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Strong light-matter coupling between molecules and plasmonic nanoparticles give rise to new
hybrid eigenstates of the coupled system, commonly referred to as polaritons, or more precisely,
plexcitons. Over the last decade it has been amply shown that molecular electron dynamics and
photophysics can be drastically affected by such interactions, thus paving the way for light-induced
control of molecular excited-state properties and reactivity. Here, by combining ab initio molecu-
lar description and classical or quantum modelling of arbitrarily-shaped plasmonic nanostructures
within Stochastic Schrödinger Equation, we present two approaches, one semi-classical and one
full-quantum, to follow in real-time the electronic dynamics of plexcitons while realistically taking
plasmonic dissipative losses into account. The full-quantum theory is compared with the semi-
classical analogue under different interaction regimes, showing (numerically and theoretically) that
even in the weak-field and weak-coupling limit a small-yet-observable difference arises.

INTRODUCTION

Plexcitonic systems, namely nanohybrid architectures
composed of plasmonic nanostructures interacting with
molecular species, have been drawing ever-increasing at-
tention over the past few years since they proved to be
a non-invasive way of changing molecular properties as a
result of light-matter coupling[1–6]. Indeed, many recent
works have illustrated the possibility of using plasmonic
platforms to affect not only absorption and emission
properties of photo-active molecules[7–15], but also en-
ergy transfer rates[16–20], photorelaxation channels[21–
26] and photochemical reactions[5, 27–33], just to men-
tion a few.

The degree of coupling between molecular emitters
and plasmonic resonators in such cases can span differ-
ent regimes, being defined ”weak” when it is small with
respect to the dissipative losses of the coupled system,
or ”strong” in the opposite scenario[34, 35]. Usually,
in the former case perturbative semiclassical approaches
are believed to suffice to capture the modified molecular
response due to the weak plasmon-molecule interaction
and they have been widely used to account for enhance-
ment (Purcell effect) or suppression of radiative molecu-
lar emission, quenching of molecular excited states life-
times and also molecular excitation energies shifts be-
cause of the nearby plasmonic nanoparticles (NPs)[36–
44] (known as ”medium-induced Lamb shift”).
On the other hand, when the light-matter coupling is
large enough to exceed the dissipative losses of the cou-
pled system, and the molecular and plasmonic exci-
tations are resonant, new hybrid molecular-plasmonic
eigenstates, commonly named plexcitons, are actually
formed, resulting in a coherent energy exchange be-

tween the molecular excited state and the plasmonic sys-
tem, thus defining the onset of the ”strong coupling”
regime[28, 34, 45, 46].
Since the seminal work of Hutchison et al.[47], con-

trolling photochemical reaction rates and photocatalytic
processes thanks to confined light modes has given rise to
a vibrant and active area of research. If, on the one hand,
plasmonic nanocavities enable the confinement of light in
sub-nanometric volumes, thus boosting the light-matter
interaction to such an extent that even single-molecule
strong coupling becomes feasible[48], on the other they
are typically associated to large (fast) dissipative losses
because of the well-known ultrafast plasmon dephasing
process, happening on a femtosecond (fs) time scale,
which quickly leads to a non-radiative dissipation of the
initial plasmonic excitation[49–51]. Since these processes
are commonly faster than usual electronic processes tak-
ing place in photo-excited molecules, tailoring them for
chemical applications calls for theoretical models able to
describe those dynamical interactions, whether they are
”weak” or ”strong”, while realistically taking account of
such dissipative losses, as they can drastically affect the
resulting molecular electron dynamics and thus being im-
pactful for possible applications.
In the following, building on the previously-developed

modelling strategy aimed at describing in real-time
the electron dynamics of molecules close to classically-
described plasmonic nanostructures[52–54], hereafter la-
belled as semi-classical (SC) approach, we push that
theory one step further to plexcitonic wavefunctions,
based on the quantized description of the plasmonic
response[55]. The latter picture is referred to in the fol-
lowing as full-quantum model (FQ).
Limiting ourselves to time-dependent modelling, dif-
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ferent approaches based on semiclassical Maxwell-
Bloch equations, coupled harmonic oscillator models,
density-matrix propagation through master equations
and Heisenberg-Langevin equations have been used
before[56–71], but in the majority of those cases the
molecules are simply described as two-state quantum
emitters and the metallic NPs that are considered are
typically characterized by simple shapes for which analyt-
ical solutions of the scattering Green’s function are easily
available. In this context, full-quantum models rooted in
macroscopic quantum electrodynamics (QED) have also
been used to investigate the population dynamics of mul-
tiple two-state emitters coupled to complex bath spec-
tral densities representing realistic metal environments
[72–75]. Other macroscopic QED-based approaches in-
vestigated molecular emission features in the presence of
planar metallic mirrors[76–79], but in all these cases a
simplified description of the emitters is considered. On
the other hand, real-time ab initio investigations based
on using Real-Time Time-Dependent Density Functional
Theory (RT-TDDFT) for the full system have recently
started to emerge, but due to the high computational
cost of such simulations only small metal clusters con-
sisting of at most tens of atoms have been described,
thus limiting a direct comparison with realistic experi-
mental setups[80–91].In particular, none of these models
couple an atomistic quantum description of real molecu-
lar structures with NPs of arbitrary shape and dimension,
thus tackling systems of real complexity and practical
usage. This is the core feature of the methods that we
hereby present, which combine state of the art quantum
chemistry description of molecules with classical (SC) or
quantum modelling (FQ) of arbitrarily-shaped plasmonic
NPs, laying the groundwork for a direct comparison of
the two regimes on an equal footing.
Dissipative losses of the system are treated using a
Stochastic Schrödinger Equation (SSE) formalism, which
is an alternative approach to density-matrix based propa-
gation that focuses on following directly in time the sys-
tem wave-function evolution under the influence of the
surroundings[92, 93].

Previous works[57, 94, 95] have shown that the pre-
dicted total absorbed power by dipolar emitters cou-
pled to spherical plasmonic NPs differ between semi-
classical and full-quantum descriptions under high inten-
sity driving fields. More precisely, results derived from
semi-classical Maxwell-Bloch equations leads to an over-
estimation of the system absorbed power compared to
the exact full-quantum results obtained by full master
equation propagation. The origin of this divergence has
been related to non-linear effects that arise upon ex-
citing the system with high-intensity fields because of
emitters saturation and optical bistability[96–99]. On
the other hand, when the weak-coupling and weak-field
limits[57, 100, 101] do apply, the two approaches are ex-
pected to give the same results, even in the presence of

environment-induced dissipation[57, 100].
In the following, by providing a direct comparison be-
tween the two descriptions in a system composed of a
plasmonic NP and a molecule, we do numerically con-
firm the expected divergence under strong-field excita-
tion, but we also observe a slight difference in the molec-
ular excited state population upon external driving when
the molecular and plasmon systems are not resonant,
even under linear excitation regimes. We find out that
the origin of this discrepancy is intimately connected to
the anti-resonant term of the NP linear response polariz-
ability, which enters in different ways in the SC and FQ
models.
It is worth pointing out that these two approaches
are theoretically and numerically comparable since they
share the same theoretical ingredients (the numerical re-
sponse to an external oscillating and spatially varying
electric field is identical for both by construction), thus
allowing to pinpoint fundamental differences in the way
plasmon-molecules interactions are described in the two
cases.

RESULTS AND DISCUSSION

In the SC picture, the molecule is described at quan-
tum mechanical level, but the plasmonic NP is treated as
a classical polarizable continuum object with the PCM-
NP model, which has been previously developed in our
group[39, 54]. It essentially relies on solving the elec-
tromagnetic problem of coupling a quantum chemistry
molecular description with the nearby homogeneous plas-
monic system by numerically solving the correspond-
ing Poisson’s equation through a Boundary-Element-
Method (BEM)[102] approach. The NP response to ex-
ternal perturbations (e.g. molecular electron densities or
external fields) is expressed in terms of surface charges
liying on the NP discretized surface whose discretization
is needed to numerically solve the BEM problem (more
details can be found in SI 1.1). In this picture, the system
Hamiltonian ĤS(t), here renamed ĤSC(t) for the actual
SC case, reads:

ĤSC(t) = Ĥmol− ⃗̂µ · E⃗ext(t)+ (qref (t)+qpol(t)) · V̂ (1)

where Ĥmol is the time-independent molecular Hamil-
tonian, E⃗ext(t) is the time-dependent external electric

field that is used to drive the system, ⃗̂µ is the molecular
dipole operator, qref (t) and qpol(t) are vectors collecting
the NP response charges on the NP’s discretized surface
induced by direct polarization of the incoming exciting
field (qref (t)) and by the time-dependent nearby molec-

ular electron density (qpol(t)), and V̂ is the molecular
electrostatic potential operator evaluated at the nanopar-
ticle surface where response charges lie on[39, 54]. We
point out that the qpol(t) term leads to a non-linear self-
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interaction effect because those response charges are in-
duced on the NP by the presence of the nearby molecu-
lar density and can in turn generate an electric field that
can act back on the molecule itself. In the SC limit, un-
der the quasi-static approximation, the imaginary com-
ponent of this self-interaction contribution leads to an
additional non-radiative decay rate for molecular excited
states, representing energy transfer to the NP, where the
excitation is then quickly dissipated[38, 40]. This decay
process is typically faster than any other intrinsic molec-
ular decay rate[15, 103] when molecules are very close to
metallic NPs (< 1 nm) and so its effect cannot be ne-
glected. Herein, since the main goal of the present work
is to compare the SC and FQ models on a perfectly con-
sistent ground, we solely focus on this NP-induced decay
channel. Therefore, in the SC picture the wavefunction
time-propagation is directly performed with the Hamil-
tonian ĤSC(t) of eq.1 and no additional decay operators
have to be included (see SI 1.1).

On the other hand, in the FQ picture the plasmonic
NP is also quantized, so the system Hamiltonian becomes

ĤFQ(t) = Ĥ0,FQ − ⃗̂µ · E⃗ext(t) (2)

where Ĥ0,FQ is the full plasmon-molecule
Hamiltonian[55],

Ĥ0,FQ = Ĥmol +
∑

p

ωpb̂
†
pb̂p +

∑

pj

qpj V̂j(b
†
p + bp) (3)

where ωp is the frequency of the pth quantized plasmon

mode of the NP and b̂†p, b̂p are the corresponding plas-
monic creation and annihilation operators, respectively.
In eq.3, the j index labels the jth surface element of the
NP (called ”tessera”) after numerical discretization that
is needed to solve the BEM equations, leading then to the
corresponding quantized surface charge qpj for a given p

th

plasmon mode. V̂j is instead the molecular electrostatic
potential operator evaluated at the jth tessera.
The full derivation of the Q-PCM-NP quantization
scheme has been detailed elsewhere[55]. Here it is im-
portant to remark that the quantum model is derived to
provide the very same linear response polarization in the
nanoparticle as the classical one. Further details on the
FQ model can be found in SI 1.2.
The wavefunction propagation is then performed in a
SSE framework (SI 1.3) to consistently include plasmon-
induced losses as in the SC picture. This is achieved by
using the following Hamiltonian,

ĤSSE,FQ(t) = ĤFQ(t)−
i

2

∑

p

Ŝ†
p,FQŜp,FQ (4)

with

Ŝp,FQ =
√

Γp1mol ⊗ (|0⟩ ⟨1p|) (5)

where 1mol is the identity operator on the molecular
states, and Γp is the decay rate of the pth quantized mode.
The SC and FQ models have been compared on a

system composed of a plasmonic ellipsoidal NP and N-
methyl-6-quinolone molecule (for simplicity we will refer
to the latter simply as quinolone), as shown in Fig.1. The
choice of such molecular species has been made due to
its interesting and previously-investigated excited state
properties[104], but for the purpose of the present work
other molecules may have been chosen. The quinolone
molecule is described at the level of Configuration In-
teraction Singles (CIS) and only its lowest excited state
(|e⟩) is considered in the following for simplicity. The
coupled system is driven by a pulse of gaussian shape
resonant with the lowest NP plasmon mode frequency
ωp = 2.95 eV (further computational details can be found
in SI 2).

FIG. 1. System under investigation composed of a plas-
monic gold NP of ellipsoidal shape and N-methyl-6-quinolone
molecule. The molecule -NP dimensions are not to scale.

Under high intensity driving fields the two approaches
are expected to diverge[97–100]. An intuitive qualita-
tive explanation of the origin of this divergence can
be grasped by considering an oscillating two-state dipo-
lar emitter close to a classically described plasmonic
body[105]. In that case, the time-dependent emitter’s
wavefunction can be expressed as |ψ(t)⟩ = Cg(t) |g⟩ +
Ce(t) |e⟩ e−iωegt and so the corresponding oscillating
dipole moment becomes ⟨ψ(t)| µ̂ |ψ(t)⟩ = ⟨g| µ̂ |g⟩ |Cg|2 +
⟨g| µ̂ |e⟩ 2ℜ(C∗

gCe)cos(ωegt) up to first-order. The oscil-
lating contribution polarizes the nearby plasmonic body
whose reaction field can act back on the dipole itself, thus
leading to a self-interaction contribution mediated by the
metal that is ∝ |Cg|2|Ce|2f = (1 − |Ce|2)|Ce|2f with f
being a complex function that accounts for the plasmon
response. In the quasistatic limit the imaginary compo-
nent of this self-interaction accounts for the emitter decay
to the plasmonic system[105] and only when |Ce|2 << 1
the expression just derived reduces to the excited state
population times the decay rate. In the opposite limit
where the excited state population approaches 1 because
of sufficiently-intense driving fields, the decay probability



4

FIG. 2. Molecular excited state population over time obtained via SC (blue) and FQ (orange) models under resonance condition
(δ = ωe − ωp = 0) for different driving field intensities a)-c). The same setup of Fig. 1 is excited with a Gaussian pulse (SI 2)
resonant with the lowest NP plasmon mode ωp = 2.95 eV featuring an intensity of a) 3.5 × 104 W/cm2, b) 3.5 × 108 W/cm2

and c) 3.5 × 1010 W/cm2. The extreme limit where the entire molecular population would be in the excited state is reported
in d), where the system is initiated in the molecular excited state already at time zero. In this case time-propagation begins
from this extreme condition and no driving field is applied. The green dashed line is the result of fitting the corresponding
data points with an exponential decay function f(t) = ke−t/τ .

becomes (unphysically) zero due to the (1−|Ce|2) factor.
In fact, in that limit and from a semi-classical perspec-
tive, the emitter excited state would be fully populated,
and since it is a stationary solution it has no way to
exchange energy with the plasmonic system as its elec-
tron density do not oscillate over time and so cannot
perturb the NP. Conversely, in the full-quantum descrip-
tion the purely molecular state is no longer an eigenstate
of the coupled Hamiltonian and so it can evolve in time
to a plasmon excitation, leading to decay through the
NP. This qualitative explanation is numerically verified in
Fig. 2, where the molecular excited state population upon
excitation (SI 1.2, eq.19) under different driving condi-
tions is shown. As the driving field intensity increases

(panels a-c of Fig. 2), the FQ and SC approaches start
to show discrepancies in the molecular excited state pop-
ulation over time, and that difference is even more pro-
nounced in the extreme limit of having the entire molec-
ular population on the molecular excited state (panel d).
In that case the SC model does not predict any form
of decay, since a stationary solution of the SC system is
fully populated and hence its electron density does not
change over time, which prevents it from interacting with
the NP and so leading to plasmon-induced decay, as dis-
cussed above. On the other hand, the FQ picture cor-
rectly captures the NP-induced molecular decay. Indeed,
by fitting the FQ results with an exponential decay func-
tion a lifetime of ≈ 10 ps is observed, thereby confirming
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FIG. 3. Molecular excited state population over time obtained
via SC (blue) and FQ (orange) approaches under different
frequency detuning cases, (a) δ = ωe −ωp ≈ 100 meV and (b)
δ = 0. The system (Fig. 1) is excited with a Gaussian pulse
resonant with the lowest NP plasmon mode ωp = 2.95 eV and
whose intensity is 3.5 × 104 W/cm2 (see SI 2).

the presence of an excited state decay process. In this non
linear regime many quantum jumps take place (SI 1.3),
resulting in the jagged profile of Fig. 2d, which is obtained
averaging over 1000 trajectories. A more formal descrip-
tion of this phenomenon based on fluctuation-dissipation
theorem can be found in refs.[106, 107].

On the other hand, in the weak field and weak coupling
limit one could expect that both models provide the same
results[57, 100]. Surprisingly, when there is a frequency
detuning between the molecular and plasmon frequencies
(δ=ωe −ωp ̸=0), we observe a small-yet-appreciable dif-
ference in the results (Fig. 3a). Interestingly, when the
system is taken into resonance the discrepancy disap-
pears(Fig. 3b).

In order to shed light on this observed mismatch, a
slightly-simplified system is considered so that an analyt-
ical model can be made to infer the origin of that discrep-
ancy. Basically, the same setup of Fig.1 is investigated
but the n. of plasmonic modes of Ĥ0,FQ is restricted
to one, namely only the lowest dipolar mode is consid-
ered. This approximation, which is reasonable since the
molecule-NP coupling at ≈ 4 nm distance is mostly dom-
inated by dipolar interactions, is also coherently applied
to the corresponding SC simulations by setting to zero
the contribution to the overall classical response charges
(eq. 1) originating from non-dipolar modes embedded in
the NP response function[54, 55].

Clearly, the results displayed in Fig. 4 show that when
δ ̸= 0 there is a small-yet-observable mismatch between
the two approaches which vanish under resonance condi-
tion, δ = 0.
This unforeseen result can be rationalized by resorting to
an analytical model for the the molecular excited state

population
∣∣Ce,SC/FQ(t)

∣∣2 in the single mode case un-
der the weak-coupling and weak-field approximations.
Indeed, using first-order perturbation theory it can be
shown that (derivation is detailed in SI 3)

|Ce,SC(t)|2 ≈ E2
0 |µ⃗e|2
4

(
1 +

4|µ⃗p|4
Γ2
p|r⃗ |6

− 4|µ⃗p|4
(4ω2

p + Γ2
p)|r⃗ |6

+
8|µ⃗p|2ωp

(4ω2
p + Γ2

p)|r⃗ |3
)

1

δ2

|Ce,FQ(t)|2 ≈ E2
0 |µ⃗e|2
4

(
1 +

4|µ⃗p|4
Γ2
p|r⃗ |6

)
1

δ2

(6)

where |µ⃗e| and |µ⃗p| are the molecular and plasmonic tran-
sition dipoles, respectively. The latter can be easily com-
puted as

∑
j qpj r⃗j with r⃗j being the position vector point-

ing to the jth quantized surface charge.
Notably, the origin of the two additional terms appear-
ing solely in the SC expression can be traced back to
the anti-resonant term of the NP linear response po-
larizability (SI 3.1) which defines the classical response

charges of eq.1 and enters in different ways in the FQ
and SC models. Indeed, if simulations are repeated scal-
ing the Drude-Lorentz dielectric function parameters (SI
1.1, eq.2) such that the absolute value of ωp increases
while keeping the values of plasmonic charges qpj and
detuning δ fixed (SI 4), the observed discrepancy progres-
sively vanish, also in the case of δ ̸= 0. This can be un-
derstood in light of eq. 6 where the additional terms only
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FIG. 4. Molecular excited state population over time obtained via SC (blue) and FQ (orange) approaches including only the
lowest plasmon dipolar mode in the models. Results under different detuning conditions are shown. Within each rank, from
left to right the absolute value of the plasmon mode frequency ωp is doubled each time and so the molecular frequency ωe is
coherently modified to preserve the same δ value among calculations displayed in the same row. Each simulation is performed
by driving the system with a Gaussian pulse of same shape but resonant with the corresponding ωp value and whose intensity
is 3.5 × 104 W/cm2.

present in the SC expression roughly depend on ≈ (ωp)
−2

or ≈ (ωp)
−1

, and so their contribution becomes progres-
sively more and more negligible as the absolute value of
ωp increases, while keeping all other quantities appear-
ing in that expression constant. This is indeed what is
reported in Fig.4 for each value of δ moving from left to
right. Remarkably, in agreement with eq. 6 FQ curves
reported in Fig. 4 do not exhibit any appreciable change
as ωp increases, whereas SC curves do vary, approaching
the FQ results for large ωp values.
On the other hand, when δ = 0 the two curves are al-
ready almost-perfectly superimposed and nothing more
can be inferred from eq. 6 as both expressions diverge for
δ → 0. Nevertheless, it can be qualitatively shown (SI
3.3) that when the molecule and plasmon excitations are

resonant, the dominating contribution to the molecular
excited state population is equally described numerically
by both models when the driving field is resonant with
the plasmon mode frequency, as in the investigated case,
thus justifying, albeit not quantitatively, why under res-
onance condition both models yield the same result.

CONCLUSIONS

In this work, by combining Stochastic Schrödinger
Equation, ab initio description of target molecules
and BEM-based modelling of arbitrarily-shaped
plasmonic nanoparticles within the PCM-NP
framework[38, 39, 52, 54, 55, 93], we directly com-
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pare full-quantum and semi-classical modelling of
plexcitons, while realistically accounting for ultrafast
plasmonic dissipative processes. The presented full-
quantum theory is compared with the semi-classical
analogue under different excitation regimes. Upon high-
intensity driving, sizeable differences between the two
approaches are observed, thereby confirming previous
findings on similar systems[97–100]. Furthermore, it is
surprisingly disclosed that even within the weak-field
and weak-coupling limits an unexpected small-yet-
appreciable difference arises in the molecular excited
state population upon low-intensity driving. By resort-
ing to a simplified analytical model the origin of such
discrepancy has been traced back to the anti-resonant
term of the classical NP polarizability, which enters into
the full-quantum and semi-classical models in different
ways and turned out to be responsible for the observed
discrepancy. The illustrated theory paves the way for
real-time investigation of plexcitons beyond the linear
regime while retaining ab initio description of molecules
and accurate modelling of arbitrarily-shaped plasmonic
nanostructures.
As the field of plexcitonic chemistry is drawing ever-
increasing attention, we believe the theory presented
here will be instrumental in narrowing the gap towards
accurate control of molecular excited-state processes by
means of plasmon-molecule coupling.
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der the project Nanochemistry for energy and Health
(NExuS) for funding the Ph.D. grant. Computational
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Department of Chemical Sciences of the University of
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Supplementary Information

Additional material can be found in the supplementary
information:
Details about FQ and SC theoretical models; Computa-
tional details; Analytical models to derive eq. 6; Scaling
plasmonic quantities to perform simulations reported in
Fig. 4.
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Maier, and M. Kim, Quantum plasmonics, Nature
Physics 9, 329 (2013).

[36] S. Vukovic, S. Corni, and B. Mennucci, Fluorescence
enhancement of chromophores close to metal nanopar-
ticles. optimal setup revealed by the polarizable contin-
uum model, The Journal of Physical Chemistry C 113,
121 (2009).

[37] M. Caricato, O. Andreussi, and S. Corni, Semiempiri-
cal (zindo-pcm) approach to predict the radiative and
nonradiative decay rates of a molecule close to metal
particles, The Journal of Physical Chemistry B 110,
16652 (2006).

[38] S. Corni and J. Tomasi, Lifetimes of electronic excited
states of a molecule close to a metal surface, The Journal
of chemical physics 118, 6481 (2003).

[39] B. Mennucci and S. Corni, Multiscale modelling of pho-
toinduced processes in composite systems, Nature Re-
views Chemistry 3, 315 (2019).

[40] U. Hohenester and A. Trugler, Interaction of single
molecules with metallic nanoparticles, IEEE Journal
of Selected Topics in Quantum Electronics 14, 1430
(2008).

[41] K. Lopata and D. Neuhauser, Multiscale maxwell–
schrödinger modeling: A split field finite-difference
time-domain approach to molecular nanopolaritonics,
The Journal of chemical physics 130, 104707 (2009).

[42] H. Chen, J. M. McMahon, M. A. Ratner, and G. C.
Schatz, Classical electrodynamics coupled to quantum
mechanics for calculation of molecular optical proper-
ties: a rt-tddft/fdtd approach, The Journal of Physical
Chemistry C 114, 14384 (2010).

[43] Y. Zhang, Z.-C. Dong, and J. Aizpurua, Influence of
the chemical structure on molecular light emission in
strongly localized plasmonic fields, The Journal of Phys-
ical Chemistry C 124, 4674 (2020).

[44] F. Aguilar-Galindo, S. Dı́az-Tendero, and A. G. Borisov,
Electronic structure effects in the coupling of a sin-
gle molecule with a plasmonic antenna, The Journal of
Physical Chemistry C 123, 4446 (2019).

[45] R. Thomas, A. Thomas, S. Pullanchery, L. Joseph, S. M.
Somasundaran, R. S. Swathi, S. K. Gray, and K. G.
Thomas, Plexcitons: The role of oscillator strengths and
spectral widths in determining strong coupling, ACS
Nano 12, 402 (2018).

[46] N. Peruffo, G. Gil, S. Corni, F. Mancin, and E. Collini,
Selective switching of multiple plexcitons in colloidal
materials: directing the energy flow at the nanoscale,
Nanoscale 13, 6005 (2021).

[47] J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux,
and T. W. Ebbesen, Modifying chemical landscapes by
coupling to vacuum fields, Angewandte Chemie Inter-
national Edition 51, 1592 (2012).

[48] R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A.
Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess,
and J. J. Baumberg, Single-molecule strong coupling
at room temperature in plasmonic nanocavities, Nature
535, 127 (2016).

[49] M. I. Stockman, M. F. Kling, U. Kleineberg, and
F. Krausz, Attosecond nanoplasmonic-field microscope,
Nature Photonics 1, 539 (2007).



9

[50] G. V. Hartland, Optical studies of dynamics in no-
ble metal nanostructures, Chemical reviews 111, 3858
(2011).

[51] A. N. Koya, M. Romanelli, J. Kuttruff, N. Hen-
riksson, A. Stefancu, G. Grinblat, A. De Andres,
F. Schnur, M. Vanzan, M. Marsili, M. Rahaman,
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1 Theory

1.1 semi-classical (SC) model

In the semi-classical (SC) model, the molecule is described at quantum-mechanical level

using standard quantum chemistry approaches, but the plasmonic NP is treated as a clas-

sical polarizable continuum object within the PCM-NP framework.1,2 In essence, plasmonic

NPs of arbitrarily complex shape are described in the quasi-static limit, i.e. retardation

effects are not included, and are coupled with a quantum chemistry description of molecules

through an integral equation formalism of the Polarizable Continuum Model (IEF-PCM)1

which basically boils down to solving the corresponding Poisson’s electrostatic equation. The

problem is numerically solved with a Boundary-Element-Method (BEM) approach3 which

entails a surface discretization of the NP, leading to a set of discrete surface elements, called

”tesserae”, that host polarization charges due to a given external perturbation (e.g. external

potential, molecular densities, etc.). Such set of charges represent the NP linear response

to the external perturbation and can be used to quantitatively evaluate the molecule-NP

interactions and related effects.

Given these premises, the system Hamiltonian ĤS(t) (see also SI 1.3), here renamed ĤSC(t)

for the actual SC case, reads

ĤSC(t) = Ĥmol − ⃗̂µ · E⃗ext(t) + (qref (t) + qpol(t)) · V̂ (1)

where Ĥmol is the time-independent molecular Hamiltonian, E⃗ext(t) is the time-dependent

external electric field that is used to drive the system, ⃗̂µ is the molecular dipole operator,

qref (t) and qpol(t) are the vectors collecting the response charges on the nanoparticle’s dis-

cretized surface induced by direct polarization of the incoming exciting field (qref (t)) and

by the time-dependent nearby molecular electron density (qpol(t)), and V̂ is the molecular

electrostatic potential operator evaluated at the nanoparticle surface where response charges

3



lie on.1,2

A time-dependent version of Boundary Element Method previously developed2,4 (TD-BEM)

is used to propagate the surface charges describing the NP response that is coupled to the

molecule through the molecular electrostatic potential operator.

The nanoparticle dielectric function is described using a Drude-Lorentz (DL) model,

ϵ(ω) = 1 +
Ω2

plasma

ω2
0 − ω2 − iΓω

(2)

where Ωplasma is the metal plasma frequency, ω0 is the natural frequency of bound oscillators

and Γ is the relaxation time (damping rate) of the metal (see SI Sec. 2 for the actual values

used).

In the SC case, Ĥmol of eq.1 is purely the molecular Hamiltonian, so the full system wave-

function, |ψS(t)⟩, here renamed as |ψSC(t)⟩, can be expanded on the basis of the molecular

stationary eigenstates |m⟩ as

|ψSC(t)⟩ =
Nstates∑

m

Cm(t) |m⟩ (3)

where the molecular eigenstates |m⟩ can be obtained with any quantum chemistry approach.

In our case we use Configuration Interaction Singles (CIS, SI 2) and the resulting Stochastic

Schrödinger Equation (see SI 1.3) we aim to solve in matrix form reads:

i
∂C(t)

∂t
= HSSE,SC(t)C(t) (4)

with

ĤSSE,SC(t) = ĤSC(t)−
i

2

M∑

q

Ŝ†
q,SCŜq,SC . (5)

C(t) is the vector of the time-dependent coefficients of eq.3 describing the wavefunction at a

given time step t represented on the basis of the molecular eigenstates, whereas ĤSSE,SC(t)

4



is the time-dependent Hamiltonian that is used for propagating the system wavefunction

according to a second-order Euler algorithm5 (see also SI 1.3).

The dissipative operators Ŝq,SC in eq.5 are still to be defined. Indeed, different choices may

be taken, depending on the relevant decay processes that are considered for a given system.

Herein, since the main goal of the present work is to compare the SC and FQ models on a

perfectly consistent ground, we solely focus on the NP-induced non radiative decay, which

is intrinsically included in ĤSC(t) through qpol(t), as mentioned in main text.

Under such assumptions eq.5 simplifies to

ĤSSE,SC(t) = ĤSC(t). (6)

1.2 full-quantum (FQ) model

In the full-quantum picture (FQ), the plasmonic NP is also quantized, so the system Hamil-

tonian becomes

ĤFQ(t) = Ĥ0,FQ − ⃗̂µ · E⃗ext(t) (7)

where Ĥ0,FQ is the full plasmon-molecule Hamiltonian,6

Ĥ0,FQ = Ĥmol +
∑

p

ωpb̂
†
pb̂p +

∑

pj

qpjV̂j(b
†
p + bp) (8)

with ωp being the frequency of the pth quantized plasmon mode and qpj being the corre-

sponding quantized surface charge lying on the jth tessera. b̂†p and b̂p are the corresponding

plasmonic creation and annhilation operators and V̂j is instead the molecular electrostatic

potential operator evaluated at the jth tessera. The complete derivation of the Q-PCM-NP

quantization scheme that leads to eq.8 is reported in ref.6

Starting from eq.8 and assuming to consider two molecular states only |g⟩ , |e⟩, the Hamil-

tonian of eq.8 can be recast into a more familiar form after inserting the molecular identity

5



operator 1mol = |g⟩ ⟨g|+ |e⟩ ⟨e| before and after V̂j, leading to

Ĥ0,FQ =ωg |g⟩ ⟨g|+ ωe |e⟩ ⟨e|+
∑

p

ωpb̂
†
pb̂p +

∑

pj

qpj

(
V̂ gg
j |g⟩ ⟨g|+ V̂ ee

j |e⟩ ⟨e|+

V̂ eg
j |e⟩ ⟨g|+ V̂ ge

j |g⟩ ⟨e|
) (
b†p + bp

)
(9)

where ωg and ωe are the energies of the corresponding molecular states and the shorthand

notation V̂ eg
j stands for ⟨e| V̂j |g⟩.The diagonal terms of the plasmon-molecule interaction

∑
pj qpjV̂

gg
j ,

∑
pj qpjV̂

ee
j in eq.9 lead to a correction of the molecular excitation frequency

ωe−ωg due to the nearby NP. This contribution is numerically negligible in the present case,

therefore upon setting ωg = 0 so that ωe becomes the molecular transition frequency, we end

up with the simplified expression

Ĥ0,FQ = ωeσ̂
†σ̂ +

∑

p

ωpb̂
†
pb̂p +

∑

pj

qpjV̂
eg
j

(
σ̂† + σ̂

) (
b†p + bp

)
(10)

where we have introduced the molecular transfer operators σ̂† = |e⟩ ⟨g|, σ̂ = |g⟩ ⟨e| and

V̂ eg
j can be taken to be real. Clearly, eq.10 leads to the well-known Jaynes-Cummings multi-

mode Hamiltonian7,8 after applying the usual rotating wave approximation to the interaction

terms, namely

Ĥ0,FQ = ωeσ̂
†σ̂ +

∑

p

ωpb̂
†
pb̂p +

∑

p

gp(b̂
†
pσ̂ + b̂pσ̂

†) (11)

with gp being the corresponding transition coupling element computed as,

gp = ⟨e, 0|
∑

j

qpjV̂j(b
†
p + bp) |g, 1p⟩ (12)

in the single-excitation subspace. In eq.12 the shorthand notation |e, 0⟩ , |g, 1p⟩ has been

introduced which represents the molecular excited state with all plasmon modes in their

ground state and the pth plasmon mode singly excited with the molecule in its ground state,

respectively. Both approximations that have been applied moving from eq.9 to eq.11 were
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numerically tested in the investigated case and they proved to be valid .

The Hamiltonian of eq.11, expressed in the 1-excitation states basis,9,10 can be fully diag-

onalized to obtain the 1-excitation plexcitonic states (|m̃⟩), which can be generally expressed

as

|m̃⟩ =
∑

p

|e, 0⟩C m̃
e + |g, 1p⟩C m̃

p . (13)

In the FQ picture, the complete Hamiltonian that is used for time-propagation becomes

ĤSSE,FQ(t) = ĤFQ(t)−
i

2

∑

p

Ŝ†
p,FQŜp,FQ (14)

with

Ŝp,FQ =
√
Γp1mol ⊗ (|0⟩ ⟨1p|) (15)

where Γp is the decay rate of the pth quantized mode that is actually equal to Γ (eq.2) for

every pth plasmon mode originating from the Q-PCM-NP quantization scheme.6

Clearly, the form of the chosen decay operator of eq.15 is an assumption which implies that

the only source of dissipation in the current FQ picture comes from the plasmonic part of the

wavefunction. This approximation basically neglects any other intrinsic molecular relaxation

channel, which often take place on a longer time scale (tens/hundreds of picoseconds). The

same assumption has been consistently made in the SC model where only the NP-mediated

non radiative decay has been included (see SI 1.1).

In the FQ picture the time-dependent wavefunction can be generally expressed in the

plexcitonic basis (eq.13) as

|ψFQ(t)⟩ =
∑

m̃

Cm̃(t) |m̃⟩ , (16)

thus leading to the following equation

i
∂C(t)

∂t
= HSSE,FQ(t)C(t) (17)

7



which is the FQ analogue to eq.4, where nowC(t) is the vector of time-dependent coefficients

representing the wavefunction on the plexcitonic basis.

On this basis Ĥ0,FQ is diagonal, but Ŝ†
p,FQŜp,FQ is not. Indeed, using eqs.13-15 it is easy to

show that

⟨m̃| Ŝ†
p,FQŜp,FQ |m̃⟩ =

(
C m̃

p

)2
Γp

⟨ñ| Ŝ†
p,FQŜp,FQ |m̃⟩ =

(
C ñ

p C
m̃
p

)
Γp

(18)

where the coefficients C
ñ/m̃
p can be taken to be real because of the form of Ĥ0,FQ (eq.11).

The physical quantity that is investigated in the present work to compare SC and FQ

descriptions (see Figs. 2-4, main text) is the molecular excited state population upon driving,

which according to eq.3 and eqs.13,16 respectively reads

|Ce,SC(t)|2 = |⟨e|ψSC(t)⟩|2 = |Ce(t)|2 ,

|Ce,FQ(t)|2 = |⟨e, 0|ψFQ(t)⟩|2 =
∣∣∣∣∣
∑

m̃

C m̃
e Cm̃(t)

∣∣∣∣∣

2

.
(19)

1.3 Stochastic Schrödinger Equation

In the Markovian limit, an open-quantum-system description of the system-bath interaction

leads to the following Stochastic Schrödinger equation (SSE) expressed in atomic units (a.u.)

i
d

dt
|ψS(t)⟩ = ĤS(t) |ψS(t)⟩+

M∑

q

lq(t)Ŝq |ψS(t)⟩ −
i

2

M∑

q

Ŝ†
q Ŝq |ψS(t)⟩ . (20)

|ψS(t)⟩ and ĤS(t) are the system time-dependent wavefunction and Hamiltonian, respec-

tively, whose definitions depend on the model being used for describing the nanoparticle-

molecule system (see SI 1.1 and 1.2 ). The operators Ŝq describe the effect of the surroundings

(bath) on the system through different M interaction channels, each one labelled as q and de-

fined according to the type of dissipative process that is modelled (e.g. non-radiative decay,

8



dephasing etc.). The non-Hermitian term of eq.20 , − i
2

∑M
q Ŝ†

q Ŝq, represents dissipation due

to the environment, while
∑M

q lq(t)Ŝq is a fluctuation term modelled as a Wiener process lq(t)

i.e. white noise associated with the Markovian approximation. In our case, the SSE (eq.20)

is propagated using a quantum jump algorithm which practically translates to accounting

for the explicit fluctuation term of eq.20 through a Monte-Carlo like method based on ran-

dom quantum jumps.5,11–13 We remark that the explicit form of the operators appearing in

eq.20 depend on the model that is used for describing the coupled system, which then differs

between the SC and FQ approaches described above. Since this is a stochastic process, an

independent number of trajectories Ntraj have to be performed and by averaging the cor-

responding results, system properties, like populations and coherences for instance, can be

obtained. In the ideal limit of an infinite number of independent realizations, the averaged

results match those coming from time-propagating the system reduced density-matrix with

a Lindblad-like master equation approach.5

2 Computational details

The quinolone molecule is described at ab initio level, using CIS/6-31g* in a locally-modified

version of GAMESS2,14 which accounts for the presence of the nearby NP in the determi-

nation of the molecular ground state at the classical level. The molecular excited states are

determined assuming the NP classical polarization remains frozen to that proper for ground

state. This means that for both the SC and FQ models, the same set of states are used.

Moreover, the use of the rotating wave approximation (see eq.11) in the FQ model does not

provide further change to the ground state.

According to adopted level of theory, the lowest bright excited state of quinolone features

an excitation energy of ≈ 2.95 eV. The NP optical response is modelled with a Drude-

Lorentz dielectric function (eq.2) setting Ωplasma = 0.240 a.u. ≈ 6.5 eV, which is close to

values previously adopted for gold,15 ω0 = 0a.u. and Γ = 0.01515 a.u., that corresponds to

9



a lifetime of ≈ 2 fs. With such parameters, the lowest dipolar plasmon mode of the NP is

basically in resonance with the molecular transition (ωp ≈ 2.95 eV).The computed transition

coupling element (eq.12) between that mode, which is the most relevant since all others lie

higher in energy and are scarcely coupled with the molecule, and the lowest quinolone bright

excitation is |g| ≈ 2.5meV which, given the value of Γ = 0.01515 a.u. ≈ 410meV, results in

|g|
Γ
<< 1, thus setting the present case in the weak-coupling regime.16

Time-dependent simulations have been performed by exciting the system with a pulse with

gaussian envelope, resonant with the dipolar plasmon mode frequency ωp = 2.95 eV,

E⃗ext(t) = r̂E0exp

(
−(t− t0)

2

2σ2

)
cos(ωpt) (21)

where r̂ is the unit vector pointing along the molecule-NP distance direction (Fig.1, main

text), E0 is the field amplitude set to 10−6a.u. unless differently specified (≈ 5 × 105V/m,

corresponding to 3.5× 104W/cm2 light intensity) which ensures the weak-field limit,17 t0 ≈

7 fs and σ ≈ 1 fs. The coefficients C(t) of eqs.4,17 are propagated via a second-order Euler

algorithm in combination with quantum jumps4,5 using a time step of 0.1 as. Under weak-

field driving 100 trajectories were run initially, but no quantum jump occurred under weak-

field excitation, so results shown in Figs. 3-4 (main text) actually originate from individual

wavefunction propagation. On the other hand, beyond the weak-field limit (Fig.2 main text)

quantum jumps do often occur in FQ simulations, and so averaging over 1000 trajectories

has been done in that case.

3 Analytical models

3.1 semi-classical picture in the weak-coupling limit

Starting from the full SC Hamiltonian of eq.1 and considering that the molecule-NP distance

of the investigated setup (Fig.1 main text) is large enough to ensure that only dipolar
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interactions are relvant, we can apply the dipole approximation to the molecule-NP coupling

terms (rightmost terms of eq.1, SI 1.1). Additionally, the qpol(t) contribution to the classical

response charges of eq.1 is typically much smaller than qref (t) when the plasmonic system

is excited nearby plasmon resonance, the latter being directly related to the scattered field

of the NP due to external driving, and so it can be neglected, thus leading to

ĤSC(t) = Ĥmol − ⃗̂µ · E⃗ext(t)− ⃗̂µ · E⃗scatt(t) (22)

where E⃗scatt(t) is the scattered field of the NP at the molecule location upon external exci-

tation. In other words, this contribution accounts for the plasmonic local field enhancement

effect.

Figure S1: Schematic representation of the NP-molecule setup considered for the analytical
model. µ⃗p and µ⃗e represent the plasmonic and molecular transition dipoles, respectively.

The setup that has been investigated (Fig.1 main text) features a large molecule-NP dis-

tance which basically ensures the validity of the weak-coupling condition. Under these

circumstances, the scattered field of the NP at the molecule position is dominated by the

plasmonic dipolar response, which can then be formally expressed as

E⃗scatt(ω, r⃗) =
3
[(
E⃗ext(ω)αNP (ω)

)
· r̂
]
r̂ − E⃗ext(ω)αNP (ω)

|r⃗ |3 (23)

11



with r̂ being the unit vector pointing along the NP-molecule direction (Fig.S1) and αNP (ω)

being the frequency-dependent NP polarizability expressed as6

αNP (ω) =
∑

p

⟨0| µ̂ |p⟩ ⟨p| µ̂ |0⟩
ωp − ω − iΓp

+
⟨p| µ̂ |0⟩ ⟨0| µ̂ |p⟩
ωp + ω + iΓp

(24)

where ωp and Γp are the frequency and damping rate of the corresponding pth plasmonic

mode.

In principle the sum of eq.24 should run over all the plasmon modes of the NP, however,

in the investigated weak-coupling limit the NP-molecule distance is large enough such that

only dipolar resonances significantly contribute to the scattered field at the molecule location,

thus eq.24 can be reasonably approximated to

αNP (ω) ≈
|µ⃗p|2

ωp − ω − iΓp

+
|µ⃗p|2

ωp + ω + iΓp

(25)

with |µ⃗p|2 being the squared modulus of the transition dipole moment of the only-relevant

dipolar plasmonic mode.

In our model, the NP dipolar mode is exactly aligned with the direction of the incoming

external field and the molecular transition dipole (Fig.S1), thus eq.23 simplifies to

E⃗scatt(ω, r⃗) =
2E⃗ext(ω)αNP (ω)

|r⃗ |3 (26)

and the Hamiltonian of eq.22 becomes

ĤSC(t) = Ĥmol − ⃗̂µ · E⃗ext(t)

(
1 +

2αNP (ω)

|r⃗ |3
)
. (27)

Given these premises, the excited state molecular population plotted in Fig.4 main text

can be inferred by means of time-dependent perturbation theory, where the second (time-

dependent) term of the r.h.s of eq.27 is the actual perturbation V̂ (t). First-order time-
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dependent perturbation theory leads to the usual expression for excited state coefficients,18

namely

C
′
e,SC(t) = −i

∫ t

−∞
⟨e| V̂ (t) |g⟩ eiωetdt

= i

∫ t

−∞
⟨e| µ̂ |g⟩ · E⃗ext(t)

(
1 +

2|µ⃗p|2
(ωp − ω − iΓp)|r⃗ |3

+
2|µ⃗p|2

(ωp + ω + iΓp)|r⃗ |3
)
eiωetdt

(28)

where ωe is the excitation frequency of the considered molecular transition.

Assuming then the external driving is a monochromatic oscillating perturbation in resonance

with the plasmon frequency and oriented along the transition dipoles (Fig.S1), that is

E⃗ext(ωp) = r̂E0
(eiωpt + e−iωpt)

2
(29)

we end up with

C
′
e,SC(t) = i

E0|µ⃗e|
2

(
1 +

2|µ⃗p|2
(−iΓp)|r⃗ |3

+
2|µ⃗p|2

(2ωp + iΓp)|r⃗ |3
)∫ t

−∞
ei(ωe−ωp)t + ei(ωe+ωp)tdt (30)

where |µ⃗e| is the molecular transition dipole associated to the transition between the ground

and the first excited state (|g⟩ → |e⟩). SolvingI the integral of eq.30 and rearranging some

terms results in

C
′
e,SC(t) =

E0|µ⃗e|
2

(
1 +

i2|µ⃗p|2
Γp|r⃗ |3

+
2|µ⃗p|2(2ωp − iΓp)

(4ω2
p + Γ2

p)|r⃗ |3
)
·
(
ei(ωe−ωp)t

ωe − ωp

+
ei(ωe+ωp)t

ωe + ωp

)

=
E0|µ⃗e|

2

(
1 +

i2|µ⃗p|2
Γp|r⃗ |3

+
2|µ⃗p|2(2ωp − iΓp)

(4ω2
p + Γ2

p)|r⃗ |3
)
·
(
eiδt

δ
+
ei(2ωp+δ)t

2ωp + δ

) (31)

where δ = ωe − ωp, which is the frequency detuning between the molecular and plasmon

frequencies, has been introduced for convenience.

ITo be formally correct one should consider a slowly switching perturbation as limϵ→0 e
ϵtV̂ (t) which

basically enable us to set the value of the integral at the lower limit to zero. This has been implicitly done
passing from eq.30 to eq.31

13



Finally, taking the squared modulus of eq.31 leads to the 1st-order expression of the molecular

excited state population, that is

|C ′
e,SC(t)|2 =

E2
0 |µ⃗e|2
4

(
1 +

16|µ⃗p|4ω2
p

(4ω2
p + Γ2

p)
2|r⃗ |6 +

8|µ⃗p|2ωp

(4ω2
p + Γ2

p)|r⃗ |3
+

4|µ⃗p|4
Γ2
p|r⃗ |6

+
4|µ⃗p|4Γ2

p

(4ω2
p + Γ2

p)
2|r⃗ |6

− 8|µ⃗p|4
(4ω2

p + Γ2
p)|r⃗ |6

)
·
(

1

δ2
+

1

(2ωp + δ)2
+ 2Re

{ e−i2ωpt

(2ωp + δ)δ

})

(32)

which simplifies to

|C ′
e,SC(t)|2 =

E2
0 |µ⃗e|2
4

(
1 +

4|µ⃗p|4
Γ2
p|r⃗ |6

− 4|µ⃗p|4
(4ω2

p + Γ2
p)|r⃗ |6

+
8|µ⃗p|2ωp

(4ω2
p + Γ2

p)|r⃗ |3
)
·

(
1

δ2
+

1

(2ωp + δ)2
+ 2Re

{ e−i2ωpt

(2ωp + δ)δ

})
.

(33)

Eq.33 is the main result of the SC derivation that is compared in the following to the

analogous quantity obtained from the FQ model (SI 3.2, below).

3.2 full-quantum picture in the weak-coupling limit

In the FQ model, the Hamiltonian of interest is

ĤFQ(t) = Ĥ0,FQ − ⃗̂µ · E⃗ext(t) (34)

and Ĥ0,FQ (SI 1.2) in the single-mode case reads

Ĥ0,FQ = ωeσ
†σ + ωpb

†
pbp + gp(b

†
pσ + bpσ

†). (35)

As explained in SI 1.2, the molecule-NP interaction in the FQ picture enters directly into the

0th order time-independent Hamiltonian, and the remaining time-dependent perturbation is

just the interaction with the external field.

Diagonalization of eq.35 in the 1-excitation states manifold leads to the usual expression of
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plexcitonic wavefunctions

|LP ⟩ = |e, 0⟩CLP
e + |g, 1⟩CLP

p

|UP ⟩ = |e, 0⟩CUP
e + |g, 1⟩CUP

p .

(36)

The first-order wavefunction upon interaction with the external field can be expressed as18

|ψ′
FQ(t)⟩ = C

′
g(t) |g, 0⟩ e−iωgt + C

′
LP (t) |LP ⟩ e−iωLP t + C

′
UP (t) |UP ⟩ e−iωUP t (37)

and since the focus of the present derivation is to obtain an analytical expression for the

molecular excited state population so as to compare with the SC analogue (eq.33), we have

C
′
e,FQ(t) = ⟨e, 0|ψ′

FQ(t)⟩ = C
′
LP (t)C

LP
e |LP ⟩ e−iωLP t + C

′
UP (t)C

UP
e |UP ⟩ e−iωUP t. (38)

Time-dependent pertubation theory can be again used to obtain an expression for first-order

coefficients, namely

C
′
UP (t) = i

E0

2

∫ t

−∞
⟨UP | µ̂ |g, 0⟩ · r̂

(
ei(ωUP−ωp)t + ei(ωUP+ωp)t

)
dt

C
′
LP (t) = i

E0

2

∫ t

−∞
⟨LP | µ̂ |g, 0⟩ · r̂

(
ei(ωLP−ωp)t + ei(ωLP+ωp)t

)
dt

(39)

where the same monochromatic field as in the semi-classical case (eq.29) has been used.

Given the relations of eqs.36,39 and considering that the electric field direction (r̂) is aligned

with both the molecular and plasmonic transition dipoles, substitution of eq.39 into eq.38

upon solving the integrals leads to

C
′
e,FQ(t) =

E0

2

(∣∣CUP
e

∣∣2 |µ⃗e|+ CUP
e

(
CUP

p

)∗ |µ⃗p|
)( e−iωpt

ωUP − ωp

+
eiωpt

ωUP + ωp

)
+

E0

2

(∣∣CLP
e

∣∣2 |µ⃗e|+ CLP
e

(
CLP

p

)∗ |µ⃗p|
)( e−iωpt

ωLP − ωp

+
eiωpt

ωLP + ωp

)
.

(40)

Eq.40 can be further manipulated to obtain an expression more similar to the SC analogue.
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Indeed, since we are in the weak-coupling limit (with δ = ωe−ωp > 0) time-independent per-

turbation theory can be used to obtain an approximate quantitative expressions for C
UP/LP
e

and ωUP/LP , resulting in18

ωUP ≈ ωe +
g2

δ̃

ωLP ≈ ωp −
g2

δ̃

|UP ⟩ =
(
|e, 0⟩ − |g|

δ̃∗
|g, 1⟩

)
N

|LP ⟩ =
(
|g, 1⟩+ |g|

δ̃
|e, 0⟩

)
N

N =
1√

1 + g2

δ2+Γ2
p

(41)

where we have phenomenologically introduced ωp = ωp− iΓp and so δ̃ = δ+ iΓp to explicitly

recover the damping rate of the plasmon mode in the FQ model, which also appears in the

SC expression of eq.33. Besides, to ease the notation we set gp = g (which is also real), and

given that the molecule-NP distance is large enough to ensure that only dipolar interactions

are relevant, the coupling g can be explicitly expressed as

|g| = 2|µ⃗p||µ⃗e|
|r⃗ |3 (42)

which is the dipolar coupling between two aligned dipoles. Since the two dipoles point in the

same direction, g < 0, and so the upper state |UP ⟩ of eq.41 features the minus combination.

Plugging the results of eq.41 into eq.40 leads to

C
′
e,FQ(t) =

E0

2
N

(
|µ⃗e| −

|g|
δ̃
|µ⃗p|
)(

e−iωpt

δ + g2

δ+iΓp

+
eiωpt

2ωp + δ + g2

δ+iΓp

)
+

E0

2
N

(
g2

δ2 + Γ2
p

|µ⃗e|+
|g|
δ̃
|µ⃗p|
)(

e−iωpt

−iΓp − g2

δ+iΓp

+
eiωpt

2ωp − iΓp − g2

δ+iΓp

)
.

(43)

The expression of eq.43 can be further simplified considering that in the weak-coupling limit

16



we are dealing with, both conditions g << δ and g << Γp are satisfied, which implies that

2nd-order terms like g2

δ2+Γ2
p
≈ 0 can be safely neglected and N ≈ 1. It also follows that

δ + g2

δ+iΓp
≈ δ and −iΓp − g2

δ+iΓp
≈ −iΓp apply too, thus resulting in

C
′
e,FQ(t) =

E0

2

[(
|µ⃗e| −

g

δ̃
|µ⃗p|
)(

e−iωpt

δ
+

eiωpt

2ωp + δ

)
+
g

δ̃
|µ⃗p|

(
e−iωpt

−iΓp

+
eiωpt

2ωp − iΓp

)]
. (44)

Substituting the expressions of eqs.41-42 into eq.44 and grouping the corresponding rotating

(∝ e−iωpt) and counter-rotating field terms (∝ eiωpt), we end up with

C
′
e,FQ(t) =

E0

2

[( |µ⃗e|
δ

− 2|µ⃗p|2|µ⃗e|(δ − iΓp)

|r⃗ |3(δ2 + Γ2
p)δ

+
i2|µ⃗p|2|µ⃗e|(δ − iΓp)

|r⃗ |3(δ2 + Γ2
p)Γp

)
e−iωpt+

(
|µ⃗e|

2ωp + δ
− 2|µ⃗p|2|µ⃗e|

|r⃗ |3δ̃(2ωp + δ)
+

2|µ⃗p|2|µ⃗e|
|r⃗ |3δ̃(2ωp − iΓp)

)
eiωpt

] (45)

which after some simple algebraic manipulation leads to

C
′
e,FQ(t) =

E0|µ⃗e|
2

[(
1 +

2i|µ⃗p|2
|r⃗ |3Γp

)
e−iωpt

δ
+

(
1 +

2|µ⃗p|2
|r⃗ |3(2ωp − iΓp)

)
eiωpt

2ωp + δ

]
. (46)

Taking the squared modulus of eq.46 results in an expression for the molecular excited state

population in the FQ picture, that is

|C ′
e,FQ(t)|2 =

E2
0 |µ⃗e|2
4

[(
1 +

4|µ⃗p|4
|r⃗ |6Γ2

p

)
1

δ2
+

(
1 +

4|µ⃗p|4
|r⃗ |6(4ω2

p + Γ2
p)

+
8|µ⃗p|2ωp

|r⃗ |3(4ω2
p + Γ2

p)

)
·

1

(2ωp + δ)2
+ 2Re

{
e−i2ωpt

(2ωp + δ)δ

(
1 +

2i|µ⃗p|2
|r⃗ |3Γp

+
2|µ⃗p|2

|r⃗ |3(2ωp + iΓp)
+

4i|µ⃗p|4
|r⃗ |6Γp(2ωp + iΓp)

)}]
.

(47)

The most dominant terms of the SC and FQ expressions (eqs. 33 and 47, respectively) are

those originating from the rotating-wave terms of the incoming field, that is those terms that

stem from the field component ∝ e−iωpt. Therefore, retaining only those in the corresponding
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expressions finally brings us to

|C ′
e,SC(t)|2 ≈

E2
0 |µ⃗e|2
4

(
1 +

4|µ⃗p|4
Γ2
p|r⃗ |6

− 4|µ⃗p|4
(4ω2

p + Γ2
p)|r⃗ |6

+
8|µ⃗p|2ωp

(4ω2
p + Γ2

p)|r⃗ |3
)

1

δ2

|C ′
e,FQ(t)|2 ≈

E2
0 |µ⃗e|2
4

(
1 +

4|µ⃗p|4
Γ2
p|r⃗ |6

)
1

δ2

(48)

which clearly shows that the small-yet-non-null discrepancy observed in the results of Fig.3

(main text) can be traced back to the anti-resonant term of the polarizability (eq.25) which

is responsible for the additional terms of |C ′
e,SC(t)|2 that are absent in |C ′

e,FQ(t)|2 in eq.48.

3.3 Comparison of SC and FQ models under resonance condition

In Fig.4 (main text) it is shown that when the molecular and plasmonic transitions are

resonant (δ = 0) the FQ and SC molecular excited state population profiles are always

perfectly superimposed regardless of the absolute value of ωp, which is something that can

not be easily understood by looking at the expressions of eq.48 derived above, since both

diverge in this limit. This feature can be actually rationalized considering a more general

model still rooted in time-dependent perturbation theory.

In the FQ picture, the full system Hamiltonian in general terms reads

Ĥtot = Ĥ + V̂ (t) (49)

where Ĥ is the molecule-plasmon Hamiltonian and V̂ (t) = V̂ e−iωt + V̂ †eiωt is a monochro-

matic oscillatory perturbation of frequency ω. The shape of V̂ (t) guarantees that Ĥtot is

hermitian.19 Starting from eq.49 and considering the ground state |g⟩ and two molecular

and plasmon excited states |e⟩ , |p⟩, the full system wavefunction at time t can be repre-

sented as |ψ(t)⟩ = Cg(t) |g⟩ + Ce(t) |e⟩ + Cp(t) |p⟩ and usual time-dependent perturbation
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theory leads to the following expressions for excited state coefficients,

iĊe = ωeCe +HepCp +
(
Vege

−iωt + V ∗
gee

iωt
)

iĊp = ωpCp +HpeCe +
(
Vpge

−iωt + V ∗
gpe

iωt
) (50)

where the shorthand notation ⟨e| Ĥ |e⟩ = ωe and ⟨e| Ĥ |p⟩ = Hep has been introduced for

convenience.

Given that the monochromatic perturbation has two separate resonant (∝ e−iωt) and anti-

resonant (∝ eiωt) terms, the molecular and plasmon coefficients can be partitioned accord-

ingly as

Ce(t) = Ce+e
−iωt + Ce−e

iωt

Cp(t) = Cp+e
−iωt + Cp−e

iωt

(51)

with Ce+ (Ce−) representing the resonant (anti-resonant) contribution to the molecular time-

dependent excited state coefficient Ce(t). The same goes for Cp(t).

Upon differentiation of eqs.51 and substitution into eqs.50, the following relations arise after

collecting resonant and anti-resonant terms,

Ce+ = −HepCp+ + Veg
ωe − ω

Ce− = −HepCp− + V ∗
ge

ωe + ω

Cp+ = −HpeCe+ + Vpg
ωp − ω

Cp− = −HpeCe− + V ∗
gp

ωp + ω

(52)

which interestingly show that resonant and anti-resonant molecular and plasmonic terms

do not mix in the FQ model. In other words, the resonant response of the plasmonic

system solely determines the resonant response of the molecule and the same goes for the

anti-resonant contribution. Eqs.52 can be made more explicit by recognizing that in the
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investigated case, where the molecular system is very far from the metallic surface, the

coupling matrix element Hep can be expressed in terms of plasmonic and molecular transition

dipoles (eq.42, SI 3.2), here renamed as µtr
p = ⟨g| µ̂ |p⟩ , µtr

e = ⟨g| µ̂ |e⟩, thus resulting in

Ce+ = −Ap+ + Veg
ωe − ω

, Ap+ =
µtr
e µ

tr
p Cp+

r3

Ce− = −Ap− + V ∗
ge

ωe + ω
, Ap− =

µtr
e µ

tr
p Cp−

r3

Cp+ = −Ae+ + Vpg
ωp − ω

, Ae+ =
µtr
p µ

tr
e Ce+

r3

Cp− = −Ae− + V ∗
gp

ωp + ω
, Ae− =

µtr
p µ

tr
e Ce−

r3
.

(53)

The quantity that is analyzed in Fig.4 (main text), is the molecular excited state popu-

lation upon driving the system with a field resonant with the plasmon frequency (ω = ωp),

which can be computed by taking the squared modulus of the molecular coefficient Ce(t) of

eq.51. Given the expressions of eq.53 and that excitation is resonant with ω = ωp, Ce+, which

depends on the resonant plasmonic term Cp+, always dominate, even when the molecular

and plasmonic transitions are not resonant i.e. δ = ωe − ωp ̸= 0, and so the anti-resonant

terms Ce−, Cp− are always negligible.

On the other hand, in the SC picture the molecule is still described at quantum-mechanical

level but the plasmonic object is classical. In this case the corresponding equations of motion

for the molecular and plasmonic systems become20

iĊe = ωeCe +
µpµ

tr
e

r3
+
(
Vege

−iωt + V ∗
gee

iωt
)

µ̈p + µpω
2
p = K

(µe

r3
+
(
V e−iωt + V ∗eiωt

)) (54)

where µp and µe correspond in the FQ picture to the oscillating first-order plasmonic and

molecular contributions to the expectation value of the dipole operator upon driving the

20



coupled system, namely

µp =
[
µtr
p Cp+ + (µtr

p )
∗C∗

p−
]
e−iωt +

[
µtr
p Cp− + (µtr

p )
∗C∗

p+

]
eiωt = µp+e

−iωt + µp−e
iωt

µe =
[
µtr
e Ce+ + (µtr

e )
∗C∗

e−
]
e−iωt +

[
µtr
e Ce− + (µtr

e )
∗C∗

e+

]
eiωt = µe+e

−iωt + µe−e
iωt.

(55)

Therefore, µpµtr
e

r3
of eq.54 represents the interaction of the molecular quantum system |e⟩ due

to the classical scattered field of the plasmonic dipole µp whose equation of motion is that

typical of an harmonic oscillator20 driven by the external drive and by the nearby oscillating

molecular dipole. The latter term is proportional to µe

r3
and is nothing but the scattered field

of dipole µe at the nanoparticle position. K is a numerical factor representing the squared

plasma frequency entering into the definition of the metal dielectric function (see ref.20 for

more details on the classical equation of motion).

Starting from eq.54 and by applying the same partitioning strategy of eq.51 to both Ce(t)

and µp the following expressions come up

Ce+ = −Ap+ + Veg
ωe − ω

, Ap+ =
µtr
e µp+

r3

Ce− = −Ap− + V ∗
ge

ωe + ω
, Ap− =

µtr
e µp−
r3

µp+ = (Ae+ + V )
K

2ωp

(
1

ωp − ω
+

1

ωp + ω

)
, Ae+ =

µe+

r3

µp− = (Ae− + V ∗)
K

2ωp

(
1

ωp − ω
+

1

ωp + ω

)
, Ae− =

µe−
r3

(56)

with µe+ and µe− defined according to eq.55.

Interestingly, by comparing eqs.53,56 it can be observed that in the FQ model, Ce+, which

represents the most dominant contribution to the molecular excited state population upon

driving, solely depends on Cp+ which is ∝ (ωp−ω)−1, whereas in the SC picture Ce+ depends

on µp+ that is ∝ (ωp − ω)−1 + (ωp + ω)−1. Recalling that external excitation is always

resonant with the plasmonic system (ω = ωp), it can be observed that under resonance

condition (δ = 0 and so ω = ωe = ωp) the most dominant contribution to Ce+ (and so
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Ce), is numerically equally described by both models since it originates from the component

∝ (ωe −ω)−1(ωp −ω)−1 that is present in both cases, thus justifying why FQ and SC curves

of Fig.4 (main text) under resonance conditions are always superimposed. In other words,

in this limit both models treat in the same way the most dominant contribution to the

molecular excited state population, which comes from the resonant terms, thus leading to

identical results.

On the other hand, when the plasmonic and molecular systems are not in resonance (δ ̸=

0) also the term ∝ (ωp + ω)−1 contributing to Ce+ in the SC model and absent in the

corresponding FQ expression plays a small-yet-observable role, as shown in Fig. 4 (main text).

Besides, under this condition also Ce− can be significant and this term enters differently in

the two cases. More specifically, in the FQ model (eqs.53) this contribution only depends

on the anti-resonant plasmonic response that is proportional to ∝ (ωp + ω)−1, whereas in

the SC picture (eqs.56) Ce− depends on µp− that in turn has two contributions respectively

proportional to ∝ (ωp − ω)−1 and ∝ (ωp + ω)−1. The first of these two terms, which is absent

in the corresponding FQ expression, is numerically non-negligible because external driving is

always resonant with the plasmon frequency, thus constituting an additional plausible source

of discrepancy when δ ̸= 0.

4 Scaling NP plasmonic quantities

In the case of a plasmonic NP described by a Drude-Lorentz (DL) dielectric function model,

the NP quantization scheme that has been detailed previously6 leads to the following ex-

pressions for plasmon mode frequencies ωp and corresponding quantize surface charges qpj,

ω2
p = ω2

0 +

(
1 +

λp
2π

)
Ω2

plasma

2

qpj ∝
√
ω2
p − ω2

0

2ωp

(57)
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where λp is the pth eigenvalue of the NP-PCM diagonalized response function,6 ω0 is the

frequency of DL bound oscillator and Ωplasma is the metal plasma frequency, as defined in

eq.2 (SI 1.1).

Starting from eq.57 it can be shown that for a given λp the corresponding plasmon frequency

ωp can be scaled n-times, with n being a positive integer, while keeping the value of qpj

constant if ω0 and Ωplasma are respectively multiplied by two real numbers a and b, such that

a2 =

(
ω2
p

ω2
0

(n− 1) + 1

)
n

b2 = n .

(58)

Indeed, upon substituting ω0 → aω0 and Ωplasma → √
nΩplasma in eq.57 with a,b satisfying

the conditions of eq.58 it follows that

a2ω2
0 +

(
1 +

λp
2π

)
b2Ω2

plasma

2
= n2ω2

p

qpj ∝
√
ω2
p − ω2

0

2ωp

=

√
n2ω2

p − a2ω2
0

2nωp

(59)

where the last equality can be easily proved to be true using the relations of eq.58.

Eq.59 shows that with such a,b scaling parameters the plasmon mode frequency is scaled

n-times while the corresponding quantized charge does not vary, thus enabling us to per-

form multiple simulations (Fig.4, main text) where the absolute value of ωp is progressively

increased while keeping all the other plasmonic quantities of eq.48 fixed.
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