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Abstract: In the ever-evolving landscape of modern agriculture, the integration of advanced tech-
nologies has become indispensable for optimizing crop management and ensuring sustainable food
production. This paper presents the development and implementation of a real-time AI-assisted
push-broom hyperspectral system for plant identification. The push-broom hyperspectral technique,
coupled with artificial intelligence, offers unprecedented detail and accuracy in crop monitoring. This
paper details the design and construction of the spectrometer, including optical assembly and system
integration. The real-time acquisition and classification system, utilizing an embedded computing
solution, is also described. The calibration and resolution analysis demonstrates the accuracy of the
system in capturing spectral data. As a test, the system was applied to the classification of plant leaves.
The AI algorithm based on neural networks allows for the continuous analysis of hyperspectral data
relative up to 720 ground positions at 50 fps.

Keywords: artificial intelligence; crop monitoring; hyperspectral imaging; push-broom spectrometer;
precision agriculture

1. Introduction

In the ever-evolving landscape of modern agriculture, the integration of advanced
technologies has become indispensable for optimizing crop management and ensuring sus-
tainable food production. One such cutting-edge technology that has gained prominence
in precision agriculture is the push-broom hyperspectral technique [1–3]. Unlike tradi-
tional multispectral imaging systems, push-broom hyperspectral sensors offer a continuous
and high-resolution spectral data-set. This characteristic allows for a more comprehen-
sive analysis of the optical reflectance spectrum, enabling the precise identification and
characterization of various materials, including plants and their health indicators [4–6].
This innovative approach to remote sensing, when coupled with the power of artificial
intelligence (AI), holds great promise for enhancing our ability to monitor and manage
crops with unprecedented detail and accuracy [7–11].

Based on the huge spectral resolution employed, this analysis can provide additional
sensitivity for agricultural applications. Pereira et al. demonstrated the feasibility to detect
early bacterial disease onset on tomato using hyperspectral point measurement [12]. Gold et
al. proved the efficacy of hyperspectral measurements for the detection of presymptomatic
late blight and early blight in potato [13]. Multispectral devices for field applications
are nowadays commercially sold all over the world [14–16]. However, the hyperspectral
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approach is often used for research purposes, aerial/UAV mapping, or proximal mapping,
while not for real-time applications. This is mainly due to the heavy computational power
required to elaborate the huge amount of data produced by imaging sensors. In this respect,
AI is going to have a huge technological impact on the agrifood and forestry sectors, due to
its ability to extract synthetic information from a large amount of collected data [17]. As a
result, it allows us to face old problems in a new and effective perspective [18–20]. In par-
ticular, some authors have used AI algorithms for the extraction of synthetic indices [21,22]
and to perform early detection on biotic and abiotic stress in rocket leaf [23]. Moreover, AI
can push hyperspectral analysis towards real-time applications when combined with open
source and commercial spectrometers [24–26].

The present work aims to develop and implement a real-time AI-assisted push-broom
hyperspectral system for real-time applications to be used on a on a UGV (unmanned
ground vehicle) featuring an innovative ultra-wideband autonomous navigation system.
The system is designed to produce a real-time output signal used by an actuator to operate
an action such as the site-specific application of a control treatment in a greenhouse or
open field. We start from a meticulous analysis of the resolution in both the spectral and
spatial domains, comparing the data generated by this hyperspectral system with that of a
conventional commercial point spectrometer. As a test-bench, we then use hyperspectral
data collected from lettuce and arugula leaves to train a neural network able to classify
the plant species based on its spectral characteristics. The developed system showed the
ability to classify the plant species used for the test with high accuracy (i.e., 0.996) at a high
frame rate.

2. Materials and Methods
2.1. Push-Broom Spectrometer Design
2.1.1. Optical Assembly

In a line spectrograph, the main elements are (1) the collection optics, which determine
the investigated region, (2) the dispersing element responsible for the separation of the
spectral features, and (3) the recording device, with suitable speed and sensitivity. The
features of the different elements have to be chosen in order to satisfy the application
requirements. Specifically, the real-world application that informed the design of the system
was monitoring crops cultivated in 1 m wide strips, with the optical device positioned on an
unmanned ground vehicle (UGV) moving longitudinally along the strip. Ensuring a spatial
resolution of at least 1 cm2 is imperative to enable the discernment of weeds or diseases.

In the following, we detail the main elements of the push-broom spectrometer, as
sketched in Figure 1:

(1) A wide-angle (81°) objective, TTartisan APS–C 17 mm F1.4 [27] (TTArtisan Tech Co.,
Limited, Shenzhen, China), collecting lens L1, focuses the incoming light on a 20 mm
long and 200 µm wide slit, 3D-printed in black PLA. Considering the objective focal
length ( f = 26 mm, considering the crop factor), at a distance of 1.2 m, the slit selects
on a soil a line which is about 1 cm wide and 1 m long. It should be noted that in
such conditions, the depth of the field is about 25 cm, sufficient to accommodate the
different heights of plants. Next, the slit and the collimating lens L2, f = 75 mm [28]
(Thorlabs Inc., Newton, NJ, USA) focus on the slit and collimate the light toward
the prism.

(2) An F2 equilateral prism [29] (Thorlabs Inc., Newton, NJ, USA) was chosen for dis-
persing the collected light. For this application, the prism presents an advantageous
alternative to grating by offering simplicity and robustness, important features for a
setup that can be mounted on a ground vehicle moving on rough terrain, also avoiding
the complexities associated with higher diffraction orders. The light is dispersed by
the prism in a direction perpendicular to the slit length so that, after the prism, the
light rays’ vertical angle with the optical axis depends on the position with regard to
the soil and the horizontal angle on the wavelength (mainly).
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(3) The re-imaging lens L3, f = 25 mm [30] (Edmund Optics Inc., Barrington, NJ, USA),
focuses the parallel light rays on the detector so that the horizontal coordinate of
the sensor depends on the wavelength while the vertical component depends on its
position with regard to the soil. The two lenses, L2 and L3, are in a telescopic configu-
ration with a magnification factor equal to the ratio of the focal distances (M = 1/3).
The sensor is the monochrome camera Allied Vision Alvium 1800 U-040m [31] (Allied
Vision, Stadtroda, Germany). It satisfies the requirements of a continuous acquisition
and real-time analysis (max. frame rate at full resolution, 495 fps), together with the
needed spectral and spatial resolution (728 × 544 px). In fact, at 50 fps, considering
a UGV speed of 5 km/h (i.e., ∼14 cm/s), each snapshot differs by less than 3 mm,
enough to measure the changes in different leaves. Moreover, the number of pixels al-
lows for a nominal spatial resolution of 0.16 cm/px, with an average nominal spectral
resolution in the sensitivity region of the detector (300–1000 nm) lower than 2 nm/px.

collecting
lens (L1)

slit

collimator (L2)

prism

re-imaging lens (L3)

motion

scanned dimension

w
av

el
en

gt
h

scanned dimension

Figure 1. Push-broom spectrometer working principle. Collecting lens focuses the target on a slit
and selects only a portion of the target. The light is then dispersed by a prism and refocused on the
imaging sensor.

The final design was refined using 3DOptix (https://www.3doptix.com/, accessed
on 19 June 2023) [32] (3DOptix, Rehovot, Israel). Optical simulation results are reported in
Figure 2.

To investigate the performances of the spectrometer, we simulated three light sources
laying in a line along the scanned dimension. The light is focused by the collecting lens
on the slit and then collimated and dispersed by the prism in each color component. The
re-imaging lens focuses the light on the detector. The output of the detector is pictured in
the top-left corner of Figure 2. Each original point light source corresponds to a line on
the detector, while the light is dispersed on its frequency component. We can observe that
the hyperspectral image is subject to a distortion, where the wavelength positions are not
constant for all the scanned dimensions. This distortion depends on the arrival angles on
the detector along the scanned dimension and can be easily corrected by remapping the
hyperspectral image.

https://www.3doptix.com/
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Figure 2. The 3D optical simulation of the push-broom spectrometer. Simulation was performed
with 3DOptix software, v2.0. For representative purposes, the incoming white light starts from three
points. The light is focused on the vertical slit and then dispersed by the prism and finally refocused
on the sensor. Top-left inset shows three strips of dispersed light on the detector relative to the three
starting points.

2.1.2. 3D Printing and Machining

The system support and the enclosure were designed using the CAD software Solid-
Works 2017, as shown in Figure 3. The position of every optical element such as the
objective, slit, prism, lenses, and camera is fixed into a base following the optical path, as
shown in Figure 3.

camera

collimator

top enclosure

re-imaging lens

prism

base support

slit

collecting
lens

Figure 3. CAD drawing of the system with base support and optical elements.

The base is attached over a larger base that is connected to an enclosure designed to be
resistant to humidity and water splashes. Figure 4 (right) and (left) show the photos of two
prototypes of the spectrometer, one 3D-printed and the other machined. The 3D-printed
version was realized in tough PLA, printed with an Ultimaker 3. The second prototype
was realized in aluminum by CNC machining. In fact, the 3D-printed version is more
convenient to fabricate and it is lightweight; however, at a high frame rate, it suffers from
overheating problems and misalignment due to the thermal deformation of PLA. Indeed,
heat production from the camera sensor is proportional to the camera frame rate; thus,
for the high-throughput application fo thermal-resistant polymers, the 3D-printable or
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aluminum versions are preferable. In the present case, we chose to use an aluminum
machined prototype, which is more heavy but also more robust and better suited for a UGV
moving on rough terrain.

Figure 4. The 3D-printed (left) and aluminum CNC-machined (right) versions of the prototype.

2.2. Real-Time Acquisition and Classification System
2.2.1. Acquisition System

The custom-built real-time acquisition and classification system used for this project
was developed with the single-board computer Raspberry Pi 4 Model B [33]. The Raspberry
Pi module encompasses features such as a Micro SD port for external storage access,
Bluetooth, wireless LAN, USB ports, and GPIO pins for external communication. The
detector was connected to the Raspberry module through a USB 3.0 port in order to support
its maximum frame rate of 495 frames per second, with eight bits per pixel (Mono8),
at transmission speeds higher than 250 MByte/s. The system was installed with the
Linux-based Raspberry Pi OS (Bullseye) distribution. To access data from the camera,
we used the Vimba SDK v6.0 for Linux ARMv8 64-bit [34] (Allied Vision, Stadtroda,
Germany), which provides APIs for C, C++, .NET, and Python. Each hyperspectral image
acquired was converted in a NumPy matrix and then remapped with OpenCV [35] to
correct the distortions introduced by the dispersive element of the optical train. The wireless
LAN module of the Raspberry Pi was used to remotely communicate the classification
results using Apache Kafka [36] to provide unified, high-throughput, low-latency, real-time
data feeds.

2.2.2. Data-Set

For training and classification purposes, we set up a data-set of reflectance spectra
from two different plant species: lettuce and arugula. The reflectance spectra were recorded
using the designed spectrometer. We placed several leaves from the plant along the
scanned direction. The plant leaves were placed on a black surface with a white reference
panel. The images were captured in natural, environmental light conditions. Reflectance
was automatically calculated for each point along the scanned dimension, dividing the
spectrum acquired on the leaves point by point by that acquired on the white panel, which
was considered to have a constant reflectance equal to 1. This allowed us to take into
account both the variability of the natural illuminator and the spectral responsivity of the
whole system. Due to the absence of sharp peaks on the reflectance spectra (see Section 3.2)
and to reduce the noise in the spectrum, the number of spectral features was reduced to 50,
each feature comprising a range of about 10 nm in wavelength. Moving the spectrometer
along the motion direction, we acquired multiple spectra for a total of 296,862 spectra,
224,867 from lettuce and 71,995 from arugula. For the training procedure, the data-set was
split into random train and test subsets in the proportion 0.7 and 0.3, respectively. Samples
in the data-set are reported in Table 1.
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Table 1. Samples in the data-set. The data-set contains 296,862 spectra, 224,867 from lettuce and
71,995 from arugula. The data-set was split into random train and test subsets in the proportion 0.7
and 0.3, respectively.

Samples Lettuce Arugula Total

Train 157,407 50,396 207,803
Test 67,460 21,599 89,059
Total 224,867 71,995 296,862

2.2.3. Training and Classification

Training and classification were performed with scripts in Python, version 3.9, using
the scikit-learn library [37], version 1.2.2. Hyperspectral data from the detector were split
into single spectra, each one relative to a different space region observed. The classification
problem can be solved with different techniques, as a decision tree or a neural network.
A preliminary test using decision trees showed a good classification accuracy, but the
generated structure resulted over-complex, with the risk of loosing generality. The model
selected for the classification tests is the multilayer perceptron classifier (MLPClassifier).
We tested several architectures, with different numbers of hidden layers and nodes per
layer. With the aim of maintaining good accuracy in the classification and low computing
complexity, we chose an architecture with one hidden layer consisting of 25 nodes. The
neural network architecture schematic of the used classifier is reported in Figure 5. The
output y of each node is given by

y = g

(
d

∑
i=0

wixi + bias

)
(1)

where wi is the weight between layer i and layer i + 1, xi is the ith input of the node,
and bias is the values added to layer i + 1. The function g(·) is a nonlinear activation
function. The rectified linear unit function (relu) was used as an activation function for
each node in the hidden layer, while the logistic sigmoid function (logistic) was used
for the output layer. The weight optimization was performed with the stochastic gradient-
based optimizer (adam) [38], with a maximum number of iterations equal to 500. The
accuracy of the classification was validated using a computing confusion matrix, along
with the main classification metrics (precision, recall, and F-measure). Once trained and
tested, the classifier was validated, implementing a classification function for the real-time
hyperspectral data in a scenario with mixed plant species.

Input Layer ∈ ℝ50 Hidden Layer ∈ ℝ25 Output Layer ∈ ℝ¹

{lettuce, arugula}

450nm

900nm

Figure 5. Neural network architecture schematic. The input features consist of the normalized
reflectance at different wavelengths. A hidden layer with 25 node was weighed and combined
with the spectral points. The binary output layer classified the spectra based on the results of the
hidden layer.
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3. Results
3.1. Calibration and Resolution Analysis

The wavelength-to-pixel calibration in a spectrometer is a crucial process that es-
tablishes a precise correspondence between the detected wavelengths of light and the
corresponding pixels in the sensor of the spectrometer. This calibration ensures accurate
and reliable spectral measurements by aligning the pixel positions with specific wave-
lengths of incoming light. Typically achieved through the use of known spectral lines or
standard calibration sources, this calibration process compensates for any variations or dis-
tortions in the optical system. We performed the calibration procedure using the emission
lines of a fluorescent lamp, three laser diodes (red, green, and blue), and an IR diode as the
known sources. All these sources were recorded both with the commercial spectrometer
and with the developed spectrometer, extracting the peak position in wavelength and pixel,
respectively. The obtained experimental wavelength-to-pixel relationship is presented in
Figure 6.

Pi
xe

l

Wavelength (nm)
Figure 6. Wavelength-to-pixel relationship obtained from the position of the peaks of a fluorescent
lamp spectrum, laser diodes, and IR diode. Dots represent experimental data and the solid line
represents the fit according to Equation (5).

The wavelength-to-pixel relationship depends on the exit angle of the prism element,
θout, which is a function of the wavelength-dependent refractive index, n(λ), as

θout = θ0 + arcsin
(

n(λ) sin
(

α − arcsin
(

1
n(λ)

sin θ0

)))
. (2)

Considering a transparent medium, the refractive index and wavelength relationship
can be described empirically using Sellmeier’s equation:

n2(λ) = 1 + ∑
i

Biλ
2

λ2 − Ci
(3)

where Bi and Ci are experimentally determined Sellmeier’s coefficients. Simplifying Sell-
meier’s equation to a one-term form, we obtain

n2(λ) = A +
Bλ2

λ2 − C
. (4)

Linearizing Equation (2) around the refractive index of yellow and combining that
with Equation (4), we obtain the wavelength-to-pixel relation:

pixel =
(

A′ +
B′λ2

λ2 − C

)1/2

+ D. (5)
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The obtained relation, fitted with experimental data, is plotted as a solid line in
Figure 6, showing a good agreement between the data and the model.

In the following, we outline the procedures employed to validate the calibration of the
system along both the frequency and spatial axes, also presenting the achieved spectral
and spatial resolutions. The frequency response of the spectrometer was tested, measuring
the spectrum of a fluorescent lamp, selected for its distinct spectral features.

The spectrum of the emitted light was recorded utilizing the presented system; the
corresponding data are depicted in Figure 7 as a red line. As a comparative benchmark,
the same measurement was performed using a commercial spectrometer, the Avantes
AvaSpec-ULS2048-USB2-UA-50 (Avantes B.V., Apeldoorn, The Netherlands), working
in the UV-VIS-NIR range. The resulting data are shown in the same figure, as a black
line. The excellent agreement in the peak positions of the two spectra substantiates the
accuracy of the calibration in the wavelength scale of the custom-made system. Notably,
the discernible differences in the peak widths reflect the different frequency resolutions
of the two spectroscopic systems. To estimate the frequency resolution, ∆λ, of our setup,
we used the width of the sharp peak in the emission spectrum located at about 540 nm.
The so obtained value, less than 20 nm, can be considered a good estimation of ∆λ. This
value perfectly meets the requirements for our specific application, ensuring the system’s
appropriateness for the designated scientific objectives, as the reflectance spectra of the
leaves exhibit broad features rather than sharp peaks.

4 0 0 6 0 0 8 0 0 1 0 0 0
λ( n m )

 c o m m e r c i a l  s p e c t r o m e t e r
 c u s t o m  m a d eInt

en
sity

 (a
rb.

 un
its)

5 2 0 5 4 0 5 6 0

 D a t a
 F i t

∆λ

Int
en

sity
 (a

rb.
 un

its)

λ( n m )

Figure 7. Comparison of the spectrum of a fluorescent lamp acquired using a commercial spectrometer
(Avantes AvaSpec-ULS2048-USB2-UA-50) and the custom-made spectroscopic system. Inset: The
spectral resolution of the system, δλ, can be estimated using the measured width of a very sharp
peak. The estimation was conducted with an atomic emission line located at about 540 nm of the
fluorescent lamp.

The contrast and the spatial resolution of the custom-made system were determined
by analyzing the images of line patterns and performing a quantitative analysis on the
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obtained measurements. The black-and-white line pattern chosen for this purpose is
reported in Figure 8a. It presents successive lines, varying their spatial frequencies in order
to cover a range of spatial resolutions. The identification of the single lines in the captured
image can be estimated by the plot of the intensity profile measured using the instrument
and reported in Figure 8b. While thicker and more widely spaced lines are well resolved,
as they converge, diminishing their thickness, as and the system’s ability to distinguish
them separately decreases. Particularly, when the size of the single lines falls below 0.06
cm, as in the last line pattern, a single intensity peak is measured. The contrast parameter
defines the system’s ability to distinguish separate lines of a given pattern. It is defined as

C =
Imax − Imin

Imax + Imin
(6)

and it was evaluated for the different groups of lines. The obtained values are reported in
Figure 8c. The resulting spatial resolution estimated at C = 0.5 corresponds to ∼0.5 cm.

(a)

(b)

(c) (d)

In
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Figure 8. Spatial resolution of the spectrometer. (a) Line pattern used to calibrate the spatial response
function and the contrast of the instrument. (b) Measured intensity as a function of the pixel position.
(c) Contrast of the four-line patterns as a function of the frequency of the chosen pattern (dots); the
line is a guide for the eyes. (d) Distance in pixels between two successive maxima as a function of the
dimension of the pattern period (black dots) together with the linear fit (solid line).

Moreover, the evaluation of the linearity within the spatial sampling involves the
examination of the distances in pixels between two consecutive maxima in the measured
intensity in Figure 8b. The corresponding data are presented in Figure 8d alongside the
linear fit. The noteworthy agreement underscores that the optical components selected for
the system construction demonstrate an absence of measurable optical aberrations. It is
worth noting that, in accordance with the theoretical expectations based on the arrangement
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of the chosen optical components, a single pixel of the camera corresponds to 0.1 mm in
real space at 1 m.

3.2. Plant Classification Training, Tests, and Validation

As a stringent test for our system, we selected leaves from lettuce and arugula. In fact,
while these leaves are easily recognizable from their shape, discriminating them only by
their reflectance spectrum is a challenging task.

In Figure 9, we present the typical normalized reflectance spectra of lettuce (left) and
arugula (right), captured at various angles and on different parts of the leaf. Each spectrum
is depicted with a different color in order to make them distinguishable. As expected, the
majority of the visible-range reflectance takes place in the green region for both species,
exhibiting similar characteristics, with the primary distinction lying in the amplitude of
the peak value within this green range. Nevertheless, relying solely on this feature proves
inadequate for species discrimination due to the significant variation and overlap in this
particular value between the two species. To address such complexities, we employed an
artificial intelligence system based on neural networks.

N
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Figure 9. Normalized reflectance spectra acquired from leaves of lettuce (left) and arugula (right) at
different angles and positions. Each set of spectra shows a large variance due to the part of the leaf
and acquisition angle selected.

The neural network architecture was trained on the data-set presented earlier. The data-
set was split into random train and test subsets in the proportion 0.7 and 0.3, respectively,
for evaluating the training procedure. Figure 10 reports the confusion matrix from the test
set, which shows an accuracy of 0.996.

A
ct
u
al

V
al
u
e

Prediction Outcome
Lettuce Arugula Total

Lettuce 67,290 203 67,493

Arugula 120 21,446 21,566

Total 67,410 21,649

Figure 10. Confusion matrix for lettuce and arugula classification. The rows correspond to the true
class, and the columns correspond to the predicted class. Diagonal and off-diagonal cells correspond
to correctly and incorrectly classified observations, respectively.
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In Table 2, precision, recall, and F-measure are reported for each class. From the recall
column, since we are dealing with a binary classifier, we can compute the sensitivity and
specificity, which are both close to one.

Table 2. Classification report (precision, recall, F-measure, and accuracy) for each class. From the
recall column, we observe a sensitivity and specificity close to one.

Precision Recall F-Measure

Lettuce 1.00 1.00 1.00
Arugula 0.99 0.99 0.99

Accuracy 0.996

The validation of the trained model was performed on a real-time data consisting of
mixed leaves of lettuce and arugula, as pictured in Figure 11 (top image), where the region
investigated using the push-broom spectrometer is highlighted; the scanned portion of the
image is represented in color space. An example of the output classification is reported in
bottom part of Figure 11, where different colors represent the classification outcome (green
for lettuce, red for arugula). Before classification, we applied a filter to the spectra to skip
those relative to the ground, thus granting them low integrated diffuse reflectance. These
regions are reported in the classification output in gray. As evident from the validation
results, in some cases, the leaves are misclassified. This is probably due to the proximity of
the leaves of different species, whose spectra are partially reflected by the whiter part of
the leaf.

lettuce
arugula

Figure 11. Classifier validation on mixed plant leaves. (Top) panel shows an image of the leaves
where colored region represents the dimension scanned by the push-broom spectrometer. (Bottom)
panel shows an example of classification (green for lettuce and red of arugula) where most of the
points are classified correctly.

4. Discussion

As we have seen in the spectra used for the analysis, the reflectance spectrum of
plant leaves exhibits significant variability, even within a confined spatial area. This
variation is influenced by various factors. Some of these factors depend on the intrinsic
features of the plant, including the pigments of the leaf, cell structure, water content, and
biochemical composition [39–41]. While chlorophyll, the primary pigment responsible
for photosynthesis, strongly absorbs light in the blue and red regions of the spectrum,
giving leaves their characteristic green color, other compounds, such as carotenoids and
anthocyanins, contribute to the overall reflectance pattern [42,43]. Moreover, the presence of
pathogens can significantly alter the reflectance spectrum of plants due to the physiological
and biochemical changes induced by the infection. Pathogens, such as bacteria, fungi,
and viruses, can cause structural alterations and trigger biochemical responses in plant
tissues [12,13]. These changes can affect the absorption and reflection of light. For instance,
pathogens may cause disruptions in chlorophyll content, affecting its absorption peaks
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and resulting in an overall shift in reflectance patterns. Additionally, pathogen-induced
stress can lead to changes in water content and cell structure and to the accumulation of
secondary metabolites, all of which contribute to alterations in the reflectance spectrum.
Other features of the collected spectrum depend on the “experimental” conditions. The
reflectance spectrum of a leaf can change based on the observation point, which includes
both the angle and position of the incident light and the viewing angle [44–46]. When the
observation point changes, the interaction of light with the surface of the leaf structure
and pigments can lead to variations in the reflectance spectrum. As the angle of incidence
increases or decreases, the amount of light that is absorbed, transmitted, or reflected by the
leaf changes. This is influenced by factors such as the orientation of the leaf, the surface
roughness, and the arrangement of the cells and pigments. To capture a comprehensive
view of the properties of place reflectance, is it usually necessary to use various angles and
positions when conducting spectral analysis. Moreover, the natural spectral source is not
constant; it can change because of the time of the day or the atmospheric conditions. In a
real scenario, as in on field measurement of crop status, the excellent results on classification
obtained in the controlled environment of the laboratory cannot be expected in general.
In this complex scenario, the classification strategies often have to be optimized on the
spot. These problems can be sometimes be overcome by increasing the complexity of the
classification model. The classifier used in the present work is based on neural networks,
which indeed improve the model’s performance and are less prone to overfitting [47].
Generalization is also aided by the data acquisition process, which samples a large variety
of illumination conditions. VIS-NIR spectra are very broad, and it is more important to
recognize the spectral signature of this phenomenon than for single sharp peaks.As a result,
the spectral resolution can be acceptably reduced in favor of a short acquisition time. In
this way, many realizations can be collected, and the influence of external conditions on
the measure can be reduced. Also, the noise in the spectrum is reduced, averaging out
in the adjacent wavelength region. Thus, the present experimental setup results as an
intermediate between a point-based setup, characterized by high spectral resolution and
being very site specific, and that of a hyperspectral camera, very informative but very slow.
The system presented here also allows for a continuous calibration of the actual reflectance
spectrum features taken into account for real-time analysis. In fact, on the one hand, the
training of the classification system can be carried out in few minutes, also using the limited
capabilities of the embedded Raspberry Pi; on the other hand, all the acquired spectra
can be corrected considering the instantaneous illumination condition, as the reference
spectrum can be always acquired once a white reference panel, traveling with the UGV, is
placed in the field of vision of the camera.

In Table 3, we report the main specifications of the developed hyperspectral system.
Note that the specificity of the application and the versatility in the analysis allow for
relaxing the requirements in terms of the spectral resolution of the setup. In fact, leaf
reflectance spectra usually present smooth features. Conversely, it is crucial to minimize
the acquisition and elaboration time. This parameter is of pivotal importance in order to
enhance the velocity of the UGV for any future applications. This can be achieved thanks to
the small number of spectral features observed, reducing the computational effort required
for the analysis in order to meet the requirements for the real-time application of the system.

Table 3. Summary of the technical data of the newly developed portable hyperspectral imaging device
for remote sensing at the operating conditions. The table includes the spatial and frequency specifica-
tions, the principal physical parameters such as weight and dimensions, and the data treatment.

Relevant Working Parameters

Wavelength operation range 300–1000 nm

Spectral resolution <20 nm at 540 nm

Field of view at 1.2 m Soil line 1 cm wide and 1 m long
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Table 3. Cont.

Relevant Working Parameters

Working distance From 0.9 to 1.10 m

Spatial resolution ∼0.5 cm along the scanned dimension line
∼1 cm along the motion direction

Acquisition time Max. frame rate at full resolution, 495 fps

Classification speed ∼35,000 spectra @ 50 fps

Data transfer Wireless connectivity

Weight ∼1.5 kg

Dimensions 30 cm × 20 cm × 10 cm (L × W × H)

5. Conclusions

In this work, we presented the development of a real-time system for plant spectrum
classification from hyperspectral data. The developed system encompasses a custom-
designed push-broom spectrometer where the spectral resolution is traded in favor of
light collection to obtain a high frame rate. The data are processed and classified by a
neural network model in an embedded system. The fast acquisition time, in conjunction
with the efficiency of the neural network architecture, permits the real-time analysis of the
reflectance spectra. As test example of its application, the system was trained to classify
leaves from different plant species (i.e., lettuce and arugula), obtaining the classification
of more than 35,000 spectra per second with an accuracy of 0.996. The same system can
potentially be trained and used to detect weeds or diseases in a greenhouse or open-field
plantation. Future studies will implement the sensor on a UGV featuring an innovative
ultra-wideband autonomous navigation system for automated greenhouse treatment.
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