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ABSTRACT

We present a new approach for managing the representation of discrete topographic surfaces at
variable resolution, which is based on a unified model encoding a history of either refinement or
simplification of atriangulation decomposing a plane domain. An efficient data structureis pro-
posed, which is obtained by interpreting the model containing all triangles of the history asacell
complex embeddedin three-dimensional space. A major feature of the model is the ability to pro-
vide efficiently a representation of the surface at resolution variable over the domain, according
to an application-dependent threshold function. Experimental results on real world data are pre-
sented, and applicationsto flight simulation are discussed.
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1 Introduction

The search for multiresol ution representation schemes of spatial entities has recently become very popu-
lar. Multiresol utionmodel soffer the possibility to represent and manipul atedescriptionsof spatial entities
at different levels of detail and accuracy, depending on the needs of each specific application. Since the
size of a description is somehow proportional to its resolution, the main advantage of a multiresolution
scheme is speedup in processing because of data reduction, whenever and wherever a representation at
low resolution is adequate to the needs of a given application.

Major applications of multiresolution models involve modeling generic surfaces embedded in 3D
space(Von Herzen and Barr, 1987; Dyn et a., 1990; Taylor and Barrett, 1994), topographicsurfacesinthe
context of Geographical Information Systems (De Floriani, 1989; Scarlatos and Pavlidis, 1992; DeFlori-
ani et a., 1996; de Berg and Dobrindt, 1995), 3D objectsfor classical CAD and recognition (Fekete and
Davis, 1984; Ponce and Faugeras, 1987; Rossignac and Borrel, 1993), and volume data (Cignoni et d .,
1994a; Wilhelmsand Van Gelder, 1994; Westermann, 1994; Cignoni et a., 1995a). All models proposed
intheliterature are based on the genera ideathat a detailed digital model taken asinput can be simplified
into an approximated representation: appropriate measures of fidelity to the original model are taken as
a quantitative mean to define multiplelevels of resolution.

There are two major challenges underlying the construction of multiresol ution models (Heckbert and
Garland, 1994): (i) to find effective and efficient algorithms for automatically building an approximated
representation of reduced size at a predefined level of resolution; (ii) to structure datainto a comprehen-
sive framework that allows them to be manipulated at different resolutions according to the needs of a
given application or task. Such problems are often interrelated, since the construction of a solution for
the second problem can rely on algorithms and principles devel oped for the first problem.

Most methods for the approximated representation of surfaces use piecewise linear representations
based on triangulations, because of their adaptivity. Many practical methods to build approximated tri-
angulated surfaces follow heuristics that try to minimize the amount of data needed to achieve a given
resolution, by either discarding | ess significant points from a detailed model (simplification), or inserting

more significant pointsinto a coarse model (refinement). Multiresolution models are usually based either



on sequences of representations of the whole terrain at different resolutions, or on tree-like hierarchies,
where each node of atreeis arepresentation of a portion of terrain at a given resolution. Models from
both classes are usually built iteratively through the same techniques used to build approximated repre-
sentations.

A different approach has been recently proposed by Gross et al. (Gross et a., 1996), which controlsthe
level of approximation of the surface by local spectral estimates determined over a wavel et representa
tion. A hierarchical multiresolution representation (a quadtree built over regular grids) is constructed on
the basis of the analysisof the wavel et transform coefficients, and allowsthe production of level of detail
representations of the mesh.

Multiresolution models usually support tasks such as the extraction of arepresentation at agiven res-
olution, the solution of interference queries (point location, windowing), the navigation through the do-
main, and across resolutions (browsing). A further, important, yet not much explored operation is ren-
dering at variableresolution over different zones of the domain. A typical exampleisin landscape visu-
aizationfor either flight simulators, or environmental assessment (Kaneda et a., 1989): the detail of the
terrain model presented to the user may be variable, depending on the distance from the point of view.
Variable resolution allows alarger number of polygonsto be rendered only in the areas where the visua
impact is at its most significant, thus speeding up rendering (see, Figure 1). A similar approach has also
been outlined in scientific visualization to sharpen resolution only in user-selected focus areas (Cignoni
et al., 1994a; Cignoni et a., 1994b). The main problem in providing a representation with variable reso-
[utionsisto maintain the continuity of the surface where pieces of surface with different accuracies meet.

In this paper, we present amultiresolution model for triangul ated topographic surfaces, called a Hy-
perTriangulation (HyT), which supportsvariable resol ution, and is more compact and flexible than previ-
ous models. Our model is based on a structure that can maintain all significant refinement/simplification
stepsin passing from either a coarse representation to a refined one, or vice-versa. Intermediate repre-
sentations are maintained implicitly in the model: an efficient data structure alows “on the fly” repre-
sentations to be retrieved at an arbitrary resolution, either constant or variable over the domain, while

guaranteeing the continuity of the resulting surface.



Thedefinition of the model isindependent of the refinement/simplification a gorithm used for its con-
struction, provided that representations whose resolutions are close to each other can be related through
local changes over the domain. Here, we present a construction algorithm based on a refinement tech-
nique; however, it is straightforward to build the structure from the output of a simplification agorithm

(Ciampalini et al., 1996).

2 Related work

The main idea underlying the construction of approximated terrain modelsisthat asimplified model can
be built based on a reduced set of data. Most practical approaches to the construction of approximated
modelsareiterative, and can be classified into simplificationmethods (Schroeder et a ., 1992; Turk, 1992;
Rossignac and Borrel, 1993; Hoppe et a., 1993; Taylor and Barrett, 1994) - i.e., methods that start from
the full resolution, and progressively reduce the dataset on which the model isbased, in order to coarsen
resol ution; and refinement methods (Fowler and Little, 1979; Von Herzen and Barr, 1987; Dynet al ., 1990;
Scarlatos and Pavlidis, 1992; De Floriani and Puppo, 1995; Cignoni et al., 1994a) - i.e., methods that
start from a coarse approximation based on a small dataset, and progressively insert new data, in order to
improveresol ution. Both approachesrely onthe concept of local update, and are essentially characterized
by criteriato select pointsthat are to be inserted into [del eted from] the model at each iteration. The most
common approach is to base point selection on the impact, in terms of error reduction [increase], which
is caused by theinsertion [deletion] of a point into [from] the dataset.

Most multiresolution models proposed in the literature are based on the application of iterative ap-
proximation algorithms, and on the organization of local updates in the context of a unified framework.
A comprehensive survey on multiresolution models can befound in (De Floriani et a., 1996). Thefew
existing model s supporting variable resolution rendering are all very recent, and they were proposed in-
dependently, either during the same period in which the results presented here were devel oped, or later.

Preliminary results on the matter of this paper were given by the authorsin (Cignoni et al., 1995b).
In the same period, a hierarchical representation was proposed in (de Berg and Dobrindt, 1995), which

is defined as a classical pyramidal mode (i.e., a heap of triangulations at increasingly finer resolution),



whose structureisessentially based on an earlier scheme proposed in (Kirkpatrick, 1983) to support point
location. A Delaunay triangulation of the whole dataset is considered, which is simplified iteratively by
removing maximal independent sets of vertices of bounded degree.  This approach privilegesthe theo-
retical efficiency of the resulting structure (e.g., point location in logarithmic time), whilein practice the
compression ratiofor each level of resolution might beworse than those obtai ned with heuristicsproposed
in the literature. Indeed, whilein this case the only criterion used to select featuresisto fix a unique set
of non-removable vertices, many other methods for approximated representations try to select for each
level of resolutionthose verticesthat are likely to be relevant at that level. Furthermore, the levels of the
pyramid do not correspond to given accuracies, hence an explicit control of the accuracy isnot provided.
The hierarchical representation comes together with a simple algorithm, which extractsin timelinear in
its output size a representation at variable resol ution based on a given threshold function. The agorithm
isbased on atop-downtraversal of the pyramid, and on agreedy construction of theresult. Unfortunately,
the greedy approach, which accepts a triangle in the solution as soon as possible, does not warrant that
thedesired accuracy isfulfilled everywhere: indeed, because of the configuration of apartial solution, the
algorithm can be obliged to accept new triangles whose accuracy isworse than required.

In (De Floriani and Puppo, 1995), a multiresolution model is proposed, which is described by atree
of nested Delaunay triangulations. Tree models are somehow easier to handle because of their strict hi-
erarchical structure, but, on the other hand, the spatia constraintsimposed by nesting have drawbacks,
both in terms of the number of triangles needed to achieve a given accuracy, and in terms of their shape
(slivery triangles often appear near the boundary of each nodein the tree).

Two algorithmsfor variable resolution surface extraction from such a model are proposed. Thefirst a-
gorithm is a simple top-down visit of atree, which accepts a triangle as soon as its error lies below the
threshold. Theresulting structureisasubdivision called ageneralized triangulation, in which sometrian-
gles are added new vertices along their edges. A triangulation of such generalized trianglesis performed
next to obtain atriangul ated surface, and the wholea gorithmiscompleted intimelinear initsoutput size.
However, the approximating function is changed by the triangulation of generalized triangles, hence the

accuracy of thefinal structure might be worse than desired. The second algorithmis essentially an adap-



tation of the algorithm proposed here to tree structures, and it was designed later: such an algorithm re-
sultsmore complicated, sinceit needs special datastructuresto manage neighbour finding acrossdifferent

nodes of the tree. Experimental results on variable resol ution extraction were not presented.
3 Approximated Digital Terrain Representation

A natural terrain is mathematically described by an elevation function ¢ : D C RR? — IR, defined
over a connected domain D onthe XY plane. The surface described by the image of ¢ is often called
a topographic or Q%D surface. In practical applications, function ¢ is sampled at a finite set of points
P = {py,....pn} C D, known asthe set of representative pointsin the digital terrain. In this case the
function ¢ can be defined piecewise over asubdivision 3> of D with verticesin P.

When atriangular subdivisionis adopted to partition D, piecewise linear functionsare a common choice
to compute the elevation of pointsthat are not in P. One such model is called a Triangulated Irregular
Network (TIN): TIN models of 21D surfaces can be adapted to the characteristics of the surface, they
can be built on scattered data, and they are widely used in many different fields, such as Geographical
Information Systems, finite element analysis, robotics, computer graphics, and visualization.
SinceaTIN isfully characterized by the planetriangulation underlyingit, plusthe elevation valueat each
of itsvertices, hereafter wewill alwayswork on the planetriangul ation, by considering trianglesthat form

the actual surface only for the purpose of rendering or error testing.
3.1 Approximation error

As we pointed out in the introduction, the construction of an approximated representation is based on
the possibility of selecting a significant subset of data from either a regular or a scattered dataset. The
selection is almost always based on some measure of the error in representing a given surface through a
simplified model. In the case of TINs, many alternative norms can be adopted to measure the distance
between a surface represented by a TIN built over the whole dataset, and the surface corresponding to a
reduced model based on a subset of data. A simple and common choice is to measure such errors by the
maximum distance between the actual elevation of a datum and itsapproximated elevationin the reduced

representation. The relevance of a given datum p in the current representation is related to the increase
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[decrease] in the error as a consequence of the deletion [insertion] of p from [into] the model.

Another critical issueis the preservation of point and lineal features, such as ridges, valleys, peaks,
and pits. Features can beidentified by sharp discontinuitiesin the gradients of adjacent facets. Such fea-
turesmay belargely preserved if, whileconstructing the multiresol ution representation, ameasure of like-
lihoodisadopted, whichtendseither to maintain or toinsert pointsbel ongingtofeatures. For instance, the
selection heuristic can take into account the discontinuity on the gradient that isintroduced [eliminated]
with the insertion [deletion] of a point.

Severd algorithms for approximating terrains were analyzed and compared by (Garland and Heck-
bert, 1995). On the basis of a number of tests they concluded that the best practical solution, in terms
of error minimization, and number of triangles in the approximation, is the greedy insertion agorithm,
which is the same approach we adopted. Our implementation is described in the following subsection.
In order to be generic, we assume that at each step a score can be computed for each datum that isnot a
vertex of themodel. This score may be dependent on the norm used to measure the approximation error,
and on any other parameter involved in point selection, as discussed above. In order to preserve the effi-
ciency of themethod, whenever the TIN isupdated it must be possibleto compute such ascore only at the
pointsinvolved in changes. Moreover, for each such point p, it must be possibleto compute its scorein
constant time, based only onlocal information (e.g., on the triangle of the current model covering p). We
also assumethat the approximation error of the TIN isupdated whilethe score for each point iscomputed,
at no extra cost.

In the simplest case, the score is the absolute value of the difference between the approximated and
the actual elevation at p, while the current approximation error coincides with the maximum score over
thetriangulation. In amore sophisticated sel ection scheme, the score of p may be evaluated by weighting
the surface error at p with the difference of the gradients of thefacetsincident at p after itsinsertion: the

higher is such difference, the more p islikely to characterize the surface.
3.2 A refinement algorithm

Themethod we adopted in thiswork buildsan approximated TIN through arefinement technique based on

an on-line Delaunay triangulation of points on the XY domain, which is derived from an early method



proposed in (Fowler and Little, 1979). This approach is called the Delaunay Selector, and an efficient
implementation is described in (De Floriani et a., 1996). Here, we give only a summary of the method.

Lets > 0 beatolerancevalue, let P be afiniteset of pointsin R2, and let ¢ be the elevation function
known at the points of P. An initia triangulation X is built first, whose vertex set is composed of all
extreme points of the convex hull of P: such atriangulation covers the whole domain of the sampled
data.

The triangulation is refined through the iterative insertion of new vertices, one at atime: at each it-
eration, the point of P with the highest score is inserted as a new vertex, and X is updated accordingly.
The refinement process continues until the error of > goes below <. A pseudo code description of the
Delaunay Sdlector algorithmis shownin Figure 2.

Notethat, as with most refinement techniques, the insertion of asingle point during the Delaunay se-
lector does not necessarily cause a decrease in the approximation error (simplification techniques have a
symmetric behaviour). However, the convergence of the method guarantees that the approximation will
improve after a number (expectedly small) of vertices have been inserted. Henceforth, we will call a
refinement step aminimal sequence of consecutive point insertions such that the error of the resulting ap-
proximationissmaller than theerror in thepreviousstep. The areaof thedomaininvolvedin arefinement
stepisalwaysa polygonal region (which may be unconnected and/or multiply connected), which we will
call the refinement region. The refinement region at a given refinement step is always bounded by edges

that belong to both the triangulation before refinement, and the triangul ation after refinement.

4 HyperTriangulation

Let us suppose that a Delaunay Selector is being run with an error tolerances = 0: thefina structure
generated by the algorithm will be amodel at full resolution. If we consider all models built at interme-
diate refinement steps, we have awhole sequence of triangulations {3, . . ., 3, }, where ¥ istheinitia
triangulation, 3 = 3., isthefull resolution model, and V¢ = 0, . . ., n, the TIN associated with triangula
tion 3; approximates the full resolution with an error ;. The sequence of error tolerances monotonically

decreases. cg > €1 > ... > &, = 0.



If al suchtriangul ationswere piled up into alayered model, such asthe Delaunay pyramid (DeFlori-
ani, 1989), a high number of layerswould be abtained, and many triangleswould appear several timesin
different layers. Our alternative approachisto storeasort of history of theincremental refinement process
into a unique structure, which avoids replicating triangles that belong to more than one layer, while en-
coding adjacencies also between triangles that would appear in different layers. In fact, the concept of
layer is not present in our structure: it makes sense only in the comparison with pyramidal models.

Our model maintains a history that is independent of the construction algorithm (indeed, the same
model can be built through a simplification technique that iteratively demolishesatriangulation), and is
simplified with respect to the previous ones. Moreover, being not based on a strict hierarchy, our model
issuperior to tree-like models, such as the one proposed in (De Floriani and Puppo, 1995), sinceit avoids

drawbacks caused by spatial constraints (see Sect. 2).

L et us consider the refinement region that is re-triangulated in passing from X;_; to 3J;. Triangles of

>;_1 and X; can beclassified asfollows:

e living triangles: the triangles that are not changed during refinement (i.e., triangles outsidethe re-

finement region, that belong bothto 32;_; and *3;);

e deadtriangles: old triangles destroyed while updating the triangulation (i.e., the trianglesof 3J;_;

that belong to the refinement region);

e newborn triangles: new triangles created while updating the triangulation (i.e., triangles of 3; in-

serted into the refinement region).

Notethat usually most trianglesareliving, becausetheincremental insertion processactsonly localy.
By definition, the set of dead triangles and the set of newborn triangles respectively form two triangula-
tionsof the refinement region. Such triangulations share the edges that bound thisregion. Hence, instead
of simply replacing the triangulation inside the refinement region, as in the standard Delaunay selector,
wecan “sew” aong such boundary edgesthepatch formed by thenewborn trianglesover thetriangul ation
formed by the dead triangles, while saving the dead triangles below the newborn ones. The refinement

proceeds by iteratively sewing a patch at each refinement step.
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In order to make the whol e structure understandabl e, we embed it in 3D space: the triangulation 3
liesonthe XY plane, while at refinement step 7 the new vertices inserted are raised up along the 7 axis
a elevation ¢, and the new patch is welded onto the old triangulation at the boundary of the influence
region: thiscan bevisualizedasa'bubble’ popping up from thetriangul ation (see Figure 3). Theresulting
structureisa 2D simplicial complex embedded in 3D space, such that at each step thecurrent triangulation
isformed by the triangles of the upper surface of the complex. Note that the elevation of verticesin the
HyperTriangulation has no relation with their elevation on the terrain surface. Thisstructureiscaled a
HyperTriangulation (HyT): it maintains both the topol ogical information collected during the refinement
process, and information on the error of each triangle, which is useful for extracting representations at
arbitrary resolutions.

Note that now different triangulations of the sequence Xy, . . .3, are not stored explicitly and inde-
pendently, but they are interconnected in order to store only once any portion that is common to different
triangulations. Thisfact makes the model quite compact. Each intermediate triangulationis encoded im-

plicitly in HyT. In order to show this, |et us define the following two attributesfor each trianglet in HyT:

e =, birtherror theglobal error reached by thetriangulation just beforetrianglet was created (some

valuelarger than = if the triangle belongsto the initia triangulation);

e ¢, death error theglobal error of the triangulation just before ¢ was destroyed (zero if thetriangle

belongsto the compl ete triangul ation).

The birth and death errors allow to detect those trianglesin HyT that were contained in the triangu-
lation 32;, produced as an intermediate result of the refinement process of the Delaunay Selector, which

satisfied approximation error <;. Consider atrianglet in HyT, which satisfies the following inequality:

t.eg <eg; < t.gy, D

wheret.c, and t.c; are the birth and desth errors of ¢, respectively: ¢ iscalled an <;-alive triangle. From
the definition above and from (1) it followsthat all <;-alive triangles must belong to 32;. We show that X;

isinfact formed only by such triangles.
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Let p be apoint in the domain D of the HyperTriangulation HyT. For the sake of simplicity, let us
assume that p does not lie on the projection of any edge of HyT on the XY plane (pointsthat lie on pro-
jected edges can be treated exactly the same way, but the proof is more technical). We define the set of
trianglesthat cover p as.

T,={tcHyT:pect} 2
wheref istheprojection of ¢ onthe XY plane. For each T, there existsan ordering ty , t, ..., t,, on the set

of its elements such that:
Vi: tep > teq= tiv1€p > ti41.€4 wherel < ¢ < n; (3)

Indeed, whenever anewborn triangle containing p is generated during construction, the triangle con-
taining p inthe current triangulation must die, and the birth error and death error of the newborn and dead
triangle, respectively, must coincide. More informally, for each point p of D there must exist only one
triangle in HyT whose projectionsin the XY plane contain p and which is ¢;-alive. Hence, the set of
e;-alive triangles cover the whole domain, and thus there cannot be other trianglesin 3;.

Since the birth and death error of each triangle in HyT will be used to efficiently extract terrain rep-

resentationsfrom HyT (see Section 5), they will be encoded explicitly in the model.
5 Encoding and traversing Hyper Triangulations

In this section we describe how to encode and move through HyperTriangulations. In the following de-
scription, we mimic the traversal functions provided with the facet-edge, a data structure for representing
cell complexesin three dimensions (Dobkin and Laszlo, 1989). Actually, we are only interested in the
2-skeleton of athree dimensiona complex, i.e., the 2-simplicial complex formed by all triangles seawn
onto the HyT during refinement.

In the facet-edge data structure, an atomic entity is associated with each pair that is identified by a
face and one of its edges: the so-called facet-edge. This structure is equipped with traversal functions
that permit to visit the complex. These functions are used to move from a facet-edge to an adjacent one,
either by changing edge or by changing face (note that in 3D space more than two faces (triangles) may

be incident at each edge).
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Let ¢t be aface (triangle) of acell complex C, and let e be one of the edges of ¢. The facet-edge te
denotestwo ringsin C': the edge-ring is formed by all the edges of the boundary of ¢; the facet-ring is
formed by all the faces incident at e (see Figure 4). The traversa functions enext and fnext permit to
move from one facet-edge to the next along the edge-ring and the facet-ring, respectively.

In order to make the data structure more suitable to our needs, we modify it by adding more traver-
sa functions. We add two descriptive functions to each facet-edge, birtherr and deatherr, that report
the birth and death error of the triangle to which it belongs, respectively. We a so note that the triangles
incident at a given edge e of the Hy T can be subdivided into two groups, namely, those formed by faces
whoseprojectiononthe X'Y planelietotheleft and to theright of the projection of ¢, respectively. There-
fore, e can be considered as formed of two half-edges, where each half-edge correspondsto the group of
facet-edgesincident into it from one of itssides. Similarly, the facet-ring is actually subdivided into two
half-facet-rings, each corresponding to a half-edge. Henceforth, a half-edge and its corresponding half-
facet-ring will be referred to interchangeably.

Let he be ahalf-edge, let fe; and fey, bethe facet-edges at the lowest and highest level in its corre-
sponding half-facet-ring, respectively: thelifeof he isdefined astheinterval containingal valuese such
that there exists some facet-edge in its corresponding ring that is c-dive, i.e., interval [fey .24, fer.cp].
We add two other descriptive functions, hebirth and hedeath, which report, for a given facet-edge, the
birth and death of the half-edge at which it isincident.

When traversing the Hy T, we may need to move through two different domains: the spatial domain
D and the error domain [0, =¢]. In the former case, we may need to cross an edge ¢ by moving from one
of its half-edges to the other. More precisely, we are interested to move from one triangle incident into
a half-edge, to another which isincident into the other half-edge, and which has a compatible accuracy
(i.e., anaccuracy for which both trianglesare dive). Inthelatter case, we may need to adjust the accuracy
by moving to the facet that either precedes or followsthe current one in the half-facet-ring.

Each half-facet-ring is encoded as a bidirectiona chain, which is identified with the corresponding
half-edge. In order to maintain elements of these two chains connected across the edge, we add another

traversal function, fother, which connects a facet-edge te with the facet-edge on the opposite side of e
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that was either created together with te, or had minimal error when te was created.

In summary, for each facet-edge we define the following traversal functions:
e enext: next facet-edge in the edge-ring (on the same face);

o fnext: next facet-edge in the haf-facet-ring (with lower error);

o fprev: previousfacet-edge in the half-facet-ring (with higher error);

o fother: the compatible facet-edge on the other half-edge.

Figure 5 shows aside view of the facet-edgesin Figure 4. The two arrows represent the two parts of the
edge-ring. Figure 6 shows how the facet-edges are connected through the function fother; the numbers
represent the values of death error for the facet-edges. Note that the fother function does not induce a

symmetric relation between facet-edges (i.e., e.fother.fother does not necessarily coincides with €).

6 Extractingtriangulationsfrom HyT

If a HyperTriangulation is encoded following the guidelines given in the previous Section, it is possible

to efficiently extract triangulationsdefining TINs such that:

1. the approximation error is either constant over the domain D, or variable according to a function

E() defined on D, where I(p) isthe error tolerance accepted at each point p, and
2. the continuity of the surface extracted is guaranteed everywhere.

Algorithmsfor the extraction at constant and variable resolution, respectively, are described in the fol-

lowing subsections.
6.1 Extraction at constant approximation

Let ¢y be the error corresponding to the bottom of the HyT, and let = be an arbitrary value such that 0 <
e < g9. Aswehave seenin Section 4, aTIN at constant accuracy < will be formed by al triangles of the

HyT that are c-alive, i.e., such that t.c; < ¢ < t.g,. Such atriangulation can be extracted from the Hy T
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through atopological visit, starting from atriangle? that is<-alive, and moving to adjacent triangles that
satisfy the same relation.

A pseudo-code of the agorithm is presented in Figure 7. The agorithm traverses the Hy T, moving
from triangle to triangle through the traversal function fother. A list Acti veSt ack keeps the facet-
edgesthat must bevisited: the algorithm stopswhen thelist becomes empty, i.e., when thewhole domain
has been traversed. The Act i veSt ack isnot handled exactly like a stack, since el ements can be either
pushed onto its head or appended to its tail, while they are aways popped from the head. The rule for
inserting elementsinthe Act i veSt ack isthefollowing: if afacet-edgeis=-aliveit is pushed onto the
head, otherwiseit is appended to thetail. Thismechanism ensuresthat al the elements of agiven bubble
are visited before the algorithm moves to adifferent bubble.

During traversal, we mark a half-edge each time one of its corresponding facet-edges is visited: in
this case, al facet-edges of the corresponding group are considered marked. Facet-edges incident into a
half-edge are packed in the data structure: therefore, each half-edge can be marked, and each facet-edge
can be tested for mark in constant time.

Thefirst trianglet tovisitisextracted through a suitable procedure. Inthe simplest approach, asorted
list containing one triangle for each of the n levels of accuracy of the HyT can be maintained. Thelist
is scanned to find the initid triangle in atime linear in the number of levels preceding the level of the
extracted triangulation. A more efficient approach isto maintain a balanced search tree rather than alist,
thus achieving logarithmic time. In both cases, the worst case time complexity is bounded by the size of
the triangulation extracted: indeed, the construction mechanism of the HyT warrants that atriangulation
will have at least as many triangles as the value of itslevel in the HyT.

TheAct i veSt ack isinitiaized with the neighboursof ¢ that are reached with function fother. At
each cycle, afacet-edgeispoppedfromtheAct i veSt ack, itisvisited, anditsaccuracy istested against
threshold s (denoted eps inthe pseudo-code). If thefacet-edgeisnot =-aive, it meansthat the border of a
bubbl e has been processed, thusfunction fnext isused iteratively to climb bubblesincident into the same
half-edge until afacet-edgethat isc-aiveisfound. The correspondingtriangleisadded to the output, and

its three half-edges are marked as visited, while al its neighboursthrough function fother that were not
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visited yet are added to the Act i veSt ack. The agorithm stopswhen the Act i veSt ack is empty,
which means that the whole domain has been traversed.

The time complexity of thisa gorithm depends on the number of triangles of the extracted triangula-
tion, and on the number of facet-edges visited by the climbingloop. Indeed, let e bethe current facet-edge
popped from theactivestack. If e iseither marked or iss-dive, thenit isprocessedin constant time, other-
wisethefnext functionisusediteratively to climb to the desired level of the same half-edge. Let ¢’ bethe
facet-edge found by the climbing loop. The neighboursof ¢’ that belongs to the same bubble are directly
addressed by the fother function. Therefore, the mechanism for adding elementstotheAct i veSt ack
warrantsthat thewholebubbleto which ¢’ belongswill be visited before the climbingloop iscalled again.
Thismeansthat the climbingloopiscalled at most oncefor each bubblethat istraversed by the al gorithm.
Moreover, at each cycle of the climbing loop a bubbleis discarded, which is never visited again. There-
fore, the total number of cycles of the climbing loop is a most equal to the number of bubblestraversed
by the agorithm. Since such bubbles are either at the same level of the triangul ation extracted or below
it, their number is bounded by the number of trianglesin the triangul ation extracted.

We conclude that the worst case time complexities of both the location of theinitial triangle, and of
the traversal phase, are at most linear in its output size. Thus, the worst case complexity of the whole

algorithmislinear inits output size, and therefore optimal .
6.2 Extraction at variable approximation

Theextraction of asurface with avariable approximation error over thedomain can be performed through
asimilar traversing strategy. We describe an a gorithm that is suitable whenever the approximation error

followsafunction I/ : D — IR of theclass:

E(p) = fe(d(vp, p)) (4)

where f. : R — IR isamonotonically increasing function, d() is the standard Euclidean distance in
R?, and v, isafixed point called the viewpoint. This error function is adequate for applications such as

flight simulators: the farther the viewpoint, the larger the tolerance error that can be accepted for terrain

15



representation.

In this case, the algorithm visits the HyT starting from the triangle that is closest to (or, possibly,
contains) the viewpoint v,,, and satisfiesthe error function £(v,). Then, it proceeds as before by visiting
the HyT through adjacencies, whileincreasing the current error according to distance from the viewpoint.
The delicate point in thisa gorithm isto warrant that each time atriangleisadded to the solutionthisisa
correct choice, i.e., that such atriangulation can be completed to cover the whole domain. Inthe previous
algorithm, this fact was ensured because the solution was known to be formed by all c-alive triangles.
Since such fact does not hold now, we will have to use a different criterion.

L et ussupposethat we are at an intermediate cycle of the al gorithm described in the previous section,
and let us call the current triangulation the partial solution built so far by the agorithm. Such a triangu-
lation covers a connected region that is bounded by a chain of edges. For each such edge ¢, there exists
afacet-edge in the current Act i veSt ack that isincident at e. The next triangle ¢ that we insert will
bel ong to one of the hal f-edges corresponding to such facet-edges, and it will be avalid one provided that
the region external to the current triangulation can be covered by atriangulation containing ¢, and whose
error lies below the threshold function.

Let us consider the minimum birth error B,,,;,, and the maximum death error D,,,.. among all half-

edges corresponding to the facet-edges currently contained inthe Act i veSt ack, i.e.,
Byin = min{ fe.hebirth : e € ActiveStack} (5)

Do = max{ fe.hedeath : e € ActiveStack} (6)

If the new trianglethat we add iss-alivefor somee € [D,,42, Bmin], Wewill be certain that, in the worst
case, theexternal region can betriangulated by usingall trianglesthat are-aive. Indeed, thetriangulation
at constant error ¢ must necessarily contain all edges that bound the current triangulation. Moreover, if
¢ islower than the minimum F,,,;,, of the threshold function over the border of the current triangulation,
then we will be also sure that such completion of the triangulation will satisfy the threshold everywhere,
sincethethreshold outsidethe current triangul ation can become only larger. Since all the edges bounding
the current triangulationsare F,,;,-alive, we are surethat F,,,;, > D,,... Therefore, the correctnessis

warranted if we select at each cyclee = min(E i, Bimin)-
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In order to favour arapid increase of thethreshold, the algorithm selects at each cyclethe activefacet-
edgethat correspondtothevaue B,,;,,, and searchesitshalf-facet-ringto get avalidtriangle. Insummary,

the main steps of the algorithm at each cycle are:

1. extract from theset of active facet-edgesthefacet-edge fe whose corresponding half-edge has min-

imum birth error;
2. compute the new tolerances;
3. find the correct facet-edge fe’ in the chain containing fe;
4. store unvisited facet-edges of the edge-ring of fe’ into the set of active facet-edges.

In order to obtain efficiently the current facet-edge fe, aswell asvalues B,,,;, and E.,,;,,, we maintain
all active facet-edgesin two heaps MBH (Minimum Birth Heap), and MEH (Minimum Error Heap): the
minimum element in MBH is the facet-edge visited at each cycle, while the minimum element in MEH
is the one corresponding to the minimum of function F() on the border of the current triangulation. At
each step, the next facet-edgeto bevisited is sel ected by extracting the minimum e ement from the MBH,
and removing it from MEH, while the minimum of MEH isread without removing it from the heaps. The
tolerance ¢ (eps in the pseudo-code) is computed on the basis of such two minima, then the triangleto
be added to the solutionisfound by searching the half-facet-ring containing the current facet-edge.

The extraction startsby detecting thetrianglein HyT that contains v, and haserror E(v,). A hierar-
chical point location query can be efficiently solved onthe HyT structure by exploitingthe HyT hierarchi-
cal structure (which represent the history of the on-line construction of the triangulation), with a method
similar to the one proposed in (Boissonnat and Teillaud, 1993). However, if we look to a particular class
of applications, such asflight simulators, the knowledge of the problem allows usto avoid to copewith a
generic point location query. In thiscase, thelocation of theviewpoint at atimet + At isgenerally near
the location of the viewpoint at time¢. Therefore, the triangle containing the current viewpoint can be
simply found by traversing the Hy T through adjacencies, starting at the triangle containing the previous

viewpoint.
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Figure 8 shows a pseudo-code of the algorithm. Note that instead of using two separate heaps we
adopt adouble heap DH which maintains both the B,,,;,, and F,,,;,, of active facet-edges. The operations
performed on the double heap are: extracting the facet-edge fe corresponding to B,,;,, by removing
it from both heaps; reading the value F,,,;,,; inserting a facet-edge. The value of B,,;,, is obtained as
fe.hebirth. All such operations can be performed in logarithmic time in the size of the heap, which is
bounded from above by the output size n;.

Therefore, the time complexity of this algorithm is increased at each cycle for a factor log n; with
respect to that of the previous agorithm. Hence, the overall complexity of the extraction of a surface

with variable approximation error is O (n, log ny).

7 Results

A number of testswere performed on public domain datasets, to evaluate the simplification rates, and the
timesrequired both to build the multiresol utionrepresentation and to extract level of detail representations
out of it. All the original datasets used are regular DEMs'. The Bangor, S.Bernardino and Lake Charles
modelsare given on a128 x 128 grid, whilethe Devil Pesk model is defined on alarger 231 x 165 grid.
The size of the resulting Delaunay TINs are indicated in Table 1. Note that only a subset of the input
samples were needed to build the triangulations at maximal precision: for example, 11,762 samples out
of theoriginal 16,384 sampl es have been sufficient to construct the zero-error representation of the Bangor
dataset. Thishappensbecaused| elevation dataare integers, and some of them can beinterpol ated exactly
by triangular patches having vertices at different data points.

The tests were performed on an SGI Indigo2 workstation (R4400 200MHz cpu, 16KB primary cache,
1MB secondary cache, 32 MB RAM, IRIX 5.3 OS).

Theresults are presented numerically through the following tables.

Table 1 presents the number of triangles contained in the Hy T, the number of refinement steps performed
to build the HyT and the number of triangles in the representation of the terrain at maximal resolution.

Note that the number of triangles at maximal resolution are roughly twice the number of sites (i.e. it

1The datasets are publically availablefrom the U.S. Geological Survey - National Mapping Information - EROS Data Center
at thefollowing URL: f t p: : / edcf t p. cr. usgs. gov/ pub/ dat a/ DEM 250.
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correspondsroughly to split each square cell inthe DEM in two triangles), whilethetota size of theHyT
is roughly twice the number of triangles at maximal resolution.

Then, we have a table pair for each of the four datasets. For each dataset we report data on constant
approximation extractionson the leftmost tabl e (on the basisof anumber of accuracies, measured interms
of a percentage over the height field), and data on variable approximation extractions on the rightmost
table. For each accuracy (i.e. each table row) welist: the number of triangles in the representation that
was extracted at the given accuracy (no.), and the percentage with respect to the number of facetsin the
origina terrain (%); thetime required for the extraction (in seconds) and the number of trianglesextracted
per second.

In the case of the rightmost tabl es, the meshes extracted satisfy maximal accuracy in the proximity of one
map corner (error equal to zero) and error equal to the selected ¢ value in the opposite map corner; error
increases linearly with the distance from the maximal accuracy corner, and in the tableswe report on each
row the extent of the error interval (0 — ¢).

Obviously the terrain extracted at constant error = is more compact than the terrain extracted at vari-
ableaccuracy (0 — ¢), but the visua quality of the second mesh isimpressively higher. The linear func-
tion which drives the increase of error in the variable accuracy extractions has been designed to allow
the extraction of terrain meshes where the distribution of facets, measured per unit of viewing space area,
remains almost constant on the entireimage plane. Infact, the projection of the approximation error onto
the viewplane remains constant.

A visua representation of our results on the Devil Peak terrainisin Figures 9 - 13.

A top view of two terrains, extracted at constant accuracy (2.1 % error, 8613 triangles) on theleft, and at
variable accuracy (0 — 2.7% error, 8340 triangles) on theright, is shown in Figure 9. For the variable
extraction, the error range was conveniently selected to get in output a mesh with a size close to that
returned by the constant extraction on the left. The location of the point with maximal accuracy isin
the proximity of the midpoint of the lower edge. In the following pictures (Figures 10 and 11), the two
terrains are shown by selecting as viewpoint the point with maximal accuracy, chosen for the variable

approximation extraction. The differencein visual quality, given the same size of the two meshes above,
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is evident.
A couple of terrains, extracted at full and variable accuracy, are shown in the last two figures (wire
frame and flat shaded). In thiscase, the variable resolution terrain is only 15% of the size of the leftmost

representation but, once shaded, the two meshes |ook very similar.

Datasets Hypertriangulation
no. of sites || no. trian. in HyT | no. refinem. steps | no. trian. max res.
Bangor 11,762 52,606 3,896 23,226
Lake Charles 11,939 52,352 2,601 23,569
San Bernardino | 15,828 70,390 3,697 31,153
Devil Peak 27,432 112,633 1,657 54,340

Table1: Resolutionand hyper triangul ation compl exity on anumber of test datasets (no. trian. max prec.:
number of trianglesin the maximal accuracy map).

Error Extracted triangles Time Error Extracted triangles Time
% no. | % | trian/sec. | sec. % no. | % | trian/sec. | sec.
0 23,226 | 100 42,229 0.55 0 23.226 | 100
1 16,340 | 70.35 | 41,897 0.39 0—1 || 16,191 | 69.71 | 10,378 1.56
2 11,972 | 51.54 | 41,282 0.29 0—2 || 14,367 | 61.85 | 10,884 132
3 9,388 | 4042 | 42,672 0.22 0—3 || 12,069 | 51.96 | 10,775 112
5 5558 | 2393 | 42,753 0.13 0—5 8,928 | 3843 | 11,022 0.81
7 3,794 | 16.33 | 42,155 0.09 0—>7 6,681 | 28.76 | 11,135 0.60
10 2,288 | 9.85 45,760 0.05 0—10 || 5026 | 21.63 | 11,168 0.45
15 1,136 | 4.89 37,866 0.03 0—15 || 3155 | 1358 | 11,685 0.27

Table 2: Bangor dataset: extraction of terrains at constant error, on the left, and at variable error, on the
right.

8 Conclusionsand futurework

The HyperTriangul ation supports the efficient extraction of continuous surfaces at variable resolution,
and is more compact than other models described in the literature.

The efficient manipulation of surface information achieved by the model alows us to obtain a dy-
namic visuaization of landscapes with high quality images. The extraction rate provided, 10k triangle
per second at variableresolution, is sufficient to produce in real time representations of theterrain which
vary dynamically. Infact, in many applications(e.g. flight simulators) we do not need to produce adiffer-

ent model for each frame, because the position of the viewpoint remainsin the proximity of agivenloca-
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Error Extracted triangles Time Error Extracted triangles Time
% no. | % | trian/sec. | sec. % no. | % | trian/sec. | sec.
0 23569 | 100 42.852 0,55 0 23569 | 100
1 14.718 | 62,44 | 42.051 0,35 0—1 || 16550 | 70,21 | 10.541 157
2 9514 | 40,36 | 41.365 0,23 0—2 || 11.533 | 48,93 | 10.297 1,12
3 6.642 | 28,18 | 41512 0,16 0—3 8530 | 36,19 | 11.077 0,77
5 4257 | 18,06 | 42570 0,10 0—5 5992 | 2542 | 11.096 0,54
7 2919 | 12,38 | 41.700 0,07 0—>7 4882 | 20,71 | 11.353 043
10 1760 | 7,46 44.000 0,04 0—10 || 3660 | 1552 | 11.806 0,31
15 915 3,88 45.750 0,02 0—15 | 2489 | 1056 | 11.852 0,21

Table 3: Lake Charles dataset: extraction of terrains at constant error, on theleft, and at variable error, on
theright.

Error Extracted triangles Time Error Extracted triangles Time
% no. | % | trian/sec. | sec. % no. | % | trian/sec. | sec.
0 31.153 | 100 42.098 0,74 0 31.153 | 100
1 12.059 | 38,70 | 41.582 0,29 0—1 || 12.046 | 38,66 | 10.566 1,14
2 7.307 | 2345 | 42982 0,17 0—2 | 9927 | 31,86 | 10.790 0,92
3 4906 | 15,74 | 40.883 0,12 0—3 | 7331 | 2352 | 10.323 0,71
4 3447 | 11,06 | 43.087 0,08 0—4 | 5569 | 17,87 | 10.709 0,52
5 2507 | 8,04 35.814 0,07 0—5| 4845 | 1555 | 10.766 0,45
6 1941 | 6,23 38.820 0,05 0—6 | 4212 | 1352 11.383 0,37
7 1522 | 4,88 50.733 0,03 0— 7| 3833 | 12,30 11.273 0,34
8 1161 | 3,72 58.050 0,02 0—8 | 3115 | 9,99 11.125 0,28

Table 4: SanBernardino dataset: extraction of terrains at constant error, on the left, and at variable error,
on theright.

tion for anumber of consecutive frames, accordingly to the aircraft speed and direction. For thisreason,
the same variable resolution model may be used for a number of frames, hence reducing the throughput
required in the extraction.

Although we have given adescription of the model based on arefinement construction technique, the
same structure can be obtained through any techniquethat either refines or simplifiesa surface defined on
the basis of a discrete dataset. A simplification algorithm, based on the decimation approach, has been
recently proposed (Ciampalini et al., 1996) which returns multiresol ution resultsin the same format than
the refinement construction technique described here.

We are now extending this approach to generalized surfacesin 3D space. Aninteractive systemisin
an advanced implementation phase which supports, starting from the multiresol ution data produced by a

mesh simplification code, the interactive selective refinement/simplification of the mesh (Cignoni et al.,
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Error Extracted triangles Time Error Extracted triangles Time
% no. | % | trian/sec. | sec. % no. | % | trian/sec. | sec.
0 54,340 | 100 35,058 155 0 54,340 | 100
1 21,918 | 40.33 | 28,464 0.77 0—1 || 27,914 | 51.36 9,462 2.95
2 9,207 | 16.94 | 30,690 0.30 0—2 || 14,469 | 2662 | 10,291 1.40
3 5113 | 9.40 31,956 0.16 0—3 9549 | 1757 | 10,267 0.93
5 2,480 | 4.56 31,002 0.08 0—5 5287 | 9.72 10,574 0.50
7 1,425 | 2.62 28,500 0.05 0—>7 3,663 | 6.74 10,773 0.34
10 736 1.13 26,285 0.03 0—10 || 2292 | 421 11,460 0.20

Table 5: Devil Peak dataset: extraction of terrains at constant error, on the left, and at variable error, on
theright.

1997). Thedomain of thisnew system ismultiresol ution modeling or, using a metaphor, geometric paint-
ing. Givenaninput surface and the multiresolutionresultsof itssimplification, theideaisto allow theuser
to choosefirst aconstant approximationlevel and then, interactively, to modify the mesh by increasing or
reducing the accuracy in selected areas, using alogical interface extremely similar to those provided by
image painting systems. The error function in this case is not dependent on the current view parameters,
but it is completely user—driven and depends on the definition of aregion of interest on the mesh. User
selects the refinement focus point and the size of the area to be refined, and dispose of a graphic editing
window to draw interactively the error function, which will be used to reduce/increase resolution in the
selected region of interest.

Another straightforward extension of the model to handlevolume datacan be defined through an anal -
ogous structure built on tetrahedra embedded in 4D space. A 3D generalization of the Delaunay selector
has al so been used for multiresol utionvolume modeling and visualization (Cignoni et al ., 1994a), and can
be easily adapted to build a3D HyT.

After this work was submitted for publication, more results on variable resol ution surface modeling
appeared in the literature. It isworth mentioning models proposed in (Klein and Stral3er, 1996; Hoppe,
1996), which are based on linear sequences of updateson an initial mesh: such models achieve high con-
cisenessin the data structure, but require involved techniques with high computational costs to extract a
representation at variable resolution.

For the special case of datapointsonaregular grid, an agorithmfor the real -time construction of variable

resol ution maps made of right triangles was proposed in (Lindstrom et a., 1996), which exploitsan im-
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plicit quadtree-like decomposition of thedomain. The screen space threshold adopted in thiswork bounds
the maximum approximation error to the projected image space, ensuring controlledimage quality and no
popping effects. The same strategy can also be used in our approach: in variable resolution extraction,
error can be evaluated by taking into account the screen space magnitude (computed on-the-fly) of the
error associated to each facet.

Finaly, (Puppo, 1996) gives a comprehensive multiresolution model, which includes all models men-
tioned above, and the one described in this paper, as special cases: an agorithm has been also proposed,
which extracts from such amodel arepresentation of minimal sizefor agiven threshold, variableover the
domain, inoptimal time, i.e., linear inthe output size. Some experimentsusing suchamodel are presented

in (DeFloriani et a., 1997).
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