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ABSTRACT
The present work deals with some recent developments regarding the inclusion of the Large-Eddy Simulation (LES) in the weakly compress-
ible Smoothed Particle Hydrodynamics (SPH) framework. Previously {see the work of Di Mascio et al. [Phys. Fluids 29, 4 (2017)]}, this goal
was achieved by applying a Lagrangian filter to the Navier–Stokes equations for compressible fluids and, then, approximating the differential
operators in a SPH fashion. Since the Lagrangian nature of the derived scheme turned out to be an obstacle for accurate simulations of high
Reynolds number problems, the above approach is here modified to obtain a quasi-Lagrangian LES-SPH model. This relies on the addition
of a small velocity deviation to the actual Lagrangian velocity based on the particle shifting technique and on the inclusion of the tensile
instability control technique for eliminating the onset of the tensile instability in the fluid regions characterized by large vorticity and negative
pressure. The proposed model is successfully tested in both two-dimensional and three-dimensional frameworks by simulating the evolution
of freely decaying turbulence problems and comparing the outputs with the available theoretical results and solutions from other numerical
models.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0034568., s

I. INTRODUCTION

In the past years, an increasing number of studies have been
dedicated to the extension of the Smoothed Particle Hydrodynamics
(SPH) to the modeling of turbulent flows (see the works of Lo and
Shao,1 Dalrymple and Rogers,2 Price,3 and Mayrhofer et al.4). This
is a fundamental step for the development of a numerical method
that aims at simulating engineering applications but, at the same
time, it represents a great challenge in terms of both theoretical and
numerical issues.

About the former aspect, the most straightforward approach to
turbulence in the SPH framework seems to be the one at the basis
of the Large-Eddy Simulations (LESs). In fact, this method relies
on a filtering of the Navier–Stokes equations that resemble the one

adopted for the derivation of the smoothed differential operators
of the SPH. This resemblance was first noted by Bicknell5 where
the development of a LES model in the SPH framework was high-
lighted as a fundamental step forward for the SPH scheme. A prelim-
inary effort in such a direction was made in the work of Di Mascio
et al.6 where a consistent Lagrangian LES-SPH scheme was pro-
posed. This was obtained by applying a Lagrangian filter to the
Navier–Stokes equations for compressible fluids and, then, approxi-
mating the differential operators in a SPH fashion. The model struc-
ture was similar to a general weakly compressible SPH scheme, apart
from the presence of additional terms in both the continuity and
momentum equations coming from the LES filtering procedure.

The model proposed by Di Mascio et al.,6 named δLES-SPH,
performs well for moderate Reynolds number flows but, for larger
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values, it exhibits some drawbacks in those regions characterized by
strong vorticity and negative values of the pressure field. In fact, the
negative pressure leads to the onset of the so-called tensile instability
(see the work of Swegle et al.7), i.e., to the generation of large spuri-
ous voids in the fluid domain. In weakly compressible SPH schemes,
this problem is usually avoided by adding a background pressure
(BP) in the state equation to guarantee that the pressure field is pos-
itive everywhere. Unfortunately, in large Reynolds number flows,
the background pressure induces a non-physical particle resettle-
ment and a consequent generation of spurious high-frequency noise.
The latter heavily affects the kinetic energy spectrum, causing a sub-
stantial deviation from the theoretical rate of dissipation in freely
decaying turbulence simulations.

The aim of the present work is, therefore, to propose an
improved δLES-SPH model that is able to simulate high Reynolds
number flows without the onset of tensile instability and the use
of the background pressure. This is achieved in two steps. The
first step relies on the definition of a quasi-Lagrangian large-eddy-
simulation model (which extends the approach of Di Mascio et al.6)
where a small velocity deviation is added to the actual fluid veloc-
ity. This strategy allows us to cast the LES in the framework of
the most advanced SPH schemes, which rely on a quasi-Lagrangian
motion of the fluid particles (see the works of Xu et al. 8 and Nestor
et al.9). The second step is achieved by rearranging the LES equations
in the SPH formalism. In particular, the velocity deviation is mod-
eled through the Particle Shifting Technique (PST), similar to the
δplus-SPH scheme derived by Sun et al.10 This, along with the use
of Tensile Instability Control (TIC) described by Sun et al., 11 allows
for the definition of a stable and robust numerical scheme, which is
suited to the simulations of high Reynolds number flows typical of
the LES approach.

In the proposed δLES-SPH scheme, the presence of the velocity
deviation with respect to the actual fluid velocity leads to the appear-
ance of additional terms in the continuity and momentum equa-
tions that need proper turbulence closures. Specifically, the term in
the momentum equation is represented through a classical LES clo-
sure, while that in the continuity equation is here modeled through
the diffusive term of the δ-SPH scheme (see the work of Antuono
et al.12).

This paper is organized as follows: Sec. I introduces the the-
oretical framework of the quasi-Lagrangian LES-SPH model and
the closures adopted for the additional terms, Sec. III describes the
derivation of the proposed δLES-SPH numerical scheme from the
theoretical model, and, finally, Sec. IV displays the applications.
Specifically, the proposed model is tested in both 2D and 3D frame-
works by considering the evolution of a fluid at rest, which is initially
put into motion by an external body force and, then, left free to
evolve, generating freely decaying turbulence. The forcing term used
in the above problem mimics the formation of the vortex patches of
the Taylor solution (see the work of Taylor13). The results obtained
with the proposed model are compared with the solutions obtained
through a mesh-based finite volume method.

II. QUASI-LAGRANGIAN LES-SPH SCHEME
In this section, we describe the derivation of the quasi-

Lagrangian LES-SPH model. Let us consider the following

Navier–Stokes equations for a barotropic weakly compressible New-
tonian fluid:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρt +∇ ⋅ (ρu) = 0,

ut + (u ⋅ ∇)u = −∇p
ρ

+ νΔu + (λ′ + ν)∇(∇ ⋅ u),

p = F(ρ),

(1)

where u is the flow velocity, p and ρ denote the pressure and density
fields, respectively, and F represents the state equation. The hypothe-
sis that the fluid is weakly compressible corresponds to the following
requirement:

dp
dρ
= c2 ≫ max(∥u∥2,

δp
ρ
), (2)

where δp indicates the variation of the pressure field and c = c(ρ)
is the sound speed (see the works of Monaghan 14 and Marrone
et al.15). The viscosity coefficients ν and λ′ indicate the ratios
between the Lamé constants μ and λ and the density ρ. Since the
fluid is weakly compressible, ν and λ′ are assumed constant.

Now, let us define a generic filter in R3 ×R as follows:

ϕ = ϕ(x̃p(t) − y, t − τ). (3)

The above filter is supposed to have a compact support to depend
only on ∥x̃p(t) − y∥ and |t − τ| and to be an even function with
respect to both arguments. Here, x̃p(t) indicates the position of a
quasi-Lagrangian point that moves in the fluid domain according to
the following equation:

dx̃p

dt
= ũ(x̃p(t), t) + δũ(x̃p(t), t), (4)

where δũ is a (small) arbitrary velocity deviation (to be specified
later), while ũ is given by the following definition:

ũ(x̃p(t), t) = ∫
R3 ∫

+∞

−∞
ϕ(x̃p(t) − y, t − τ)u(y, τ)dτdVy. (5)

Hereinafter, we refer to x̃p and ũ as the filtered position and velocity,
respectively. Accordingly, the main idea is to rewrite system (2) in
terms of the filtered quantities and obtain a quasi-Lagrangian LES
scheme. With respect to this point, we observe that, since the state
equation is generally nonlinear, F̃(ρ) is different from F(ρ̃) and,
consequently, the filtering procedure cannot be applied to both pres-
sure and density. To avoid inconsistency, when we refer to filtered
pressure, we mean

p̃ = F(ρ̃). (6)

Under this hypothesis, we apply the filter in (3) to the Navier–
Stokes equations for weakly compressible flows and, integrating over
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R3 ×R, we obtain (see Appendix A for details)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ̃
dt
= −ρ̃∇ ⋅ (ũ + δũ) +∇ ⋅ (ρ̃ũ − ρ̃u) +∇ ⋅ (ρ̃δũ),

dũ
dt
= −∇p̃

ρ̃
+ νΔũ + (λ′ + ν)∇(∇ ⋅ ũ) − ∇[G̃(ρ) −G(ρ̃)] +∇ ⋅ Tℓ

+ ũ∇ ⋅ u +∇ ⋅ (ũ⊗ δũ) − ũ(∇ ⋅ δũ),
dx̃p

dt
= ũ + δũ, p̃ = F(ρ̃), G(ρ) = ∫

ρ 1
s

dF
ds

ds,

(7)

where the total time derivatives d/dt are obtained with respect to the
velocity ũ + δũ. The tensor Tℓ is given by

Tℓ = ũ⊗ ũ − ũ⊗ u

and is equivalent to the sub-grid stress tensor.
Following the derivation shown by Di Mascio et al.,6 we now

rearrange system (7) in the framework of the Smoothed Particle
Hydrodynamics (SPH) scheme. In particular, we highlight that the
latter scheme is based on a smoothing procedure that somehow
recalls the one used to obtain the Lagrangian LES. The main dif-
ferences between these filtering procedures are that SPH approaches
adopt a filter (“kernel” in the SPH terminology) that depends only on
the spatial variables (x̃p − y); furthermore, the smoothing procedure
is not applied to the Navier–Stokes equations, but to the differential
operators, that are replaced by their smoothed counterpart (see the
work of Colagrossi et al.16,17). It is possible, nevertheless, to reinter-
pret the Lagrangian LES through the SPH approach. To this purpose,
we split the filter ϕ into

ϕ(x̃p(t) − y, t − τ) =W(x̃p(t) − y)θ(t − τ), (8)

where W indicates the SPH kernel. In SPH notation, the smoothing
procedure of a generic scalar field f is indicated as

⟨ f ⟩(x̃p(t), t) = ∫
R3

W(x̃p(t) − y)f (y, t)dVy. (9)

Here, a time filtering alone is introduced by the symbol

f (y, t) = ∫
R
θ(t − τ)f (y, τ)dτ. (10)

Using the above definitions, it is easy to prove that f̃ = ⟨ f ⟩ and that,
generally, the time and space filters do not commute, i.e., ⟨ f ⟩ ≠ ⟨ f ⟩
[see the work of Di Mascio et al.6]. Since the time filter is the
inner one, the overall LES-SPH scheme may be regarded as a spa-
tial Lagrangian filter applied to a set of time-averaged variables. In
this sense, the time filter may be thought as an implicit filter whose
presence is accounted for through the modeling of the additional
terms. We stress here that the dependence on the time of the filter ϕ
is fundamental for the derivation of the model (see Appendix A for
details). Furthermore, it is conceptually well-posed, since turbulence
is characterized by both time and space fluctuations.

Now, suppose that we want to model a high Reynolds number
flow for which LES filtering is required. Then, we need the filtered
variables ũ, p̃, ρ̃ for each fluid particle at positions x̃p; at the same
time, we want to approximate the operators in Eq. (7) in the SPH

fashion. Using the above definitions and the fact that the spatial filter
and the gradient commute, we can rearrange the gradient of f̃ as
follows:

∇f̃ = ⟨∇ ⋅ f ⟩ = ⟨∇(f + f̃ − f̃ )⟩ = ⟨∇f̃ ⟩ + ⟨∇(f − f̃ )⟩, (11)

where the first term in the right-hand side is the SPH operator,
while the latter term accounts for small scale “fluctuations” in space,
hereinafter denoted through f ′ = f − f̃ . For confined flows, the non-
commutability of filtering and differentiation must be taken into
account for a rigorous extension of the filtering close to the bound-
aries (i.e., in those points whose distance from the boundaries is
smaller than the kernel radius). The above procedure can be applied
to all the remaining operators. By doing so, in SPH formalism,
system (7) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ̃
dt
= −ρ̃⟨∇ ⋅ (ũ + δũ)⟩ + ⟨∇ ⋅ (ρ̃δũ)⟩ + C1 + C2 + C3,

dũ
dt
= −⟨∇p̃⟩

ρ̃
+ ν⟨Δũ⟩ + (λ′ + ν)⟨∇(∇ ⋅ ũ)⟩

+ ⟨∇ ⋅ (ũ⊗ δũ)⟩ − ũ⟨∇ ⋅ δũ⟩ + M1 + M2 + M3,
dx̃p

dt
= ũ + δũ, p̃ = F(ρ̃),

(12)

where
C1 = −ρ̃⟨∇ ⋅ u′⟩, C2 = ∇ ⋅ (ρ̃ũ − ρ̃u), (13)

C3 = −ρ̃∇ ⋅ (δũ − ⟨δũ⟩) +∇ ⋅ (ρ̃δũ − ⟨ ρ̃δũ⟩), (14)

M1 = −
⟨∇p′⟩
ρ̃

+ ν⟨Δu′⟩ + (λ′ + ν)⟨∇(∇ ⋅ u′)⟩, (15)

M2 = −∇[G̃(ρ) −G(ρ̃)] + ũ∇ ⋅ u +∇ ⋅ Tℓ, (16)

M3 = ∇ ⋅ (ũ⊗ δũ − ⟨ ũ⊗ δũ⟩) − ũ∇ ⋅ (δũ − ⟨δũ⟩). (17)

Here, C1 and M1 come from the SPH approximation procedure and
require a SPH closure, whereas C2 and M2 include all terms from
the Lagrangian LES and require a LES closure. Incidentally, we note
that the term C2 is not present in LES models for compressible flows
where Favre-filtered variables are adopted (see the work of Moin
et al.18). Finally, C3 and M3 come from the use of the generic devi-
ation velocity δũ and are new terms in comparison to the model
defined by Di Mascio et al.6

Incidentally, we highlight that system (12) shows close similar-
ities with the ALE (Arbitrary Lagrangian–Eulerian) models (see the
work of Oger et al.19). As described by Antuono et al.,20 the same
peculiarities are shared by a class of SPH models based on the use of
the shifting algorithm.

A. Closures
Here, we propose some possible closures for the terms C1, C2,

and C3 in the continuity equation and for the terms M1, M2, and
M3 in the momentum equation.

First, assuming that the filtering procedure is performed far
from the boundary of the fluid domain and using the symmetry
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properties of the kernels W and θ, we derive the following relations
(see the work of Di Mascio et al.6):

⟨ f ⟩ = f + σ2Δf + O(σ4), f = f + T2 ∂
2f

∂t2 + O(T4), (18)

where the length and time scales σ and t only depend on the kernels
W and θ and are defined as follows:

∫
R3
(y − x) ⊗ (y − x)W(x − y)dVy = 2σ2𝟙,

∫
∞

−∞
(t − τ)2θ(t − τ)dτ = 2T2.

Combining the above relations, it immediately follows

f̃ = f + σ2Δf + T2 ∂
2f

∂t2 + O(σ4, σ2T2, T4). (19)

We highlight that the dependence of f̃ on the time scale is inspected
here for the first time, while the work of Di Mascio et al.,6 only the
dependence on the spatial scales was studied. Now, choosing a refer-
ence scale f 0 for the scalar function f and a reference length, x0, and
time, t0, we can rewrite the above expression as

f̃∗ = f∗ + σ2
∗[Δ∗f∗ + (x0

t0
)

2
(T
σ
)

2 ∂2f∗
∂t2∗
] + O(σ4

∗, σ2
∗T2
∗, T4

∗), (20)

where the starred variables indicate dimensionless values (e.g., σ∗
= σ/x0 and t∗ = t/t0). Physically, (x0/t0) = U0, where U0 indicates the
reference fluid velocity. Then, choosing the kernel θ such that σ/t
= c (we recall that c is the sound velocity), we obtain

f̃∗ = f∗ + σ2
∗[Δ∗f∗ + M2

a
∂2f∗
∂t2∗
] + O(σ4

∗, σ2
∗T2
∗, T4

∗), (21)

where Ma = U0/c is the Mach number. Under the hypothesis that the
flow is weakly compressible [see Eq. (2)], we can assume Ma≪ 1 and
simplify Eq. (19) as follows:

f̃∗ = f∗ + σ2
∗Δ
∗f∗ + O(σ4

∗, M2
aσ

2
∗, σ2
∗T2
∗, T4

∗). (22)

Note that the condition Ma≪ 1 leads to t≪ σU0, which implies that
the kernel θ is very narrow. This means that we can generally neglect
the action of the time filter in the terms {Ci,Mi}.

More in depth, if we require that the term O(M2
aσ2
∗) is consis-

tent with the order of approximation of Eq. (21) (which is fourth
order in σ∗), we obtain a specific requirement on the Mach num-
ber, namely, Ma = O(σ∗). From a different point of view (also going
back to dimensional variables), this corresponds to σ = O(Max0) or,
equivalently, to

x0 = O(
σ

Ma
), (23)

where x0 can be regarded as the smallest spatial scale that we
expect to solve in the present model, while shorter lengths are mod-
eled through the LES closures. Taking this into consideration, we
assume Ma = O(σ∗) hereinafter and simplify the expressions for
the additional terms in the continuity and momentum equation
accordingly.

Under the hypotheses described above, the weakly compress-
ibility assumption implies that the gradients of the density field are of
order O(M2

a) = O(σ2
∗). If we additionally require δu0/U0 = O(σ∗),

where δu0 denotes the order of magnitude of the deviation δũ, it
is possible to prove that C∗3 ,M∗

3 = O(σ5
∗) (see Appendix B), and

therefore, they can be neglected.
About C1 and M1, these may be regarded as a sort of defilter-

ing of the leading order SPH operators. In fact, using the expan-
sions in (18) and the assumptions for weakly compressible flows, it
immediately follows

f ′∗ = σ2
∗Δ
∗f∗ + O(σ4

∗) = σ2
∗Δ
∗ f̃∗ + O(σ4

∗, M2
aσ

2
∗, σ2
∗T2
∗, T4

∗). (24)

In the work of Di Mascio et al.,6 these terms were directly included
inside the SPH differential operators as de-filtering contributions of
the main filtered field. In any case, their influence is generally neg-
ligible in comparison with C2 and M2 and, consequently, they are
dropped hereinafter.

Finally, C2 and M2 represent typical terms coming from the
Lagrangian LES-filtering procedure and require specific LES clo-
sures. In particular, M2 is modeled as done by Di Mascio et al.,6

M2 ≃ ∇ ⋅ [−
q2

3
𝟙 − 2

3
νTTr(D̃)𝟙 + 2νTD̃], (25)

where q2 represents the turbulent kinetic energy, νT is the turbulent
kinetic viscosity, and D̃ is the strain-rate tensor, that is, D̃ = (∇ũ
+∇ũT)/2. Similar to the work of Yoshizawa,21 we assume

q2 = 2CYσ2∥D̃∥2, νT = (CSσ)2∥D̃∥, (26)

where ∥D̃∥ is a rescaled Frobenius norm, namely, ∥D̃∥ =
√

2D̃ : D̃.
The dimensionless parameters CY and CS are called the Yoshizawa
and Smagorinsky constants, respectively (see Ref. 21).

For what concerns C2, the closure proposed by Di Mascio et al.6

essentially corresponds to

ρ̃ũ − ρ̃u = νδ∇ρ̃, (27)

where νδ is assumed to be a function of D̃. In agreement with the
usual approaches adopted in the LES framework, this is equivalent
to model C2 as a diffusive term. In the present work, we adopt a clo-
sure that is expected to be more effective on smaller spatial scales. In
particular, this is defined through the difference between the actual
(i.e., Lagrangian) density field and its filtered value as follows:

ρ̃ũ − ρ̃u = νδ∇(
∼̃
ρ − ρ). (28)

Using Eq. (22), we obtain

ρ̃ũ − ρ̃u = σ2νδ∇Δρ̃ + O(σ4) (29)

and, consequently, the following closure for C2:

C2 = σ2∇ ⋅ [νδ∇Δρ̃] + O(σ4). (30)

In the SPH framework, a simple closure for C2 is obtained by
using the diffusive term proposed by Antuono et al.12 for the
δ-SPH scheme, since this contains fourth-order spatial derivatives
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of the density field. In particular, far from the boundary of the fluid
domain, such a term reduces to a bi-Laplacian of the density field
(see Appendix C).

In Sec. III, we introduce the numerical model of the proposed
LES-SPH model and describe the modeling of each additional term
in detail.

III. THE δLES-SPH SCHEME
To write system (7) in the discrete formalism, we rely on the

work of Sun et al.10 where the additional δũ-terms are included in
the SPH framework in a consistent way. Here, the parameter σ is
replaced with ℓ, where the latter represents a reference length for the
spatial filter (to be specified later) and ℓ = O(σ) (to be consistent
with the theoretical framework). In particular, following the work
of Sun et al.10 for the discretization of the differential operators, we
obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ̃i

dt
= −ρ̃i∑

j
[(ũj + δũj) − (ũi + δũi)] ⋅ ∇iWijVj

+∑
j
(ρ̃jδũj + ρ̃iδũi) ⋅ ∇iWijVj +∑

j
δijψji ⋅ ∇iWijVj,

dũi

dt
= − 1

ρ̃i
∑

j
Pij∇iWijVj +

ρ0

ρ̃i
K∑

j
αijπij∇iWijVj

+
ρ0

ρ̃i
∑

j
(ũj ⊗ δũj + ũi ⊗ δũi) ⋅ ∇iWijVj

− ρ0

ρ̃i
ũi ∑

j
(δũj − δũi) ⋅ ∇iWijVj,

dx̃i

dt
= ũi + δũi, p̃i = F(ρ̃i), Vi =

mi

ρ̃i
,

(31)

where mi is the ith particle mass (assumed to be constant) and V i is
its volume, while Wij = W(x̃i − x̃j). Here, Pij represents the argu-
ment of the pressure gradient. Following the work of Sun et al.,11

the Tensile Instability Control (TIC) is added to the present model
to avoid the onset the tensile instability when large negative pres-
sure regions arise in the fluid domain (for example, inside the cores
of strong vortical structures). This corresponds to a switch from the
“plus” formulation (namely, Pij = p̃j + p̃i) to the “minus” form (that
is, Pij = p̃j− p̃i) when the pressure p̃i is negative, namely, Pij = p̃j + ∣p̃i∣.
More details can be found in the work of Sun et al.11 The coefficient
of the viscous term is K = 2(n + 2), where n is the number of spatial
dimensions, while its arguments are

πij =
(ũj − ũi) ⋅ (x̃j − x̃i)
∥x̃j − x̃i∥2 ,

αij =
μ
ρ0

+ 2
νT

i νT
j

νT
i + νT

j
, where νT

i = (CSℓ)2∥D̃i∥.

In 2D, CS is set equal to 0.12, as suggested by Lo and Shao,1 whereas
for 3D problems, it is set equal to 0.18.22 The first contribution in the
expression of αij represents the actual fluid viscosity (see the works
of Monaghan 23 and Colagrossi et al.17), while the latter one is the
LES closure for turbulence. Note that all contributions related to the
fluid compressibility have been neglected, since they are negligible
in comparison to the leading order stress tensor. The symbol ψij is

the argument of the diffusive term in the work of Antuono et al.,12

namely,

ψij = [(ρ̃j − ρ̃i) −
1
2
(⟨∇ρ̃⟩Li + ⟨∇ρ̃⟩Lj ) ⋅ (x̃j − x̃i)]

(x̃j − x̃i)
∥x̃j − x̃i∥2 . (32)

Here, the superscript L indicates that the gradient is evaluated
through the renormalized gradient formula24 as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⟨∇ρ̃⟩Li = ∑
j
(ρ̃j − ρ̃i)Li∇iWijVj,

Li =
⎡⎢⎢⎢⎢⎣
∑

j
(x̃j − x̃i) ⊗∇iWijVj

⎤⎥⎥⎥⎥⎦

−1. (33)

Incidentally, we observe that the right-hand side of the expression
(32) is of order O(σ2) (see the work of Antuono et al.12 for more
details) and, therefore, it is consistent with the closures made in
Sec. II A. As done by Di Mascio et al.6 and by Meringolo et al.,25

the diffusive term is not multiplied by an external parameter, but
the latter is included directly inside the summation and modeled
as a viscous-like coefficient following a standard LES approach. In
particular, we choose

δij = 2
νδi νδj
νδi + νδj

, where νδi = (Cδℓ)2∥D̃i∥ (34)

in which Cδ is a dimensionless constant. This has been set equal to
6 after a tuning analysis in order that the term C2 has approximately
the same order of magnitude of the diffusive term in the δ-SPH
model.

As usually done for weakly compressible fluids, the state equa-
tion is linearized around the reference density ρ0, leading to

p̃i = c2
0(ρ̃i − ρ0), (35)

where c0 = c(ρ0) is a numerical sound speed that satisfies the
following requirement:

Ma =
Uref

c0
≤ 0.1 with Uref = max

⎛
⎝

Umax,
√

δp̃max

ρ0

⎞
⎠

. (36)

Here, Umax and δp̃max indicate the maximum fluid velocity and the
maximum pressure variation expected during the simulation. The
above inequality allows the density variations to be below 1% (see
the work of Monaghan23).

For what concerns the velocity deviation δûi, this is defined
following the work of Sun et al.10 as follows:

δũi = min(∥δûi∥,
Umax

2
) δûi

∥δûi∥
, (37)

where

δûi = −ℓMac0∑
j
[1 + χ( Wij

W(Δx))
n

]∇iWijVj (38)

and Δx is the initial mean particle distance. Here, the constants χ and
n are set equal to 0.2 and 4, respectively. The expression in (37) has
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to be further corrected for particles close to the domain boundaries
to avoid a non-physical particle motion. For further details, refer
to the work of Sun et al.10 Note that, according to Eqs. (36)–(38),
δũ = O(ℓUref ) and, being ℓ = O(σ), we obtain δũ/Uref = O(σ), as
assumed in Sec. II A.

Scheme (31) is integrated in time by using a fourth-order
Runge–Kutta scheme with the Courant–Friedrichs–Lewy number
equal to 1.5 (see the work of Meringolo et al.25 for more details).

IV. APPLICATIONS
In this section, we apply the proposed scheme to the study

of freely decaying turbulence in two and three dimensions. In all
the simulations, we adopt a C2 Wendland kernel, as described
by Wendland.26 Consistent with the constraint in Eq. (36), we
choose Ma = 0.1. Under this hypothesis, the length x0 described
in Eq. (23) is of the same order of the diameter of the spatial ker-
nel. Specifically, x0/D = 1.31 and x0/D = 1.58 in two- and three-
dimensions, respectively, where D is the diameter of the Wendland
kernel.

According to the space dimension, we consider bi- and three-
periodic squared domains containing a fluid, which is initially at rest.
The fluid is then put to motion by applying an external forcing term
during a finite time window. This is realized by multiplying an exter-
nal body force (which changes according to the space dimension) for
the following time ramp:

r(t∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

10t∗ for t∗ ∈ [0, 0.1),
1 for t∗ ∈ [0.1, 0.9),
10(1 − t∗) for t∗ ∈ [0.9, 1),
0 for t∗ ≥ 1,

(39)

where t∗ = tU/L is the dimensionless time. Here, U is the maximum
velocity attained during the forcing stage and L is the length of the
squared domain. After the forcing term turns off (namely, for t∗ > 1),
the flow rapidly becomes unstable and leads to the onset of freely

decaying turbulence. Hereinafter, the Reynolds number is indicated
by Re = UL/ν, where ν is the kinematic viscosity.

Before proceeding, we clarify some fundamental aspects of
the above approach. Basically, the use of external forces to put
into motion a still fluid is motivated by the necessity of a care-
ful inspection of the modeled and resolved kinetic energies in the
numerical scheme. Indeed, the assignment of an initial fluid field
would immediately correspond to an assignment on both the mod-
eled and resolved components of the kinetic energies and, conse-
quently, this would make the analysis of the energy balance of the
model rather difficult. Incidentally, we highlight that in both two and
three dimensions, the adopted external body forces are divergence-
free.

A. Two dimensions
In two dimensions, we consider Re = 104, 105, and 106. The

spatial filter length ℓ is set equal to the initial particle distance, here-
inafter denoted by Δx, and the kernel radius is R = 4Δx. The forcing
term is defined by using the two-dimensional solution described by
Taylor,13 namely,

F2d = r(t∗)A(sin(8πx̃∗) cos(8πỹ∗),− cos(8πx̃∗) sin(8πỹ∗)), (40)

where x̃∗ = x̃/L and A = 1.3U2/L. The time histories of the kinetic
energy at the different Reynolds numbers are reported in the left
panel of Fig. 1, where it is possible to observe the action of the forc-
ing term during the early stages (i.e., for t∗ ≤ 1) and subsequent
free decay for t∗ > 1. The right panel of the same figure displays the
horizontal velocity field at t∗ = 1 for Re = 106, showing that the forc-
ing term defined in (40) induces a pattern of eight vortex cores in
the squared domain. In this latter case, the spatial resolution is
L/Δx = 1200.

Before showing the results of the proposed model, we briefly
describe the reasons that led us to define the present quasi-
Lagrangian LES-SPH scheme. When we use a Lagrangian LES-
SPH model as that described by Di Mascio et al.,6 the simulation
of large Reynolds number problems represents a great challenge.

FIG. 1. Two-dimensional freely decaying turbulence. Left panel: time histories of the kinetic energy at different Reynolds numbers. Right panel: the horizontal velocity field at
t∗ = 1 for Re = 106.
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FIG. 2. Model of Di Mascio et al.6 with
background pressure (BP) for Re = 106

and L/Δx = 1200. Left panel: snapshot
of the kinetic energy field at tU/L = 3.
Right panel: energy spectrum Ek at
the same time (the reference scale is
E0 = ρ0U2L2). Symbols kf and kR indi-
cate the wave numbers of the external
forcing and the kernel radius, respec-
tively.

Specifically, the occurrence of regions with large negative pressure
values leads to the onset of the so-called tensile instability (see Swegle
et al.7) and to a consequent generation of voids inside the fluid
domain. In the SPH framework (also for confined flows), this issue is
usually avoided by introducing a background pressure so that, dur-
ing the whole evolution, the pressure field always maintains positive.
Unfortunately, this strategy induces short-length oscillations (due
to particle resettlement) that affect both the pressure and velocity
fields and that lead the energy spectrum to deviate from the theoret-
ical decay. This behavior is briefly summarized in Fig. 2 where the
left panel displays a snapshot of the kinetic energy field at tU/L = 3
and the right panel shows the corresponding energy spectrum, here-
inafter denoted by Ek, scaled by E0 = ρ0U2L3 (details about the com-
putation of the SPH energy spectrum are given in Appendix E). The
deviation from the theoretical rate of decay occurs at wavelengths
that are comparable with the kernel radius, heuristically confirm-
ing the particle resettlement (in Fig. 2, the wave number associated
with the kernel radius is indicated by kR, while kf denotes the wave
number of the forcing term). In this case, the use of the Tensile Insta-
bility Control (TIC) instead of the background pressure leads to even
worse results because the particle distribution becomes disordered
and this strongly affects the pressure field (see the left panel of Fig. 3).

The results shown above convinced us about the necessity
of including the TIC along with the Particle Shifting Technique
(PST) described by Sun et al.10 in the δ-LES-SPH scheme in
order to get rid of the tensile instability and, at the same time,
to obtain a regular particle distribution and a consequent reduc-
tion of the spurious noise. This led to the derivation of the quasi-
Lagrangian scheme described in Secs. II and III. Incidentally, we
observe that the use of the PST alone (namely, the implemen-
tation of the present model without the addition of TIC) is not
enough to avoid the onset tensile instability. About this point, the
right panel of Fig. 3 shows the generation of void regions inside
the fluid domain in correspondence with the negative pressure
regions.

The behavior of the proposed δ-LES-SPH model is summarized
in Fig. 4. In the left panel, the energy spectrum for Re = 106, L/Δx
= 1200, and tU/L = 3 is compared with the results obtained through
a finite-volume scheme (details are reported in Appendix D), show-
ing a good agreement between the numerical outputs. In this panel,
we also drew the wave numbers related to the forcing term (i.e.,
kf ) to the kernel radius (that is, kR) and the positions of the wave
numbers kλ and kD related to the Taylor and Kolmogorov scales,
that is,

FIG. 3. Snapshots of the pressure field
for Re = 106 and L/Δx = 1200. Left panel:
model of Ref. 6 with Tensile Instability
Control (TIC; tU/L = 1.44). Right panel:
present model without TIC (tU/L = 1.92).
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FIG. 4. Left panel: energy spectrum at
Re = 106 and tU/L = 3 as predicted by
the present model and by a finite volume
scheme. Symbols kf and kR indicate the
wave numbers of the external forcing
and the kernel radius, respectively, while
kλ and kD are the wave numbers asso-
ciated with the Taylor and Kolmogorov
scales. Right panel: the kinetic energy
field at the same instant.

λ =
√

10 νE
ϵ

, η = (ν
3

ϵ
)

1/4
, (41)

where ϵ is the rate of energy dissipation and E is the kinetic energy
(the flow is assumed to be fully turbulent). Generally, the length
scales that are larger than the Taylor microscale are not strongly
affected by viscosity while, on the contrary, length scales smaller

than the Kolmogorov microscale are completely dissipated by vis-
cous effects. In particular, these scales are used to identify the inertial
range of turbulence. The fact that the Kolmogorov scale is smaller
than the minimum simulated length and the Taylor scale is close
to the length of the forcing term confirms that the LES simulation
is correctly applied. The right panel of the same figure displays the
kinetic energy field at the same instant (namely, tU/L = 3). Finally,
the pressure and vorticity fields are shown in Fig. 5, proving that
both are free from spurious short-length noise.

FIG. 5. Present model for Re = 106 and
L/Δx = 1200. Snapshots of the pres-
sure (left) and vorticity fields (right) at
tU/L = 3.

FIG. 6. Energy spectra at tU/L = 3 as
predicted by the present model and by
a finite volume scheme for Re = 105 and
L/Δx = 1200 (left panel) and for Re = 104

and L/Δx = 600 (right panel).
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FIG. 7. L2-norm of the vorticity for the three-dimensional case (L/Δx = 128) at tU/L
= 1. The Y -shaped structures are the isocontours at ||ω|| = 3L/U.

The behavior of the energy spectra for Re = 104 and 105 is
reported in Fig. 6. In the latter case, the numerical output is in good
agreement with the direct and inverse cascades for turbulence in 2D,
while a slight deviation from the theoretical profile is observed for
the case at Re = 104 close to kR.

B. Three dimensions
In three dimensions, we consider the problems with Re = 106

and ℓ is set equal to the kernel radius, which, in this case, is set equal
to 3Δx. The value of ℓ changes in 3D as a consequence of the change
in the ratio R/Δx between 2D and 3D simulations (here, R indicates
the kernel radius). In fact, in 2D, we usually adopt a value of R/Δx
that guarantees about 50 neighboring particles in the kernel support.
In 3D, we are bound to reduce R/Δx in order to maintain the neigh-
bor particles to about 100 (otherwise, using the same value as in 2D,
we would obtain about 260 neighboring particles in 3D, leading to
a huge increase in the computational costs). In turn, the use of a
smaller value of R/Δx in 3D makes the simulations slightly more

noisy than 2D ones. Then, to recover similar qualitative behavior,
we use a larger value of ℓ.

The forcing term is defined through the three-dimensional
solution described by Antuono.27 In particular, we write

F3d = A∗r(t) ua,t ∣t=0
, (42)

where ua ,t is the time derivative of the analytical velocity field (evalu-
ated at t = 0) and A∗ = 1.25 ⋅ 10−3 (here, A∗ is dimensionless). For the
sake of brevity, we do not include the explicit formula, and refer to
the work of Antuono.27 The above-mentioned solution (which can
be regarded as an extension in three dimensions of that by Taylor13)
is tri-periodic and fully three-dimensional. This implies that shorter
times are required to reach a fully developed homogeneous and
isotropic turbulent flow in comparison to those works that adopt an
initial three-dimensional condition characterized by a null velocity
component in one direction (see the work of Goldstein,28 Orszag,29

and Sharma and Sengupta30).
The forcing term in Eq. (42) generates a tri-periodic motion

with kx = ky = kz = 4π/L, where L indicates the length of the squared
domain and κ = (kx, ky, kz) is the wave number. This implies that two
vortex modules are considered in each coordinate direction. In the
left plot of Fig. 7, we display a snapshot of the L2-norm of the vortic-
ity at t∗ = 1 (that is, when the ramp is switched off). As described
by Antuono,27 the Y-shaped structures (i.e., the isocontours at
||ω|| = 3L/U) enclose the stagnation points. The spatial resolution
is L/Δx = 128.

As shown in the left plot of Fig. 8, the finite volume code and
the present δLES-SPH model show a different transition to homoge-
neous turbulence because of their different structures. Indeed, the
resolution L/Δx = 128 here adopted is rather low with respect to
those attained in the 2D test cases. As a consequence, the flow evo-
lution is significantly affected also by the inherent numerical diffu-
sion of the two models. In this sense, the ways in which numerical
diffusion acts are driven by the substantial difference between the
two codes: to mention just the most relevant, the SPH is a quasi-
Lagrangian solver formally using a second-order spatial differen-
tial operator (which can locally degrade down to the zeroth order),
whereas the FV is a pure Eulerian scheme formally employing a fifth-
order spatial operator. It is, therefore, reasonable that these aspects
play an important role in the specific development of the initial flow
instability and on the following evolution.

FIG. 8. Left panel: time histories of
the kinetic energy as predicted by the
finite volume scheme and the δLES-
SPH model. Right panel: energy spec-
tra. Symbols kf and kR indicate the wave
numbers of the external forcing and the
kernel radius, respectively.
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FIG. 9. L2-norm of the vorticity field as
predicted by the δLES-SPH model (left)
and by the finite volume solver (right).

FIG. 10. Isocontours of the vorticity field
(||ω|| = 15L/U) obtained by using the
δLES-SPH model (left panel) and the
finite volume solver (right panel).

Thus, we compare their behavior when the amount of the
kinetic energy is approximately the same in both the simulations.
In particular, we compare the output of the finite volume code
at t∗ = 4.5 and that of the δLES-SPH model at t∗ = 6 (see the
left plot of Fig. 8). As displayed in the right panel of the same
figure, notwithstanding the different time histories of the simu-
lations, the energy spectra of both solutions have a quite similar
behavior and, furthermore, are in good agreement with the theo-
retical rate of decay. In this figure, we also show the wave num-
bers of the external forcing (namely, kf ) and the kernel radius
(i.e., kR).

Finally, in Fig. 9, we plot the L2-norm of the vorticity as
predicted by the δLES-SPH model (left panel) and by the finite
volume solver (right panel). Both plots show a similar distribu-
tion and intensity of ||ω||. This is further confirmed by the iso-
contour at ||ω|| = 15L/U of the vorticity displayed in Fig. 10
for both the numerical schemes. Remarkably, the SPH vortic-
ity field appears free of high-frequency noise and coherent vor-
tex structures are clearly visible, similar to the two-dimensional
case.

V. CONCLUSIONS

An improved version of the δ-LES-SPH model described by
Di Mascio et al.6 is derived based on the following steps: (i) the
definition of a quasi-Lagrangian LES-SPH model, (ii) a novel clo-
sure for the term C2 based on the use of a fourth-order diffu-
sive term, (iii) the modeling of the velocity deviations from the
Lagrangian velocity through the PST proposed by Sun et al.,10

and (iv) the implementation of the tensile instability control
term.

The proposed model is tested in two and three dimensions by
simulating initially forced motions followed by freely decaying tur-
bulence. These test cases resemble the generation of vortices similar
to those predicted by the Taylor solution.13 Thanks to the straight-
forward inclusion of the particle shifting technique and the tensile
instability control, the proposed model overcomes some of the well-
known issues that affect SPH simulations of high Reynolds number
flows, such as the generation of high-frequency spurious noise and
the onset of the tensile instability. The comparisons of the energy
spectra with the theoretical rate of decay and with results by a finite
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volume solver confirm the accuracy and reliability of the proposed
quasi-Lagrangian scheme.

In future works, further efforts will be dedicated to (i) the val-
idation of the proposed δ-LES-SPH model against experimental or
numerical data for turbulent flows characterized by Reynolds num-
bers larger than 106, (ii) the definition of proper wall-functions
to deal with solid walls, and (iii) the extension of the scheme to
represent free-surface flows.

Incidentally, it is worth mentioning that the present model may
also be extended to the Riemann-ALE SPH variant (see the work
of Oger et al.19). However, this extension could unlikely result in
a significant improvement, as the diffusive term of the δ-SPH has
been shown to be equivalent to a simplified Riemann solver (see the
work of Green et al.31) and has similar properties regarding numer-
ical diffusion and accuracy of the differential operators (see also the
recent work by Hammani et al.32 where δ-SPH is compared to a Rie-
mann solver). Those are the main aspects to be tackled to enhance
the present scheme and, in this sense, a higher-order approach could
improve the present SPH results.
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APPENDIX A: DETAILS OF DERIVATION

Using the standard properties of the filter, we differentiate
Eq. (5) with respect to time and obtain

dũ
dt
= ∫

R3 ∫
+∞

−∞
d
dt
ϕ(x̃p − y, t − τ)u(y, τ)dτdVy

= ∫
R3 ∫

+∞

−∞
[∂ϕ(x̃p − y, t − τ)

∂t
+ [ũ(x̃p, t) + δũ(x̃p, t)] ⋅ ∇xϕ(x̃p − y, t − τ)]u(y, τ)dτdVy

= ∫
R3 ∫

+∞

−∞
∂ϕ(x̃p − y, t − τ)

∂t
u(y, τ)dτdVy + ũ(x̃p, t) ⋅ ∫

R3 ∫
+∞

−∞
∇xϕ(x̃p − y, t − τ) ⊗ u(y, τ)dτdVy

+ δũ(x̃p, t) ⋅ ∫
R3 ∫

+∞

−∞
∇xϕ(x̃p − y, t − τ) ⊗ u(y, τ)dτdVy. (A1)

The first and second integrals in the right-hand side are rearranged
following the approach described by Di Mascio et al.6 In particu-
lar, we first focus on the term containing the time derivative and,
integrating by parts, obtain

∫
R3 ∫

+∞

−∞
∂ϕ(x̃p − y, t − τ)

∂t
u(y, τ)dτdVy

= ∫
R3 ∫

+∞

−∞
ϕ(x̃p − y, t − τ)∂u(y, τ)

∂τ
dτdVy.

Similarly, the term containing the spatial derivatives becomes

∫
R3 ∫

+∞

−∞
∇xϕ(x̃p − y, t − τ) ⊗ u(y, τ)dτdVy

= −∫
R3 ∫

+∞

−∞
∇yϕ(x̃p − y, t − τ) ⊗ u(y, τ)dτdVy

= −∫
R3 ∫

+∞

−∞
∇y[ϕ(x̃p − y, t − τ)u(y, τ)]dτdVy

+ ∫
R3 ∫

+∞

−∞
ϕ(x̃p − y, t − τ)∇yu(y, τ)dτdVy

= ∫
R3 ∫

+∞

−∞
ϕ(x̃p − y, t − τ)∇yu(y, τ)dτdVy. (A2)

Therefore, summing up the two terms, Eq. (A1) becomes

dũ
dt
= ∫

R3 ∫
+∞

−∞
ϕ(x̃p − y, t − τ)

× {∂u(y, τ)
∂τ

+∇yu(y, τ) ⋅ ũ(x̃p, t)}dτdVy

+ δũ(x̃p, t) ⋅ ∫
R3 ∫

+∞

−∞
∇xϕ(x̃p − y, t − τ) ⊗ u(y, τ)dτdVy,

(A3)

and substituting ∂u(y, τ)/∂τ = du(y, τ)/dτ − ∇yu(y, τ) ⋅ u(y, τ), we
find

dũ
dt
= ∫

R3 ∫
+∞

−∞
ϕ(x̃p − y, t − τ)du(y, τ)

dτ
dτdVy

+∫
R3 ∫

+∞

−∞
ϕ(x̃p − y, t − τ){∇yu(y, τ)

× [ũ(x̃p, t) − u(y, τ)]}dτdVy + δũ(x̃p, t)

× ∫
R3 ∫

+∞

−∞
∇xϕ(x̃p − y, t − τ) ⊗ u(y, τ)dτdVy.

(A4)

The first two integrals in the right-hand side are identical to those
found in the work of Di Mascio et al.6 and refer to that work for the
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details of the derivation. In brief, substituting the expression of the
total derivative of the velocity [see Eq. (1)] in the first integral and
using integration by parts, we obtain

∫
R3 ∫

+∞

−∞
ϕ(x̃p − y, t − τ)du(y, τ)

dτ
dτdVy

= −∇p̃
ρ̃

+ νΔũ + (λ′ + ν)∇(∇ ⋅ ũ) − ∇[G̃(ρ) −G(ρ̃)]. (A5)

For what concerns the second integral in the right-hand side of (A4),
we find

∫
R3 ∫

+∞

−∞
ϕ(x̃p − y, t − τ){∇yu(y, τ) ⋅ [ũ(x̃p, t) − u(y, τ)]}dτdVy

= ∇ ⋅ Tℓ + ũ∇ ⋅ u,

where the tensor Tℓ is given by

Tℓ = ∫
R3 ∫

+∞

−∞
ϕ(x̃p − y, t − τ)[ũ(x̃p, t) − u(y, τ)] ⊗ u(y, τ)dVydτ

= ũ⊗ ũ − ũ⊗ u.

Finally, the last integral in the right-hand side of Eq. (A4) is new and
is equivalent to

∇xũ(x̃p, t) ⋅ δũ(x̃p, t) = ∇x ⋅ [ũ(x̃p, t) ⊗ δũ(x̃p, t)] − ũ(x̃p, t)[∇x ⋅ δũ(x̃p, t)] . (A6)

Collecting all the results together, we obtain

dũ
dt
= −∇p̃

ρ̃
+ νΔũ + (λ′ + ν)∇(∇ ⋅ ũ) − ∇[G̃(ρ) −G(ρ̃)]

+∇ ⋅ Tℓ + ũ∇ ⋅ u +∇ ⋅ [ũ⊗ δũ] − ũ∇ ⋅ δũ.

For what concerns the filtered density, we find

dρ̃
dt
= ∫

R3 ∫
+∞

−∞
d
dt
ϕ(x̃p − y, t − τ)ρ(y, τ)dτdVy

= ∫
R3 ∫

+∞

−∞
ϕ(x̃p − y, t − τ)

×{∂ρ(y, τ)
∂τ

+ [ũ(x̃p, t) + δũ(x̃p, t)] ⋅ ∇yρ(y, τ)}dτdVy.

Using the continuity equation [see the first equation of system (1)], the argument of the integral can be rearranged as follows:

∂ρ(y, τ)
∂τ

+ [ũ(x̃p, t) + δũ(x̃p, t)] ⋅ ∇yρ(y, τ)

= dρ(y, τ)
dτ

− u(y, τ) ⋅ ∇yρ(y, τ) + [ũ(x̃p, t) + δũ(x̃p, t)] ⋅ ∇yρ(y, τ)

= −ρ(y, τ)∇y ⋅ u(y, τ) − u(y, τ) ⋅ ∇yρ(y, τ) + [ũ(x̃p, t) + δũ(x̃p, t)] ⋅ ∇yρ(y, τ)
= −∇y ⋅ [ρ(y, τ)u(y, τ)] + [ũ(x̃p, t) + δũ(x̃p, t)] ⋅ ∇yρ(y, τ).

Substituting and integrating by parts, we find

dρ̃
dt
= −∇x ⋅ (ρ̃u) + (ũ + δũ) ⋅ ∇xρ̃, (A7)

which, after some algebra, can be recast in the following form:

dρ̃
dt
= −ρ̃∇x ⋅ (ũ + δũ) +∇x ⋅ [ρ̃ũ − ρ̃u] +∇x ⋅ [ρ̃δũ]. (A8)

APPENDIX B: ESTIMATING C3
Here, we prove that C3 is of order O(σ5). The same outcome is

obtained for M3 by following the same proof with minor changes.
For these reasons and for the sake of brevity, we omit the details of
this latter term and only consider C3. First, using the dimensionless
variables as in Sec. II A, we write

C∗3 =
t0

ρ0
C3 =

δu0

U0
{−ρ̃∗∇∗ ⋅ [δũ∗ − ⟨δũ∗⟩]

+ ∇∗ ⋅ [ρ̃∗δũ∗ − ⟨ ρ̃∗δũ∗⟩]}. (B1)
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Using the properties of the spatial filter, we expand the above
equation as follows:

C∗3 = σ2
∗
δu0

U0
{−ρ̃∗∇∗ ⋅ [Δ∗δũ∗] +∇∗ ⋅ [Δ∗(ρ̃∗δũ∗)]} + O(σ4

∗
δu0

U0
).

(B2)
Expanding Eq. (B2), we find out that the terms that do not con-
tain derivatives of ρ̃ cancel out. All the remaining terms are of
order O(σ4

∗δu0/U0), since the derivatives of ρ̃∗ are of order O(M2
a)

= O(σ2
∗) because of the weak-compressibility assumption. Then, the

expression (B2) simplifies as follows:

C∗3 = O(σ4
∗
δu0

U0
). (B3)

Then, choosing δũ in such a way that δu0/U0 = O(σ∗), we finally
obtain

C∗3 = O(σ5
∗). (B4)

This confirms that the term C3 can be straightforwardly neglected in
the proposed model.

APPENDIX C: THE DIFFUSIVE TERM
OF ANTUONO ET AL.12

As described by Antuono et al.,12 if we neglect the presence of
the boundary of the fluid domain, the diffusive term of the δ-SPH
model can be expressed as follows:

D = σ
2

12
( ∂4ρ̃
∂xk∂xl∂xm∂xn

)∫
R3

qkqlqmqn

q
∂W
∂q

dVy + O(σ4), (C1)

where q = (y − x)/σ and the subscripts k, l, m, and n indicate the
vector components and q = ||q||. We observe that ∂W/∂q is a radial
negative kernel with a compact support. Because of the isotropy of
the integral tensor in the Eq. (C1), we can rearrange the expression
as follows:

D = σ
2

12

⎡⎢⎢⎢⎣
α
∂4ρ̃
∂x4

k
+ 6β( ∂4ρ̃

∂x2
k∂x2

l
)

k≠l

⎤⎥⎥⎥⎦
+ O(σ4), (C2)

where

α = ∫
R3

q4
k

q
∂W
∂q

dVy, β = ∫
R3
(q2

kq2
l

q
)

k≠l

∂W
∂q

dVy. (C3)

Note that α and β do not depend on the specific choice of the
indices k and l because of the isotropy (symmetry) of the integral.
As proved by Violeau and Fonty33 (see Appendix A of that paper),
α = 3β and, consequently, we can rearrange the expression (C2) as
follows:

D = σ
2

12
αΔ2ρ̃ + O(σ4), (C4)

where Δ2 indicate the bi-Laplacian, namely, Δ2ρ̃ = Δ(Δρ̃).

APPENDIX D: FINITE VOLUME CODE
The finite-volume code used for the simulations is a gen-

eral purpose in-house code that contains several physical mod-
els and numerical discretizations. For all the simulations reported
in the present paper, the weakly compressible approximation
of the Navier–Stokes equations (the same adopted for the SPH

simulations) was used. Spatial discretization was performed by
means of the classical fifth order WENO approach by Jiang and
Shu34 for the convection and pressure parts of the equations, while a
standard central second order approximation is adopted for the vis-
cous terms. Time integration was performed by means of the third
order Total Variation Diminishing (TVD) Runge–Kutta scheme
developed by Gottlieb and Shu.35 As to LES modeling, the standard
model by Smagorinsky22 was used for consistency with the analo-
gous SPH simulations. Examples of application of the code to com-
plex turbulent flow simulations can be found in the works of Muscari
et al.36 and Magionesi et al.37

APPENDIX E: ENERGY SPECTRA OF SPH FIELDS
In order to evaluate the kinetic energy spectrum of the SPH

results, the procedure described by Shi et al.38 has been adopted.
Specifically, the magnitude of the velocity fields has been interpo-
lated on a uniform Cartesian mesh with spacing equal to the particle
size Δx. For the interpolation of the SPH scattered data, a Moving
Least Square (MLS) technique (see the work of Fries and Matthies39)
has been used, which in the work of Shi et al.38 is shown, through
numerical experiments, to be the most appropriate for extracting
energy spectra. The MLS interpolation has been performed using
about 50 particles in the kernel support for both two- and three-
dimensional data. This corresponds to a kernel radius equal to 4Δx
and 2.3Δx, respectively, for 2D and 3D. Then, in order to obtain the
kinetic energy spectra, the same FFT algorithm used for the finite
volume solution has been applied to the SPH interpolated data.
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The data that support the findings of this study are available
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