from MEH, while the minimum of MEH is read without removing it from the heaps. The

tolerance " (eps in the pseudo-code) is computed on the basis of such two minima, then the triangle to

be added to the solution is found by searching the half-facet-ring containing the current facet-edge.

The extraction starts by detecting the triangle in HyT that contains vp and has error E(vp). A hierar-

chical point location query can be efficiently solved on the HyT structure by exploiting the HyT hierarchi-

cal structure (which represent the history of the on-line construction of the triangulation), with a method

similar to the one proposed in (Boissonnat and Teillaud, 1993). However, if we look to a particular class

of applications, such as flight simulators, the knowledge of the problem allows us to avoid to cope with a

generic point location query. In this case, the location of the viewpoint at a time t+�t is generally near

the location of the viewpoint at time t. Therefore, the triangle containing the current viewpoint can be

simply found by traversing the HyT through adjacencies, starting at the triangle containing the previous

viewpoint.
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Figure 8 shows a pseudo-code of the algorithm. Note that instead of using two separate heaps we

adopt a double heap DH which maintains both the Bmin and Emin of active facet-edges. The operations

performed on the double heap are: extracting the facet-edge fe corresponding to Bmin , by removing

it from both heaps; reading the value Emin; inserting a facet-edge. The value of Bmin is obtained as

fe:hebirth. All such operations can be performed in logarithmic time in the size of the heap, which is

bounded from above by the output size nt.

Therefore, the time complexity of this algorithm is increased at each cycle for a factor lognt with

respect to that of the previous algorithm. Hence, the overall complexity of the extraction of a surface

with variable approximation error is O(nt lognt).

7 Results

A number of tests were performed on public domain datasets, to evaluate the simplification rates, and the

times required both to build the multiresolutionrepresentation and to extract level of detail representations

out of it. All the original datasets used are regular DEMs1. The Bangor, S.Bernardino and Lake Charles

models are given on a 128� 128 grid, while the Devil Peak model is defined on a larger 231� 165 grid.

The size of the resulting Delaunay TINs are indicated in Table 1. Note that only a subset of the input

samples were needed to build the triangulations at maximal precision: for example, 11,762 samples out

of the original 16,384 samples have been sufficient to construct the zero-error representation of the Bangor

dataset. This happens because all elevation data are integers, and some of them can be interpolated exactly

by triangular patches having vertices at different data points.

The tests were performed on an SGI Indigo2 workstation (R4400 200MHz cpu, 16KB primary cache,

1MB secondary cache, 32 MB RAM, IRIX 5.3 OS).

The results are presented numerically through the following tables.

Table 1 presents the number of triangles contained in the HyT, the number of refinement steps performed

to build the HyT and the number of triangles in the representation of the terrain at maximal resolution.

Note that the number of triangles at maximal resolution are roughly twice the number of sites (i.e. it

1The datasets are publically available from the U.S. Geological Survey - National Mapping Information - EROS Data Center
at the following URL: ftp::/edcftp.cr.usgs.gov/pub/data/DEM/250.
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corresponds roughly to split each square cell in the DEM in two triangles), while the total size of the HyT

is roughly twice the number of triangles at maximal resolution.

Then, we have a table pair for each of the four datasets. For each dataset we report data on constant

approximation extractions on the leftmost table (on the basis of a number of accuracies, measured in terms

of a percentage over the height field), and data on variable approximation extractions on the rightmost

table. For each accuracy (i.e. each table row) we list: the number of triangles in the representation that

was extracted at the given accuracy (no.), and the percentage with respect to the number of facets in the

original terrain (%); the time required for the extraction (in seconds) and the number of triangles extracted

per second.

In the case of the rightmost tables, the meshes extracted satisfy maximal accuracy in the proximity of one

map corner (error equal to zero) and error equal to the selected " value in the opposite map corner; error

increases linearly with the distance from the maximal accuracy corner, and in the tables we report on each

row the extent of the error interval (0 ! ").

Obviously the terrain extracted at constant error " is more compact than the terrain extracted at vari-

able accuracy (0! "), but the visual quality of the second mesh is impressively higher. The linear func-

tion which drives the increase of error in the variable accuracy extractions has been designed to allow

the extraction of terrain meshes where the distribution of facets, measured per unit of viewing space area,

remains almost constant on the entire image plane. In fact, the projection of the approximation error onto

the viewplane remains constant.

A visual representation of our results on the Devil Peak terrain is in Figures 9 - 13.

A top view of two terrains, extracted at constant accuracy (2.1 % error, 8613 triangles) on the left, and at

variable accuracy (0 ! 2:7% error, 8340 triangles) on the right, is shown in Figure 9. For the variable

extraction, the error range was conveniently selected to get in output a mesh with a size close to that

returned by the constant extraction on the left. The location of the point with maximal accuracy is in

the proximity of the midpoint of the lower edge. In the following pictures (Figures 10 and 11), the two

terrains are shown by selecting as viewpoint the point with maximal accuracy, chosen for the variable

approximation extraction. The difference in visual quality, given the same size of the two meshes above,
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is evident.

A couple of terrains, extracted at full and variable accuracy, are shown in the last two figures (wire

frame and flat shaded). In this case, the variable resolution terrain is only 15% of the size of the leftmost

representation but, once shaded, the two meshes look very similar.

Datasets Hypertriangulation
no. of sites no. trian. in HyT no. refinem. steps no. trian. max res.

Bangor 11,762 52,606 3,896 23,226
Lake Charles 11,939 52,352 2,601 23,569
San Bernardino 15,828 70,390 3,697 31,153
Devil Peak 27,432 112,633 1,657 54,340

Table 1: Resolution and hyper triangulation complexity on a number of test datasets (no. trian. max prec.:
number of triangles in the maximal accuracy map).

Error Extracted triangles Time
% no. % trian./sec. sec.

0 23,226 100 42,229 0.55
1 16,340 70.35 41,897 0.39
2 11,972 51.54 41,282 0.29
3 9,388 40.42 42,672 0.22
5 5,558 23.93 42,753 0.13
7 3,794 16.33 42,155 0.09
10 2,288 9.85 45,760 0.05
15 1,136 4.89 37,866 0.03

Error Extracted triangles Time
% no. % trian./sec. sec.

0 23.226 100
0! 1 16,191 69.71 10,378 1.56
0! 2 14,367 61.85 10,884 1.32
0! 3 12,069 51.96 10,775 1.12
0! 5 8,928 38.43 11,022 0.81
0! 7 6,681 28.76 11,135 0.60
0! 10 5,026 21.63 11,168 0.45
0! 15 3,155 13.58 11,685 0.27

Table 2: Bangor dataset: extraction of terrains at constant error, on the left, and at variable error, on the
right.

8 Conclusions and future work

The HyperTriangulation supports the efficient extraction of continuous surfaces at variable resolution,

and is more compact than other models described in the literature.

The efficient manipulation of surface information achieved by the model allows us to obtain a dy-

namic visualization of landscapes with high quality images. The extraction rate provided, 10k triangle

per second at variable resolution, is sufficient to produce in real time representations of the terrain which

vary dynamically. In fact, in many applications (e.g. flight simulators) we do not need to produce a differ-

ent model for each frame, because the position of the viewpoint remains in the proximity of a given loca-
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Error Extracted triangles Time
% no. % trian./sec. sec.

0 23.569 100 42.852 0,55
1 14.718 62,44 42.051 0,35
2 9.514 40,36 41.365 0,23
3 6.642 28,18 41.512 0,16
5 4.257 18,06 42.570 0,10
7 2.919 12,38 41.700 0,07
10 1.760 7,46 44.000 0,04
15 915 3,88 45.750 0,02

Error Extracted triangles Time
% no. % trian./sec. sec.

0 23.569 100
0! 1 16.550 70,21 10.541 1,57
0! 2 11.533 48,93 10.297 1,12
0! 3 8.530 36,19 11.077 0,77
0! 5 5.992 25,42 11.096 0,54
0! 7 4.882 20,71 11.353 0,43
0! 10 3.660 15,52 11.806 0,31
0! 15 2.489 10,56 11.852 0,21

Table 3: Lake Charles dataset: extraction of terrains at constant error, on the left, and at variable error, on
the right.

Error Extracted triangles Time
% no. % trian./sec. sec.

0 31.153 100 42.098 0,74
1 12.059 38,70 41.582 0,29
2 7.307 23,45 42.982 0,17
3 4.906 15,74 40.883 0,12
4 3.447 11,06 43.087 0,08
5 2.507 8,04 35.814 0,07
6 1.941 6,23 38.820 0,05
7 1.522 4,88 50.733 0,03
8 1.161 3,72 58.050 0,02

Error Extracted triangles Time
% no. % trian./sec. sec.

0 31.153 100
0! 1 12.046 38,66 10.566 1,14
0! 2 9.927 31,86 10.790 0,92
0! 3 7.331 23,52 10.323 0,71
0! 4 5.569 17,87 10.709 0,52
0! 5 4.845 15,55 10.766 0,45
0! 6 4.212 13,52 11.383 0,37
0! 7 3.833 12,30 11.273 0,34
0! 8 3.115 9,99 11.125 0,28

Table 4: SanBernardino dataset: extraction of terrains at constant error, on the left, and at variable error,
on the right.

tion for a number of consecutive frames, accordingly to the aircraft speed and direction. For this reason,

the same variable resolution model may be used for a number of frames, hence reducing the throughput

required in the extraction.

Although we have given a description of the model based on a refinement construction technique, the

same structure can be obtained through any technique that either refines or simplifies a surface defined on

the basis of a discrete dataset. A simplification algorithm, based on the decimation approach, has been

recently proposed (Ciampalini et al., 1996) which returns multiresolution results in the same format than

the refinement construction technique described here.

We are now extending this approach to generalized surfaces in 3D space. An interactive system is in

an advanced implementation phase which supports, starting from the multiresolution data produced by a

mesh simplification code, the interactive selective refinement/simplification of the mesh (Cignoni et al.,
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Error Extracted triangles Time
% no. % trian./sec. sec.

0 54,340 100 35,058 1.55
1 21,918 40.33 28,464 0.77
2 9,207 16.94 30,690 0.30
3 5,113 9.40 31,956 0.16
5 2,480 4.56 31,002 0.08
7 1,425 2.62 28,500 0.05
10 736 1.13 26,285 0.03

Error Extracted triangles Time
% no. % trian./sec. sec.

0 54,340 100
0! 1 27,914 51.36 9,462 2.95
0! 2 14,469 26.62 10,291 1.40
0! 3 9,549 17.57 10,267 0.93
0! 5 5,287 9.72 10,574 0.50
0! 7 3,663 6.74 10,773 0.34
0! 10 2,292 4.21 11,460 0.20

Table 5: Devil Peak dataset: extraction of terrains at constant error, on the left, and at variable error, on
the right.

1997). The domain of this new system is multiresolution modeling or, using a metaphor, geometric paint-

ing. Given an input surface and the multiresolutionresults of its simplification, the idea is to allow the user

to choose first a constant approximation level and then, interactively, to modify the mesh by increasing or

reducing the accuracy in selected areas, using a logical interface extremely similar to those provided by

image painting systems. The error function in this case is not dependent on the current view parameters,

but it is completely user–driven and depends on the definition of a region of interest on the mesh. User

selects the refinement focus point and the size of the area to be refined, and dispose of a graphic editing

window to draw interactively the error function, which will be used to reduce/increase resolution in the

selected region of interest.

Another straightforward extension of the model to handle volume data can be defined through an anal-

ogous structure built on tetrahedra embedded in 4D space. A 3D generalization of the Delaunay selector

has also been used for multiresolution volume modeling and visualization (Cignoni et al., 1994a), and can

be easily adapted to build a 3D HyT.

After this work was submitted for publication, more results on variable resolution surface modeling

appeared in the literature. It is worth mentioning models proposed in (Klein and Straßer, 1996; Hoppe,

1996), which are based on linear sequences of updates on an initial mesh: such models achieve high con-

ciseness in the data structure, but require involved techniques with high computational costs to extract a

representation at variable resolution.

For the special case of data points on a regular grid, an algorithm for the real-time construction of variable

resolution maps made of right triangles was proposed in (Lindstrom et al., 1996), which exploits an im-
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plicit quadtree-like decomposition of the domain. The screen space threshold adopted in this work bounds

the maximum approximation error to the projected image space, ensuring controlled image quality and no

popping effects. The same strategy can also be used in our approach: in variable resolution extraction,

error can be evaluated by taking into account the screen space magnitude (computed on-the-fly) of the

error associated to each facet.

Finally, (Puppo, 1996) gives a comprehensive multiresolution model, which includes all models men-

tioned above, and the one described in this paper, as special cases: an algorithm has been also proposed,

which extracts from such a model a representation of minimal size for a given threshold, variable over the

domain, in optimal time, i.e., linear in the output size. Some experiments using such a model are presented

in (De Floriani et al., 1997).
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