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• The framework balances crop yield, 
water efficiency, and economic returns.

• Optimal ranges of irrigation depth for 
various objectives were identified.

• Defined optimal irrigation at 400 mm 
for maximizing key performance 
indices.

• Seasonal irrigation of 300 mm improves 
water savings without compromising 
yield.

• Multi-objective analysis identifies 
optimal irrigation range for sustainable 
cropping.
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A B S T R A C T

CONTEXT: Efficient irrigation management must consider multiple aspects of cropping systems, such as pro
ductivity, water use efficiency, and economic viability. Crop simulation models like AquaCrop are essential tools 
for analyzing crop responses under different irrigation scenarios. Organizing the model’s outputs into stan
dardized parameters allows for a multi-objective evaluation, which can be consolidated into a single index for 
optimizing irrigation strategies.
OBJECTIVE: This study aims to formalize the response of processing tomato cropping systems in Southern Italy to 
various irrigation regimes and develop a framework to identify optimal irrigation volumes for production, water 
use efficiency, and economic returns.
METHODS: AquaCrop was used to assess the effects of different seasonal water supplies on dry yield, water use 
efficiency, and irrigation water use efficiency. Sustainability was evaluated via the blue water footprint and 
drainage, while economic sustainability was measured through net income and irrigation economic efficiency. A 
multi-objective evaluation framework was built, developed to consolidate performance indices into a single 
multi-aggregated index (Imobj). The AquaCrop model was calibrated and validated using field data, with high 
accuracy in simulating canopy cover, biomass, and dry yield (NRMSE < 30 %, r > 0.90, and d > 0.97). Poly
nomial regression was used to model the relationships between irrigation volumes and cropping system 
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variables. Each variable was assigned a truth value (TWi), derived from regression coefficients, statistical sig
nificance, and model fit. These values were normalized using a sigmoid function and consolidated into the Imobj 
index, providing an overall measure of irrigation performance.
RESULTS AND CONCLUSIONS: AquaCrop accurately simulated canopy cover, biomass, and dry yield. Multi- 
objective analysis showed yield and profitability were most sensitive to irrigation changes, followed by 
drainage, blue water footprint, and water use efficiency. The 500 mm irrigation regime yielded the highest 
productivity and profitability but negatively impacted water use efficiency and environmental sustainability. 
Irrigation volumes above 500 mm worsened all water-related variables, while volumes of 400 mm reduced 
profitability but improved the sustainability. The Imobj index identified that irrigation between 300 mm and 400 
mm provided the best trade-off across all evaluated variables.
SIGNIFICANCE: This study highlights the value of integrating crop productivity, economic viability, and sus
tainability into irrigation management. The proposed framework, combined with AquaCrop, offers a holistic tool 
for optimizing irrigation strategies in agriculture. It emphasizes the need for balanced irrigation that not only 
maximizes yield but also enhances resource efficiency and environmental sustainability.

1. Introduction

The world faces an unprecedented confluence of challenges in agri
culture, where the sustainable cultivation of crops stood as a linchpin in 
ensuring global food security (UN, 2015). Among the numerous com
plexities confronted by modern agriculture, the efficient utilization of 
water resources emerged as a paramount concern. Water, the lifeblood 
of agriculture, was increasingly becoming a scarce and contested 
resource due to burgeoning global population growth, rapid urbaniza
tion, and climate change-induced alterations in precipitation patterns 
(Kang et al., 2017).

In the Mediterranean environment, water was a limiting factor for 
crop yield, necessitating a careful evaluation of the method, timing, and 
volume of water supplied to rationalize and preserve this resource, 
maximize crop yield and ensure a suitable income for farmers (Rinaldi 
et al., 2011).

In Mediterranean countries, agriculture consumed about 80 % of 
water resources, and it was estimated that the agricultural area in 
several countries would increase by 15 % within a few years (Crovella 
et al., 2022).

Among these countries, Italy had one of the highest levels of water 
withdrawals for agriculture, accounting for almost 50 % of total water 
consumption (ISTAT, 2019) and was the leading producer of processing 
tomatoes in Europe, with 51 % of the entire European harvest in 2021 
(European Commission, 2021).

Among horticultural crops, processing tomato cultivation repre
sented one of the most intensive uses of agricultural land in terms of 
water use and chemical input (Rinaldi et al., 2007).

Achieving adequate fruit yield levels for tomato fruits and maxi
mizing net income for farmers required improvements in water man
agement to prevent water waste (Rinaldi et al., 2011).

In Mediterranean countries, agriculture consumes approximately 80 
% of available water resources, with projections estimating a 15 % in
crease in agricultural areas in the near future (Crovella et al., 2022). 
Italy stands out among these countries for having one of the highest 
levels of water withdrawals for agricultural purposes, accounting for 
nearly 50 % of total water consumption (ISTAT, 2019). As the leading 
producer of processing tomatoes in Europe, Italy contributed 51 % of the 
total European harvest in 2021 (European Commission, 2021).

Processing tomato cultivation is notably water-intensive, involving 
significant chemical inputs (Rinaldi et al., 2007) and to achieve suffi
cient fruit yields and maximize farmer income, substantial improve
ments in water management practices are essential to prevent wastage 
(Rinaldi et al., 2011).

Traditional irrigation practices that rely on fixed schedules or vol
umes often result in inefficiencies such as nitrogen leaching, excessive 
drainage and reduced water use efficiency, all of which can adversely 
impact farmer profitability. To tackle these inefficiencies, comprehen
sive, long-term studies are needed to evaluate various irrigation strate
gies and optimize water management. However, conducting extensive 

field trials to test all possible combinations of irrigation schedules and 
crop responses is often impractical due to time, cost, and logistical 
complexities. In this context, growth simulation models emerge as 
powerful tools for predicting for predicting how different water man
agement strategies interact with varying pedo-climatic conditions, thus 
facilitating more informed agricultural decision-making. A lot variety of 
crop models have been developed to describe plant growth and yield; 
Todorovic et al. (2009) classified these models into three main cate
gories based on their driving factors: carbon-driven models such as 
WOFOST (Van Diepen et al., 1989) CROPGRO, and DSSAT (Jones et al., 
2003), solar radiation-driven models including CERES (Ritchie et al., 
1988), EPIC (Jones et al., 1991), STICS (Brisson et al., 2003) and APSIM 
(Keating et al., 2003) and water-driven models like AquaCrop (Raes 
et al., 2009a), and CropSyst (Holzworth et al., 2014; Stöckle et al., 
2003).

Among the models tested or adapted for the Mediterranean region 
are DSSAT, WOFOST, EPIC, CropSyst and STICS. The choice of model 
largely depends on the specific phenomenon being studied and the 
conditions of the study area.

In Mediterranean latitudes, solar radiation is not typically a limiting 
factor for crop production, as the intercepted photosynthetically active 
radiation (IPAR) is usually sufficient for achieving high yields. There
fore, the adoption of non-radiation-driven models like AquaCrop can be 
beneficial in evaluating water use efficiency (Buesa et al., 2020).

AquaCrop, developed by the Food and Agriculture Organization 
(FAO) (Hsiao et al., 2009; Raes et al., 2009a; Steduto et al., 2009), is 
specifically designed to predict crop yield, water requirements, and 
water productivity (WP, Doorenbos and Kassam, 1979) under various 
irrigation regimes (Kanda et al., 2018). Its applications span various 
environmental conditions and management practices, including rainfed, 
deficit irrigation, supplemental irrigation, full water supply, and on- 
farm water management strategies, all aimed at improving water use 
efficiency in agriculture (Heng et al., 2009).

Since its introduction in 2009, AquaCrop has been evaluated and 
calibrated across a wide range of crops and strategies tailored for arid 
and semi-arid conditions, as well as other case studies on water scarcity 
(Bird et al., 2016; Katerji et al., 2013).

AquaCrop uses the crop WP values (Arumugagounder et al., 2022), 
normalized for climatic conditions, including atmospheric evaporative 
demand and CO2 concentration to drive the crop growth. This conser
vative approach allows for the extrapolation of water-driven models to 
diverse locations and future climate scenarios, where CO2 concentra
tions are expected to rise (Steduto et al., 2007). It is simple to use, 
requiring only a small number of intuitive input parameters (Abi Saab 
et al., 2015; Ahmadi et al., 2015; Dhouib et al., 2022; Garcia-Vila and 
Fereres, 2012; Heng et al., 2009; Steduto et al., 2009; Raes et al., 2009b; 
Vanuytrecht et al., 2014), and is publicly available, featuring a user- 
friendly interface (Hunink and Droogers, 2011). These features make 
AquaCrop applicable not only to researchers aiming to enhance water 
use efficiency (WUE) but also to farmers, agricultural consultants and 
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water managers (Farahani et al., 2009).
The model’s effectiveness in simulating the crop response under 

water scarcity has been highlighted by numerous studies (Iqbal et al., 
2014; Jin et al., 2014; (Raes et al., 2009a) Steduto et al., 2009; Xiang
xiang et al., 2013), particularly in Mediterranean hilly areas character
ized by rainfed agriculture (Dhouib et al., 2022). In addition, this model 
has become a valuable decision-making tool for developing crop man
agement strategies at the farm level (Sam-Amoah et al., 2013).

Regarding tomato crop, several studies (Garofalo and Rinaldi, 2015; 
Katerji et al., 2013; Linker et al., 2016; Rinaldi et al., 2011; Soddu et al., 
2013) have successfully assessed the suitability of AquaCrop to simulate 
tomato growth and optimize daily irrigation schedules to achieve 
optimal yields with limited water resources.

However, AquaCrop’s applications focussed on specific aspects of 
water resource utilization, including WUE (Katerji et al., 2013), growth 
and yield (Hendy et al., 2019), economic returns (Rinaldi et al., 2011) 
and water footprint (Sidhu et al., 2021).

In contrast to AquaCrop, other models can be more complex, 
requiring highly detailed input data about crop growth that may not be 
readily available in many locations. Additionally, these models often 
necessitate advanced skills for calibration and operation (Heng et al., 
2009).

Despite its many advantages, AquaCrop has some limitations, as 
noted by the FAO’s Land and Water Division (https://www.fao.org/aqu 
acrop/en/). It is designed to predict crop yields at the single field-scale 
(point simulations), thus not accounting for spatial heterogeneity in crop 
development, transpiration, soil characteristics, or management prac
tices; it assumes uniform field conditions. AquaCrop also consider only 
vertical water fluxes for rainfall, irrigation, capillary rise, evaporation, 
transpiration and deep percolation.

The AquaCrop model is available through a compiled software 
package (Raes et al., 2023) and the user-friendly interface means that 
users cannot write or program the model code for specific case studies 
(Foster et al., 2017).

Furthermore, AquaCrop has limitations, which concerning the 
fertilization regimes, adopting a semi-quantitative method to evaluate 
fertilizer stress. The effect of soil nutrients on crop growth is expressed as 
a percentage reduction in biomass and crop coefficient relative to full 
irrigation and fertilization (Akumaga et al., 2017; Van Gaelen et al., 
2015). The model may not accurately simulate plant responses to 
fertilization based on nutrient demand and soil nutrient content, leading 
to potentially inaccurate assessments of fertilizer stress (Adeboye et al., 
2021; Rahimikhoob et al., 2021).

Additionally, AquaCrop lacks a soil temperature module which can 
significantly affect outcomes in scenarios involving film mulching 
(Cheng et al., 2022).

Again, other models such as CropSyst, APSIM, DSSAT, STICS, and 
WOFOST offer more integrated functionalities that include detailed 
representations of radiation use efficiency, carbon balance, and nutrient 
dynamics. Anyway, these models provide a more comprehensive view of 
crop growth under varying conditions but may also require more com
plex input data and greater user expertise.

The guidance on water resource management that can be derived 
when using a crop simulation model for individual issues of the cropping 
system may vary depending on the aspect that is emphasized over 
another. For instance, maximizing crop productivity and its profitability 
may rely on intensive irrigation schedules. Conversely, maximizing WP 
and reducing drainage water loss may endorse reduced water supply. 
Clearly, it becomes evident that the optimization of water resources 
must consider all the various aspects of the system directly related to 
irrigation practices. Nevertheless, crop simulation models can serve as a 
cornerstone for more complex, multi-objective evaluations that address 
competing objectives like maximizing productivity, enhancing water 
efficiency, and minimizing environmental impact simultaneously.

This integration allows for evaluating how different irrigation re
gimes affect yield and their implications for water sustainability, 

profitability, and water savings. AquaCrop, like other crop simulation 
models, can thus facilitate broader analyses that extend beyond tradi
tional crop yield assessments, equipping decision-makers with tools to 
balance competing objectives in water-scarce environments. This en
ables farmers and policymakers to make informed decisions that align 
short-term productivity with long-term sustainability goals.

However, such a proposed multi-objective analysis can pose two 
challenges for investigations. The first issue is that the response of var
iables under exploration, as affected by irrigation, has to be comparable 
to each other, irrespective of their scale and data nature (e.g. comparing 
productivity expressed in kg ha− 1 with drainage expressed in mm). The 
second challenge involves aggregating this information into a single, 
easily readable, and interpretable benchmark that could be tailored to 
the needs of the end user and serves as the basis for optimizing water 
resources.

The multi-layered data structure or complex data aggregation pro
cesses of the multi-objective approaches could vary depending on the 
method of aggregating available information, potentially affecting the 
replicability of the methodology and/or the expertise required to adapt 
such an approach to different contexts and users (Garofalo et al., 2020; 
Ren et al., 2019; Wang et al., 2019).

To address these complexities and make meaningful progress, this 
paper proposed a hierarchical framework designed to simplify the pro
cess of optimizing irrigation strategies. The framework began with the 
calibration and validation of the AquaCrop model using field data, 
ensuring that the model’s predictions were accurate and reliable. 
Building upon this foundation, various irrigation scenarios were con
structed to explore a broad spectrum of irrigation options. This approach 
allowed for the development of an empirical model, based on second- 
order polynomial regressions between irrigation volumes and water- 
related parameters (such as yield, WUE, water drainage, profitability). 
The aggregation of parameters related to these polynomials involved 
algebraically summing the values of the regressor coefficients with the 
values (ranging from 0 to 1) assigned to significance level and R2 based 
on their meaning. This process then enabled the weighting and com
parison of the effects that different irrigation management practices had 
simultaneously on the individual variables analyzed. It provided a 
qualitative-quantitative assessment regardless of the different nature 
and scale of the parameters involved.

Subsequently, the framework aggregated these metrics into a single 
multi-aggregated index. This index served as a comprehensive measure 
for comparing and assessing various options in terms of seasonal irri
gation volumes, while also considering the sometimes-conflicting results 
that different irrigation strategies might produce on individual aspects 
of the cropping system. This approach thus allowed rapid screening and 
selection of irrigation management practices aimed at optimizing the 
productive, environmental, and economic performance of the investi
gated system.

2. Materials and methods

2.1. Characteristics of the cultivation area

In the Capitanata plain, located in the Apulia region, southern Italy 
(41.4611◦ N, 15.5494◦ E), processing tomato cultivation uses an area of 
approximately 17,800 ha (ISTAT, 2023), which represents 22 % of the 
total Italian acreage dedicated to this crop. The production from this 
area accounts for more than 23 % of the national production (ISTAT, 
2023).

2.1.1. Experimental site
The field experiments were carried out for two years (2021,2022) in 

farms associated to Futuragri association group, in the Capitanata irri
gation consortium (Southern Italy; lat. 41◦ 26′ 39.7” N; long. 15◦ 41′ 
20.9″ E, alt. 37 m a.s.l.).

The climate in Capitanata is “accentuated thermo-Mediterranean” 
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(Emberger et al., 1962) with temperatures below 0 ◦C in the winter and 
above 40 ◦C in the summer. The average maximum annual temperature 
for the area is 28 ◦C while the average minimum temperature is 14 ◦C. 
Annual rainfall (average 550 mm) is mostly concentrated during the 
winter months and class “A pan” evaporation exceeds 10 mm day− 1 in 
summer.

Meteorological data of maximum and minimum temperature (◦C; 
Tmax and Tmin), relative air humidity (%; RH), rainfall (mm) and solar 
radiation (MJ m− 2) at daily scale during the experimental years (2021 
and 2022) were collected at the nearby (about 15 Km from field) 
Amendola Foggia meteorological station (of the Italian Air Force’s 
meteorological network). Some of these variables (rainfall and solar 
radiation) were also monitored in the experimental plots or provided by 
the nearby meteorological station of CREA-Cereal and Industrial Crop 
Research Centre (about 17 Km from field).

Daily reference evapotranspiration (ET0i; mm) in the experimental 
field was estimated by the FAO Penman-Monteith equation as described 
in Allen et al. (1998), using the daily data of solar radiation, Tmax, Tmin 
and RH from the meteorological stations.

The soil of the experimental site was classified as a silty loam ac
cording to USDA Soil Taxonomy, with the following composition: 29.4 
% sand, 48.8 % silt, 21.8 % clay (hydrometer method; Gee and Bauder, 
1986) and 1.5 % organic matter (Walkley-Black method; Nelson and 
Summers, 1982).

The soil texture, organic matter and bulk density were carried out by 
three replicates through the experimental plot at the following depths: 
0.00–0.15 m and 0.15–0.30 m. Such soil samples were taken in May 
2021, before that the experiment was set up. The soil texture and bulk 
density of the two layers were similar, so a unique soil layer was 
considered (0.00–0.30 m).

By soil texture data, bulk density and organic matter, the soil hy
draulic properties were estimated implementing the pedotransfer func
tions HYPRES (Wösten et al., 1999). The soil layer from 0.00 to 0.30 m 
deep was characterized as follows: volumetric water content at field 
capacity (FC) 0.33 m3 m− 3; volumetric water content at permanent 
wilting point (WilP) 0.14 m3 m− 3; total available water content 57 mm, 
bulk density 1.10 kg m− 3, saturated hydraulic conductivity (Ksat) 25.4 
mm h− 1.

The soil water content (%) was monitored by the gravimetric 
method. Therefore, soil samples were taken at beginning and during the 
crop cycle every two weeks. Samples were taken from each plot and 
replicates at a depth of 0.00–0.10, 0.10–0.20 and 0.20–0.30 m. The 
volumetric water content (SWC, m3 m− 3) was determined multiplying 
the water content (%) by the bulk density.

2.1.2. Field experiment
Field trials were carried out on a processing tomato crop (cv. Taylor); 

it was transplanted on June 5, 2021, and May 13, 2022, in 750 m2 plots 
using a double-row pattern with distances of 0.30 m between plants on 
the row and 1.85 m between rows. Plant density was 3.6 plants per 
square meter. Fertilizer applications were considered optimal for all 
field.

The experimental design was a completely randomized block with 
three replications. Crop development and phenological phases were 
monitored during the entire crop cycle.

Destructive plant tissue samples were collected at 2-week interval 
from the time of transplanting to the time of final harvest. The length of 
crop cycle assured about 7/8 sampling per treatment in each year, to 
guarantee sufficient data to drive AquaCrop simulation model. Six 
representative plants per treatment were harvested, placed in paper bags 
and take directly to the laboratory for subsequent determinations. Plants 
were partitioned into roots, stem, leaves and fruits. Fresh leaves were 
used for leaf area measurements and roots were cleaned and washed free 
of soil particles. Fresh leaves, roots, stems and fruits were dried in a 
ventilated oven at 65 ◦C until a constant weight was achieved and then 
weighed. At harvest time, larger samples were used, namely 2.5 m2 per 

treatment were collected.
The LAI (m2 m− 2) was measured with direct and destructive method 

by LICOR-3100C leaf area meter (Li-COR Biosciences) at each sampling 
time by harvesting vegetation leaves. The LAI values were then con
verted into canopy cover (CC) using Beer’s law (Beer, 1852): 

CC = 1 − e(− ek×LAId+Cf) (1) 

Where ek is the light extinction coefficient (0.75; Rinaldi et al., 
2011), LAId is the green leaf area and Cf is the clumping factor, calcu
lated as: 

Cf = 0.75+(0.25)×
(
1 − e(− 0.35×LAId)

)
(2) 

In the study area, processing tomato is irrigated with seasonal water 
volumes ranging from 4000 to 6000 m3 ha− 1 (Giuliani et al., 2005; Rana 
et al., 2000).

In both years, the full-water treatment followed the farmer practice 
(FARM). The Farmers in the study area tend to irrigate tomato crops 
every day or with close irrigation shifts and often they provide more 
water than is necessary for plant development. Hence, in the FARM 
treatment (2021 and 2022) the dates and volumes of irrigation events 
were decided by the farmers. Then, to obtain the stressed treatments 
RED-20 (2021), and RED-40 (2022), the dates and duration of irrigation 
events were left the same of the FARM and the volumes of each day were 
reduced by 20 and 40 % compared to the volumes of the FARM treat
ment. More severe reductions of irrigation water volumes, with respect 
to FARM, were not implemented during the experimental years because 
in the Mediterranean environment, the tomato water demand is very 
high, and stressing the crop beyond a certain threshold could have 
seriously compromised productivity. Not to mention the economic re
turn, which would not be feasible for the farmers.

Irrigation was supplied by self-compensating drip lines; drippers 
with different flow rates were used to obtain the different irrigation 
depths in the FARM and RED treatments. Uniform water distribution was 
ensured by using high-quality drippers designed for consistent flow 
despite varying pressures. The discharge rates were 1.6 L h− 1 for the 
FARM treatment, and 1.3 L h− 1 and 1.1 L h− 1 for the RED-20 and RED-40 
treatments, respectively. Monitoring with water meters at each irriga
tion event, ensured that any discrepancies were promptly addressed.

In the experimental plots, irrigation volumes were monitored using 
water meters, with readings taken every week (Table 1).

2.2. The AquaCrop model

AquaCrop simulates, at a daily time step, the vertical water fluxes 
across the soil–plant–atmosphere continuum (Dhouib et al., 2022) or 
rather the water exchange between the soil and the roots.

It formalizes soil water dynamics, canopy development, phenology, 
plant growth, and yield formation. It considers both potential growth 
and growth modulated by thermal and water stresses. These stress fac
tors are affected by climate, including its thermal regime, rainfall, 
evaporative demand, and carbon dioxide concentration (Muroyiwa 
et al., 2022). Irrigation management in AquaCrop impacts on the soil 
water balance, crop development and yield (Raes et al., 2009a).

Table 1 
Processing tomato water management reported as irrigation events and seasonal 
water supply (sum of irrigations and rainfalls) for well-watered (Farm) and 
deficit irrigation treatments (Red-20 and Red-40), in the 2021 and 2022 exper
imental years.

Year Treatment Irrigation events Seasonal supply

n◦ mm

2021 Farm 75 546
Red − 20 75 438

2022 Farm 72 752
Red − 40 72 452
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Water is added to the soil reservoir by rainfall and irrigation. When 
the rainfall intensity is too high, part of the precipitation might be lost by 
surface runoff and only a fraction will infiltrate. The infiltrated water 
cannot always be retained in the root zone. When the root zone is too 
wet, part of the soil water percolates out of the root zone and is lost as 
deep percolation. Water can also be transported upward to the root zone 
by capillary rise. Processes such as soil evaporation and crop transpi
ration remove water from the reservoir.

Concerning the water consumed by the cropping system, daily crop 
transpiration (Tri, mm day− 1) is calculated through ET0i and driven by 
the canopy cover adjusted for micro advection (CC*) as follows: 

Tri = Ks × CC* × Kc × ET0 (3) 

where KS is the soil water stress coefficient and crop coefficient (Kc).
The aboveground biomass (TDM, t ha− 1) is calculated through the 

water productivity normalized for ET0i (WP*, g m− 2) and) Tri (Wellens 
et al., 2022): 

TDM = WP* ×
∑n

i=1

Tri

ET0i
(4) 

Finally, dry yield (Y, t ha− 1) is estimated from TDM at maturity and 
harvest index (HI, %) as follows: 

Y = HI×TDM (5) 

Soil water stress affects the development of the canopy cover, the 
expansion of the root zone, results in stomata closure, in a reduction of 
crop transpiration rate, and in failure of pollination, alters the harvest 
index, and even triggers early canopy senescence. Soil water stress af
fects the above processes when the soil water stored in the root zone 
drops below a threshold level. The thresholds are expressed as root zone 
depletion, i.e., a fraction of the total available water.

2.2.1. Model parameterization and input
The application of the AquaCrop model requires few and intuitive 

inputs related to the climate, crop, crop management and soil properties.

2.2.1.1. Climatic Data inputs. AquaCrop requires minimum and 
maximum air temperature, ET0 and rainfall. ET0 can be directly put into 
the model or calculated by it according to the FAO-56 methodology 
(Allen et al., 1998) providing the coordinates of meteorological station 
(altitude and latitude) and daily measurements of global radiation, air 
humidity, wind speed, temperature. Additionally, mean annual atmo
spheric CO2 concentration should be provided because it affects canopy 
expansion and crop water productivity.

Temperature data are used to calculate growing degree day (GDD or 
so-called heat units) which can be used to track plant development 
through the crop cycle, from transplant to maturity, and for adjusting 
biomass production during damaging cold periods (Raes et al., 2009a).

The climate data, we provided as inputs to the model, were the daily 
data of Tmax, Tmin, solar radiation and RH to calculate ET0 and reported 
in section 2.1.1.

The CO2 file was built with the yearly atmospheric CO2 concentra
tion of Mauna Loa Observatory records in Hawaii provided by the model 
(Steduto et al., 2009).

2.2.1.2. Soil Data inputs. The creation of the soil file in AquaCrop 
required soil texture class and soil hydraulic parameters: Ksat, volu
metric water content at saturation (θsat), FC and WilP. It is possible to 
use indicative values provided by AquaCrop for various soil textural 
classes or import values determined experimentally or derived from soil 
texture with the help of pedo-transfer functions. Different horizons can 
be set and for each one it is necessary to indicate its own physical 
characteristics.

Moreover, the soil water content at the beginning of the crop cycle 
was also given as an input.

The soil data that have been used as model inputs are reported sec
tion 2.1.1.

2.2.1.3. Crop data inputs. Crop parameters necessary as input are 
divided in conservative and non-conservative and are provide as default 
values in the model for major agriculture crops. The first ones do not 
change with location, management, cultivars, and time and are rela
tively stable (Canopy growth - CGC and canopy decline - CDC co
efficients; full canopy Kc; biomass WP and soil water depletion 
thresholds).

In contrast, the non-conservative parameters that are user-specific 
parameters, varied significantly with the year, site and variety 
depending on crop and field management, soil type, and climate (sowing 
date and density, length of crop cycle and phenological stages, 
maximum canopy cover, etc.). Non-conservative parameters were 
determined by the experiment, based on field observations of crop 
development and phenology. They are calibrated with data of the crop 
grown under favourable and nonlimiting conditions but remain appli
cable for stress conditions via their modulation by stress response 
function.

The crop calibrated parameters derived from crop sampling reported 
in section 2.1.2.

2.2.1.4. Management data inputs. Field management inputs regard: 

a) data on soil fertility levels and agronomic practices that affect the 
soil water balance (e.g. mulching, tillage);

b) data on irrigation management.

In the absence of inputs related to a), soil fertility is considered un
limited and field surface practices do not affect soil evaporation or 
surface run-off.

For the b) case, it is necessary to choose whether the crop is rainfed 
or irrigated. For irrigated crops, the irrigation method and the per
centage of the wetted soil surface by the irrigation must be defined. 
Afterwards the user can select: 

i) net irrigation water requirement (i.e. the amount of water 
required to avoid crop water stress is estimated in a way to keep 
the root zone depletion above the specified threshold value given 
as default, but which can be adjusted by the user);

ii) irrigation schedule, where date calendar, depth and water quality 
must be specified for each irrigation event;

iii) generation of an irrigation schedule by specifying a time (i.e. 
irrigations at fixed interval or when an allowable depletion in 
either water amount - mm or fraction of RAW) and depth crite
rion (i.e. a fixed depth - mm or a return to FC can be set).

In the present study soil fertility was non-limiting and weed under 
management, they were not limiting factors for soil evaporation. 
Regards to irrigation inputs, drip irrigation with 30 % of the soil surface 
wetted has been set and an irrigation schedule by specifying date and 
depth of each irrigation event has been provided according to the 
experimental irrigation management reported in section 2.1.2.

2.2.2. Model calibration and validation
To instruct AquaCrop in simulating processing tomato growth and 

development in a Mediterranean environment, the parameters and co
efficients implemented in the crop algorithms were modified through 
two phases, namely, the calibration phase and then the validation phase.

Firstly, calibration process focussed on the CC development; a good 
simulation of this affects transpiration and in turn final crop’s biomass 
and yield.

The calibrated parameters for good estimation of CC were: initial 
canopy cover -CC0 (used to derive the corresponding plant density and 
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the canopy size of the seedling, if not directly put as inputs); maximum 
canopy cover (CCx), CGC, CDC and the values of cumulative growing 
degree days (CGDD) in each development stages (from transplant to full 
plant recovery, from transplant to maximum CC, from transplant to start 
senescence and from transplant to maturity).

Secondly, the calibration continued by modifying the parameters 
which determines yield and biomass formation (time of flowering or to 
start yield formation and to reach the maximum rooting depth; the 
maximum and minimum effective rooting depth). Some of these pa
rameters (e.g., maximum effective rooting depth) are influenced by 
conditions in the soil profile, such as initial soil water content, the 
characteristics of soil horizons, and surface runoff. As a result, adjusting 
these parameters automatically adjusts the evaporation-related factors. 
Lastly, the HI was fine-tuned based on the efficient simulation of the 
biomass.

The effects of water stress on canopy expansion, stomatal conduc
tance, and early canopy senescence are described in AquaCrop by the 
stress coefficients (Ks). These coefficients were calibrated to account for 
the impact of water stress on leaf expansion, stomatal closure, and 
anticipated senescence by selecting a sensitivity class. The upper and 
lower soil water depletion thresholds (p), which modulate the magni
tude of these impacts, were also defined, thereby influencing the water 
stress-related conservative parameters.

The calibration process adapted AquaCrop outcome to the data ob
tained from the 2021 growing season under on the well-watered treat
ment, free of any water stress (FARM treatment).

The calibration of crop non-conservative parameters followed a trial- 
and-error approach, as recommended by developers and performed by 
other authors (Abedinpour et al., 2012; Amiri et al., 2024; César Augusto 
Terán-Chaves et al., 2022; Hsiao et al., 2009; Kanda et al., 2021; Mub
vuma et al., 2021; Raes et al., 2012; Oiganji et al., 2016; Paredes et al., 
2014; Raes et al., 2012; Sandhu and Irmak, 2019; Wellens et al., 2022; 
Zeleke et al., 2011). Initially, simulations used estimated or guessed 
parameter values, which were iteratively adjusted based on comparisons 
with measured experimental data. This process was repeated until 
simulated results closely matched experimental data (Hsiao et al., 
2023). The conservative crop parameters were chosen within physically 
realistic ranges, guided by our understanding of crop growth and 
response to water deficits. Through iterative adjustments and compari
sons across treatments and years, a set of valid parameter values was 
established.

Irrigation management replicated the events and the amount of 
water applied by the farmer (FARM) in 2021 (Table 1). These data were 
used as input to run the AquaCrop model in the calibration mode.

The validation phase, on the other hand, is crucial to test the 
robustness of the model after calibration and was carried out with 
datasets different from those used for calibration (FARM treatment 
2021) but using the same crop file. The validation phase occurred by 
comparing the response of AquaCrop with what was observed in the 
FARM treatments of 2022 and RED treatments in both experimental 
years (2021 and 2022).

Irrigation events of FARM treatment of 2022, of RED-20 treatment of 
2021 and of RED-30 treatment of 2022 were used for validation step, 
accordingly.

2.2.3. Model evaluation
During the calibration and validation processes, same evaluative 

statistical indices were used to verify the model performance and sim
ulations accuracy, evaluating the consistency between the simulated 
and observable values.to The statistical indices used were the normal
ized root mean square error (NRMSE), Pearson correlation coefficient (r) 
and index of agreement (d) defined in the following equations: 

NRMSE
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where n is the number of observations, S and M are the simulated and 
measured values, respectively. S and M are the means of simulated and 
measured values, respectively.

NRMSE (%) is the relative difference between the model simulated 
and measured results, the simulation quality is excellent when the 
NRMSE is <10 %, good if it is between 10 and 20 %, acceptable if it is 
between 20 and 30 %, and poor if >30 % (Jamieson et al., 1991).

r is a statistical measure of the strength of the relationship between 
the relative movements of observed and simulated variables (Blyth, 
1994). A correlation of − 1.0 shows a perfect correlation but negative, 
(inverse relationship between the variables), while a correlation with 
1.0 value shows a perfect correlation in positive (direct relationship 
between the variables). A correlation with 0.0 value shows no rela
tionship between the movement of your two variables.

d is the index of agreement of Willmott (1982) to measure the degree 
to which the measured data are approached by the simulated data. It 
ranges between 0 and 1, with 0 indicating no agreement and 1 indicating 
a perfect agreement between the simulated and measured data (Saad 
et al., 2014).

2.3. Irrigation management scenarios

To achieve a wide range of responses of the cropping system under 
different irrigation options and growing seasons, artificial scenarios 
were performed using meteorological data of the years 2016, 2019 
(datasets of 2016 and 2019 were rebuilt from Corbari and Mancini, 
2023, Corbari et al., 2020, 2021), 2020 and 2021 (datasets recorded 
from nearby meteorological station, reported in the section 2.1.1).

The processing tomato was ‘in-silico’ exposed to various water sup
ply treatments selecting the drip irrigation option, subjecting it to 
optimal water supply conditions until significant reductions in seasonal 
irrigation volumes were reached. The optimal irrigation strategy (OPT) 
was based on a time criterion, triggering irrigation when 20 % of the 
total available water was depleted the root zone. Building from this 
baseline, water deficit strategies were set by reducing the water supply 
at each irrigation event of OPT (thus, the date of each water supply was 
kept constant) at steps of 10 % (ranging from OPT-10 to OPT − 90). 
Additionally, two irrigation strategies that provided a surplus (10 %, 
OPT + 10; 20 %, OPT + 20) of water for each irrigation event of OPT 
were also investigated (Fig. S1, supplementary materials).

This approach ensured the simulation of irrigation scenarios that 
were more controllable, compared to setting water return thresholds 
based on total available water (TAW) depletion. The latter would have 
resulted in longer irrigation intervals but with significantly larger irri
gation volumes, which would not have been suitable for this study. Such 
volumes could have caused excessive drainage and would not have 
aligned with the volumes typically distributed by farmers using common 
drip irrigation systems.

It is important to highlight that one of the key elements of the 
framework presented in the paper is the response curves for various 
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parameters (e.g., yield, drainage, etc.) against seasonal irrigation vol
umes. To derive reliable data from the empirical model, it is crucial to 
explore an adequate number of irrigation scenarios. The purpose of 
these scenarios is to parameterize the empirical model’s relationship 
between the response variables (yield, economic return, environmental 
burdens and water efficiencies) and seasonal irrigation volumes.

Therefore, the irrigation scenarios presented, while not necessarily 
mirroring field irrigation management, serve the purpose of under
standing the model’s response across a range of conditions. This 
approach ensures the model captures a comprehensive spectrum of 
irrigation responses, which is crucial for robust empirical model devel
opment and application.

2.4. Irrigation impact assessment

The impact of irrigation management was evaluated based on 
AquaCrop output parameters, either as-is or derived accordingly 
(Fig. S1, supplementary materials). The performance of the crop 
following changes in seasonal irrigation volume was assessed by means 
of Y. To assess the water use efficiency, irrigation water use efficiency 
(IrrUE; kg mm− 1) was used, which is the ratio between the dry yield and 
seasonal amount of irrigation water, and WP (kg mm− 1, the ratio be
tween the dry yield and crop evapotranspiration). Environmental sus
tainability of irrigation management was assessed through the blue 
footprint (Blue_FP; mm kg− 1), i.e., the ratio between irrigation water and 
dry yield, and through the water lost with drainage (mm).

To measure economic sustainability, this study examined the net 
income (NetInc; Euro ha− 1) calculated as: 

NetInc = Gi − (SdlCost+ FertCost + IrrCost) (9) 

where Gi is the income from fresh yield (Euro ha− 1), as: 

Gi = Sp*(Y/cv) (10) 

Sp is the selling price of processing tomato (145 Euro t− 1; ISMEA, 
2023), Y is the dry yield, cv is a coefficient to convert dry weight of 
tomato fruits to fresh weight (0.07), SdlCost is the cost of seedlings (20 
cents per 360,000 plants per hectare), FertCost the cost of fertilizer 
(calculated as 380 kg of ammonium nitrate at 26 %, priced at 1.6 Euro 
per kg) and IrrCost is the irrigation cost (Euro mm− 1).

For the latter, three thresholds of seasonal water supply were 
applied, as entailed by the local irrigation consortium (Capitanata irri
gation consortium).

Specifically: i) if the seasonal irrigation (formalized by AquaCrop) 
did not exceed 200 mm, then the irrigation cost was 1.2 Euro per mm; ii) 
if the seasonal irrigation water exceeded 200 mm but below the 
threshold of 400 mm, then the irrigation cost was 1.8 Euro per mm for 
the share exceeding 200 mm; and finally; iii) if the seasonal water was 
above the 400 mm threshold, then the cost increased to 2.4 Euro per mm 
for the share exceeding 400 mm.

Additionally, the irrigation economic efficiency (IrrEcEff; kg Euro− 1), 
defined as the ratio between the yield and irrigation cost, was 
investigated.

To assess the extent to which a dependent variable (performance, 
efficiencies, and profitability) was shaped on an independent variable 
(seasonal irrigation volumes), a regression analysis was performed. A 
second-order polynomial regression was applied for this study; that is, 
the effect of input variable (water supply) was directly accounted for by 
linear terms as a first-order approximation but also include the effects of 
second order nonlinearities associated with each evaluated variable.

Although regression analysis can be useful to predict a response 
based on the values of the explanatory variables (for example, deter
mining the increase in tomato productivity or drainage with increasing 
irrigation water amount), it does not allow for an assessment of the 
weight that the independent variable has on the dependent variable; nor 
it can provide comparisons among variables, because of differences in 

the magnitudes and variability of explanatory variables, and because the 
variables are usually measured with different units.

The dependent variables can be made uniform by subtracting the 
average and dividing by the standard deviation of the values of the 
original variables, resulting in standardized variables with an average of 
zero and a variance of one. When performing regression analysis on 
these standardized variables, it yields standardized coefficients. 

Yp = β0 +
(
βi*X2)+(βii*X) (11) 

where βs are regression coefficients, Yp is the standardized dependent 
variable and X is the independent variable (in this case, seasonal 
irrigation).

Eq. (11) allows for the quantification of the impact of irrigation on 
the behaviour of the variables examined within the cropping system. 
Using standardized regression coefficients, it is feasible to numerically 
compare the magnitude of this impact, irrespective of the nature or scale 
of the dependent variables. This approach enables the evaluation of how 
irrigation influences agricultural system variables, without concern for 
units of measurement or relationship between them. A higher value 
(negative or positive) of βi or βii indicates a greater impact of irrigation 
on the examined variable, while a higher β0 value suggests a significant 
impact even in the absence of irrigation. Anyway, combining these three 
parameters into a single index not only provides a clearer and more 
easily interpretable but also allows for the ranking of the irrigation effect 
on the various examined variables (performance, water efficiencies and 
profitability).

To achieve a single index for each analyzed parameter, several stages 
were sequentially followed.

Firstly, the significance (α; p-value) of each regressor was checked; α 
represents the probability that variations in the standardized examined 
variable are related to the variation in the independent variable (sea
sonal irrigation volume) or that this variable is not influenced by irri
gation management. Depending on the value of α, a weight factor for 
each regressor (WRf) was calculated as: 

WRf =

⎧
⎪⎪⎨

⎪⎪⎩

1 if α < 0.001;
0.66 if 0.01 > α > 0.001;
0.33 if 0.05 > α > 0.01;

0 if α > 0.05

(12) 

Besides α, within the evaluative framework delineated herein, the 
inclusion of R-squared (R2) was implemented. R2 serves as a metric 
signifying the goodness of fit of the polynomial model (Eq. 11).

A weight was also assigned to R2 as follows: 

WRR2 =

⎧
⎪⎪⎨

⎪⎪⎩

1 if R2 > 0.75;
0.5 if 0.75 > R2 > 0.5;
0.25 if 0.5 > R2 > 0.25;

0 if R2 < 0.25

(13) 

where WRR2 is the weighted value of R2.
Finally, the standardized score for each analyzed variable (StVi) 

within the tomato cropping system was afterward calculated as: 

StVi =
(
WRfi*[βi]

)
+
(
WRfii*[βii]

)
+
(
WRf0*[β0]

)
+
(
WRR2*

[
R2] ) (14) 

The value of StVi, calculated through Eq. 14 could exceed unity (1). 
This could make the interpretation of StVi less straightforward. 
Furthermore, to quantify the extent or influence of the variable being 
analyzed in relation to water supply, StVi was normalized within the 
range of 0 to 1, calculating WVi through a sigmoid function, as follows: 

WVi =
1

(1 + EXP( − k*(StVi − b) ) )
(15) 

where k and b are dimensionless coefficients. In this context, b is equal 
to: 
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b =

∑n

i=1

StVi,i
obs

2
(16) 

Here, obs represents the quantity of computed StVi, while k is a 
variable spanning from 0 to 10, that allows to tune the StVi’s score to 
irrigation during the WVi calculation. Smaller values of k correspond to a 
higher weighting when StVi is lower than b, whereas higher values of k 
correspond to a higher weighting when StVi is higher than b (value of 5 
indicates an average weight).

WVi allowed to compare the effect of irrigation on individual 
analyzed parameters. Evidently, same impact of such index for the 
variables under study provided conflicting indications: for example, a 
high value of WVi had a completely opposite meaning for both perfor
mance and drainage.

A significant increase in yield with increasing irrigation volumes was 
considered “positive”, whereas an increase in drainage was considered 
“negative”; so that for those variables that negatively affect the perfor
mance of cropping system as whole (i.e. drainage and Blue_FP), WVi 
assumed negative values, positive values for the remaining evaluative 
parameters.

Furthermore, WVi quantified the impact of irrigation on individual 
parameters of the tomato cropping system, but it did not facilitate 
comparisons among different irrigation scenarios.

To achieve an evaluation index modulated on seasonal irrigation 
volumes and normalized for the effective impact of the water supply on 
the analyzed parameter, the truth value (TWi) of the normalized index 
was calculated as follows: 

TWi = β0 +
(
βi*X2)+(βii*X)*±WVi (17) 

where WVi could assume positive (yield, IrrUE, WP, NetInc, IrrEcEff) or 
negative (drainage, Blue_FP) values depending on positive or negative 
effect of irrigation on the analyzed parameter.

To transition from a score to a synthetic judgment, TWi was mapped 
onto categories of “Very strong,” “Strong,” “Moderate,” “Poor,” and “Not 
significant” depending on whether the TWi value exceeded 0.8, fell be
tween 0.8 and 0.6, between 0.6 and 0.4, between 0.4 and 0.2, or was 
below 0.2, respectively.

Finally, the multi-objective index (Imobj) computed for every irriga
tion scenario was determined as the sum of TWi is estimated for each 
parameter intra-scenario: 

Imobj =
∑n

i=1
TWi (18) 

3. Results

3.1. Meteorological data during the growing seasons

The detailed weather conditions during the two growing seasons 
2021 and 2022 are shown in Fig. 1.

The meteorological data during the growing seasons were used to 
run AquaCrop model.

During the 2021 growing season, rainfall was very low, with a total 
amount of 66 mm. In 2022, rainfall was higher than in 2021, with a total 
of 153 mm, although most of this amount was distributed in a few 
rainfall events.

3.2. Model calibration and validation

Table S2 in supplementary material presents the default crop file 
parameters alongside the calibrated values obtained to achieve the best 
fit between observed data and AquaCrop simulations, for processing 
tomato during the 2021 growing season, under the FARM treatment.

A good agreement between observed and simulated data was re
flected not only in the closeness of the field-measured values and those 
predicted by the model (Fig. 2) but also in the statistical indices 
(Table 2).

Specifically, statistical analysis of model accuracy metrics demon
strated that AquaCrop effectively replicated the beavhiour of CC 
throughout the growing season, evidenced by a high r = 0.98, a d index 
closes to 1 and a low NRMSE.

For TDM and Y, d and r values were consistently approached 1, 
indicating a strong agreement and linear relationship between observed 
and simulated data. Specifically, the high r values suggest that the model 
accurately followed the trends in biomass accumulation and yield across 
different growth stages, while d values close to 1 demonstrate that 
AquaCrop effectively captured both the trends and the magnitude of 
observed variations.

However, the NRMSE value ranged between 20 % and 29 %, 
particularly for TDM and Y, which can be attributed to the significant 
variability observed during field measurements, especially during the 
yield formation phase. This variability was particularly pronounced 
even among plants within the same plot, due to differences in the 
appearance and growth timing of the fruits. This variability is reflected 
in the high standard deviations recorded during field data collection, 
making it challenging for the model to perfectly replicate each indi
vidual observation averaged across each sampling (in terms of date and 
sampling replicates).

Nonetheless, despite this field variability, AquaCrop consistently 
simulated growth curves and developmental metrics that fell within the 
observed mean values and their standard deviations. The model’s per
formance remained acceptable, with NRMSE values indicating a 
reasonable approximation given the inherent complexity of the tomato 
cropping system.

For SWC, AquaCrop achieved excellent results, with NRMSE values 
below 10 %, and satisfactory r and d values, confirming the model’s 
strong predictive accuracy for soil water dynamics after calibration.

The validation step involved comparing AquaCrop’s performance 
with the observed data under the FARM treatments of 2022 and the RED 
treatments across both experimental years (Table 3). The model’s 

Fig. 1. Variations in a) daily maximum and minimum air temperatures (Tmax and Tmin; b) cumulative reference evapotranspiration (ET0cum) and rainfall (Rain) 
during the processing tomato growing seasons of 2021 and 2022. Data were recorded by weather stations near the experimental field.
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Fig. 2. Calibration phase: comparison between AquaCrop simulated values (continuous line) and observed experimental values (dots) of a) canopy cover (CC), b) 
total dry biomass (TDM), c) dry yield (Y) and d) soil water content (SWC) during 2021 growing season, under FARM water regime. The bars indicate the standard 
deviation for the observed values. DAT indicates the number of days after transplanting.

Table 2 
Statistical indices of comparison of simulated vs. observed values of canopy cover (CC), total dry biomass (TDM), dry yield (Y) and soil water content (SWC) of tomato 
in the calibration phase, during 2021 growing season, under FARM water regime.

Parameter Unit Observation Observed mean Simulated mean Diff. % NRMSEa rb dc

CC % 8 63.7 67.1 5.3 10.3 0.98 0.99
TDM t ha− 1 8 7.5 6.7 10.7 23.2 0.96 0.98

Y t ha− 1 8 3.8 3.7 2.6 29.0 0.95 0.98
SWC mm 8 87.0 94.0 8.0 9.8 0.84 0.80

a Normalized root mean square error.
b Correlation coefficient.
c Index of agreement of Willmott.

Table 3 
Statistical indices of comparison of simulated vs. observed values of canopy cover (CC), total dry biomass (TDM), dry yield (Y) and soil water content (SWC) of tomato 
in the validation phase during 2021 and 2022 growing season, under FARM and deficit water regime (RED-20 and RED-40).

Year Treatment Parameter Unit Observation Observed mean Simulated mean Diff % NRMSEa rb dc

2021 RED-20

CC % 7 61.3 62.9 2.6 9.2 0.89 0.99
TDM t ha− 1 7 6.1 5.6 8.2 18.6 0.97 0.99

Y t ha− 1 7 2.9 2.8 3.4 24.3 0.89 0.99
SWC mm 6 90.8 85.6 5.7 7.8 0.98 0.72

2022 FARM

CC % 7 69.7 73.0 4.7 14.3 0.92 0.98
TDM t ha− 1 6 5.4 6.1 13.0 32.3 0,92 0.97

Y t ha− 1 6 2.5 2.9 16.0 37.6 0.94 0.98
SWC mm 4 49.7 54.2 9.1 9.5 0.99 0.90

2022 RED-40

CC % 7 64.4 70.3 9.2 23.2 0.85 0.94
TDM t ha− 1 7 6.4 7.2 12.5 26.0 0.93 0.98

Y t ha− 1 6 2.8 3.1 10.7 22.0 0.90 0.99
SWC mm 5 49.4 54.8 10.9 11.2 0.90 0.63

Overhall

CC % 21 65.2 68.8 5.5 16.7 0.92 0.98
TDM t ha− 1 20 6.0 6.3 5.0 25.2 0.93 0.98
Y t ha− 1 19 2.7 2.9 7.4 28.3 0.97 0.99

SWC mm 15 66.0 67.0 1.5 9.3 0.95 0.99

a Normalized root mean square error.
b Correlation coefficient.
c Index of agreement of Willmott
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performance across different irrigation strategies and climatic condi
tions was confirmed, with r and d values remaining consistently above 
0.90 for all variables. Similarly, for the validation step, NRMSE calcu
lated for TDM and Y remained almost always in the range of 20 % to 30 
%, as in the calibration process. This confirms that the high variability in 
the formation of yield in the tomato crop is a component of the culti
vation system that is not easy to simulate accurately in the absence of 
specific algorithms in this regard.

The parameters and coefficients reported in Table 2 and 3 were 
derived from the same set defined through the iterative trial-and-error 
procedure. This process involved continuous feedback and feedfor
ward between the calibration and validation phases, ensuring that the 
calibrated parameters were sufficiently robust to represent various 
experimental conditions without needing further adjustments.

3.3. Analysis of the irrigation-related parameters of processing tomato

Regarding crop productivity, simulations revealed that the increase 
in seasonal irrigation volumes led to an improvement in fruit yield 
(Fig. S2, supplementary material), with values ranging from 1.89 t ha− 1 

with 65 mm of seasonal water supply to a maximum of 12.14 t ha− 1 with 
406 mm of water supply.

It is noteworthy that this increase was linear as it progressed from 
approximately 70 mm to 324 mm of water supply, then the progression 
slowed around 400 mm, and finally stabilized up to volumes of 660 mm.

The net and linear increase in tomato productivity as the crop was 
exposed to seasonal irrigation scenarios ranging from reduced (around 
100 mm) to intermediate (400 mm) water amounts, although followed 
by a smaller increase at higher irrigation levels (700 mm), indicated a 
“very strong” impact of irrigation on crop productivity, as reflected by 
the quantitative and qualitative assessment of the framework (Table 4 
and 5).

The environmental impact of irrigation was assessed based on water 
loss due to drainage and Blue_FP, where increases resulting from higher 
irrigation volumes indicated an excess of water supply not effectively 
used by the crop (Fig. S3, supplementary material).

The drainage was almost negligible with irrigation up to 440 mm, 
after which it increased sharply, reaching values of up to 150 mm at 
higher seasonal irrigation volumes.

However, based on the framework judgements, it emerged that the 
influence of irrigation on this environmental parameter was judged to be 
poor. This could be attributed to the fact that an increase in drainage 
(even though abrupt) occurred only at irrigation volumes exceeding 500 
mm and, in some “year x management” combinations, even at higher 
volumes (Fig. S3a, supplementary material).

Simulations established a consistent value for Blue_FP (24.43 mm 
kg− 1, on average) for cropping scenarios irrigated with water ranging 
from 90 to 330 mm (Fig. S3b, supplementary material).

Beyond this threshold, Blue_FP increased linearly up in the most 
extreme irrigation scenarios, with water consumption increasing by 
0.08 mm per mm of water supplied to produce one kg of dry fruits.

In Fig. S3b (supplementary material), one can observe some Blue_FP 

values above the “average” path recorded for management between 65 
and 350 mm of irrigation water. This was caused by the trend of ET0 in 
2019 higher than the average of the other growing seasons (623 mm in 
2019 vs 572 mm as average for the remaining years), resulting in higher 
water consumption by the system without a proportional increase in 
yield, especially in scenarios with reduced water supply.

Unlike drainage, the synthetic score judged Blue_FP to be “moder
ately” responsive to irrigation management, but with higher water 
consumption by the system after 300 mm, meaning more water was used 
inefficiently to produce one kilogram of tomato fruits compared to lower 
seasonal irrigation volumes.

Regarding IrrUE and WP, two findings emerged (Fig. S4a and 
Fig. S4b, supplementary material). In scenarios with low to moderate 
irrigation supply (100–350 mm), these efficiencies exhibited high vari
ability, due to the limited capacity of such volumes to mitigate water 
stress caused by meteorological conditions. Conversely, irrigation vol
umes exceeding 360 mm stabilized served to stabilize the responses of 
these two efficiencies, with values of 24.22 kg mm− 1 for IrrUE and 19.38 
kg mm− 1 for WP, thus reducing their erraticism across years.

However, no increase in efficiency values observed with further 
water supply; instead, a decrease occurred as irrigation volumes 
increased.

The lack of a clear correlation between IrrUE, WP, and irrigations 
was also reflected in the poor scores obtained for both parameters in 
Table 5.

The profitability of tomato cultivation exhibited a wide-range, 
showing negligible profits at the lowest irrigation volumes (approxi
mately 100 mm) and reaching a net income of € 15,000–16,000 ha− 1 for 
seasonal water volumes exceeding 380 mm (Fig. S5a, supplementary 
material). Notably, NetInc remained relatively stable, with only minor 
fluctuations at higher water inputs (450–660 mm).

In terms of IrrEcEff, increasing irrigation from 220 mm to 390 mm 
resulted in a substantial increase in this metric, rising from 7.42 kg €− 1 

to 28.77 kg €− 1, representing more than a fourfold increase in economic 

Table 4 
Regressor values (βs), their corresponding p-values (α), and R-squared (R2) from the second-order regression analysis between seasonal irrigation volumes and the 
standardized examined variables.

Variable Parameter

βii βi В0 R2 α_ βii α_ βi α_ β0

Y -1.79E-05 1.79E-02 -3.62E+00 8.96E-01 0.00E+00 0.00E+00 0.00E+00
Drainage 1.98E-05 -9.71E-03 4.52E-01 7.46E-01 2.90E-07 1.72E-04 2.36E-01
Blue_FP -1.04E-05 1.24E-02 -2.64E+00 9.40E-01 0.00E+00 0.00E+00 0.00E+00
IrrUE 1.19E-05 − 8.98E-03 1.28E+00 1.24E-01 2.75E-02 2.26E-02 4.07E-02
WP − 1.20E-05 1.34E-02 − 2.72E+00 9.30E-01 0.00E+00 0.00E+00 0.00E+00

IrrEcEff − 8.18E-06 1.03E-03 8.63E-01 6.45E-01 3.83E-02 7.12E-01 5.96E-02
NetInc − 2.17E-05 1.35E-02 − 1.49E+00 3.89E-01 9.64E-05 6.55E-04 1.47E-02

Y = yield; Blue_FP = blue footprint; IrrUE = irrigation use efficiency; WP = water productivity; IrrEcEff = irrigation economic efficiency; NetInc = net income.

Table 5 
Values of the parameters involved in Eq. 12–17 and the synthetic judgment for 
the investigated variables in the processing tomato cropping system. Very 
strong, Strong, Moderate, Poor, and Not significant refer to the impact that 
irrigation has on the investigated variables.

Variable Parameter Judgment

WRf 

_βii

WRf 

_βi

WRf 

_В0

WR_R2 StVi WVi

Y 1.00 1.00 1.00 1.00 4.64 1.00 Very strong
Drainage 1.00 1.00 0.00 1.00 0.76 − 0.30 Poor
Blue_FP 1.00 1.00 1.00 1.00 1.00 − 0.59 Moderate
IrrUE 0.33 0.33 0.33 0.75 0.75 0.29 Poor
WP 1.00 1.00 1.00 0.00 0.75 0.30 Poor

IrrEcEff 0.33 0.00 0.00 1.00 1.67 0.98 Very strong
NetInc 1.00 1.00 0.33 0.75 3.38 1.00 Very strong

Y = yield; Blue_FP = blue footprint; IrrUE = irrigation use efficiency; WP = water 
productivity; IrrEcEff = irrigation economic efficiency; NetInc = net income.
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efficiency (Fig. S5b, supplementary material). Beyond this threshold, 
IrrEcEff exhibited a consistent, albeit modest, decline with increasing 
irrigation levels, reaching 9.69 kg €− 1 at the highest water regime 
(approaching 700 mm).

Particularly, the data points at lower irrigation levels (65–195 mm) 
achieved. An IrrEcEff of up to 38.77 kg €− 1 partly due to particularly 
favourable water costs applied by the local irrigation consortium 
compared to the other two price brackets for higher seasonal irrigation 
volumes.

The evaluative framework, based on the outcomes of AquaCrop 
exhibited a “very strong” sensitivity for both profitability-related pa
rameters regarding variations in irrigation volumes (Table 5). However, 
the effects of different irrigation strategies followed contrasting paths: 
an increase in income with higher levels of irrigation and an enhance
ment of economic efficiency with reduced water inputs.

3.4. Multi-objective analysis of processing tomato

The impact of different irrigation strategies (seasonal volumes from 
100 to 700 mm with 100 mm intervals between each management) on 
the evaluative parameters of processing tomato was assessed using truth 
scores (TWi; Eq. 17). TWi allowed for the evaluation of the trade-off 
among various water-related parameters (productivity and economic 
performance, environmental sustainability, water use efficiency, and 
economic efficiency of irrigation) by assigning scores to each variable, 
which can be compared both within and across different irrigation 
scenarios.

Reduced seasonal irrigation volumes (100–200 mm) led to a decline 
in crop productivity, compared with higher water regimes, subsequently 
affecting economic profitability and resulting in negative TWi values 
(Fig. 3). Furthermore, the lowest water supply resulted in a negative TWi 
value (− 0.11) associated with WP, which was only better than the TWi 
recorded for the two highest seasonal irrigation volumes (600 mm and 
700 mm), with TWi values of − 0.37 and − 0.81, respectively.

Based on the TWi score, it emerged that the irrigation regime with 
the lowest water input (100 mm) favored only two variables (Blue_FP 

and IrrEcEff), while it was detrimental to the remaining variables in 
comparison with seasonal irrigation volumes up to 400 mm.

As irrigation regimes with higher water supply were considered (up 
to 600 mm), the positive effect of irrigation on productivity and eco
nomic returns became more evident. However, this improvement was 
more pronounced with a seasonal water supply of 500 mm quantity 
compared to the other water treatments, with TWi increasing from 
negative values at 100 mm and 200 mm of water supply to 0.85 in terms 
of yield and NetInc.

However, with a seasonal water supply exceeding 400 mm, IrrEcEff, 
WP, and IrrUE were negatively affected compared to the other water 
regimes, with TWi scores shifting from positive to negative values 
(Fig. 4).

The best TWi score for drainage was achieved with seasonal irriga
tion volumes of 200 mm and 300 mm, while the worst scores (with 
negative values) were observed for seasonal volumes of 500 mm and 
above (with intermediate values in the remaining two irrigation sce
narios). This indicated that irrigation volumes exceeding 400 mm 
(under the climatic and environmental conditions investigated) resulted 
in water supplies that exceeded the crop’s potential to utilize water, with 
irrigation water not intercepted by the roots.

This finding was also supported by the TWi score for Blue_FP. In fact, 
from 100 mm up to 300 mm of seasonal water supply, TWi recorded 
values between 0.35 and 0.47, which decreased to 0.06 for 400 mm of 
seasonal water, and then dropped to negative values (down to − 1.84 in 
the most abundant irrigation scenario). This indicated that under the 
most irrigated scenarios, the system used more water to produce the 
same unit (1 kg) of product compared to the scenarios with less irriga
tion water.

The TWi assessment strongly discouraged pursuing irrigation vol
umes of 700 mm. In this regard, the scores for productivity and profit
ability variables indicated a worsening of TWi performance compared to 
those obtained with irrigation volumes ranging between 400 mm and 
600 mm.

Additionally, indicators such as IrrUE, WP, and IrrEcEff recorded the 
worst TWi values compared to other irrigation strategies.

Fig. 3. Truth values of normalized index (Score; TWi) for all the water-related parameters (Variable) of the processing tomato cropping system in response to 
seasonal irrigation regimes of a) 100 mm, b) 200 mm, c) 300 mm, and d) 400 mm.
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Each irrigation strategy presented its own set of advantages and 
disadvantages across the variables investigated, making it difficult to 
pinpoint the optimal strategy for maximizing the overall performance of 
processing tomato cultivation. Evaluating these variables in isolation 
proved challenging when trying to integrate yield, water use efficiency, 
environmental sustainability and economic returns into a cohesive 
irrigation management approach. To address this complexity, the Imobj, 
index was employed, offering clear and interpretable insights into the 
effects of different irrigation volumes on the performance of the crop
ping system (Fig. 4d).

According to the multi-aggregate index, the extreme irrigation stra
tegies (100 mm and 700 mm) were judged to be the least sustainable, as 
they led to poor overall system performance. Similarly, even the 600 mm 
irrigation volume, which supplied an ample amount of water, was 
deemed suboptimal based on Imobj evaluations due to its inefficiency and 
negative environmental impacts.

Moderate irrigation volumes of 200 mm and 500 mm provided 
positive Imobj scores, indicating some improvements in productivity but 
not sustainability (500 mm) and sustainability but not productivity (200 
mm).

However, these strategies still fell short compared to the optimal 
irrigation regimes identified through Imobj, which were300 mm and 400 
mm.

Among these two options, the 400 mm irrigation strategy proved to 
be the superior choice, delivering a 13 % improvement in overall system 
performance compared to the 300 mm strategy.

4. Discussion

In this paper, has been proposed a new methodological framework to 
screen the most efficient irrigation strategies based on seasonal water 
supply volumes. This approach considered various aspects of the crop
ping system - productive, environmental, and economic - individually 
and then integrated them into a unified multi-aggregated index. The 
framework was structured as a hierarchical pyramid, with AquaCrop 

outputs at the base and the Imobj index at the top. The robustness of the 
framework’s base was ensured by thorough calibration and validation, 
as demonstrated by the performance of statistical indices such as r, d, 
and NRMSE.

The high values of r and d reflect AquaCrop’s excellent capacity to 
replicate field data across different growth stages, including canopy 
development, biomass accumulation, and fruit development. AquaCrop 
also performed well in simulating SWC, with NRMSE values below 10 %, 
further confirming the model’s accuracy for this parameter.

However, the intrinsic variability of field measurements, particularly 
in the middle to latter stages of tomato crop growth (e.g., variability in 
fruit appearance, senescence, and presence of cull fruits), presented a 
challenge for crop models like AquaCrop, which lack specific options to 
account for these dissimilarities. This contributed to NRMSE values for 
TDM and Y that were higher than optimal but still within acceptable 
range, given the observed variability in field data.

The parameterization of AquaCrop primarily aimed to accurately 
replicate water consumption and final marketable yield (with a good 
alignment between observed and simulated data), upon which the rest of 
the framework was built. Thus, the reliability of AquaCrop was assessed 
in accurately replicating the crop yield and water use, ensuring the 
framework’s suitability for evaluating the productive and economic 
aspects, as well as the environmental sustainability of the processing 
tomato cropping system under different irrigation scenarios.

4.1. Impact of irrigation on water-related processing tomato parameters

The cultivation of processing tomatoes in the Mediterranean region 
is heavily dependent on irrigation due to low rainfall and high evapo
rative demand during the growing season.

The evaluation of irrigation volumes on processing tomato revealed 
critical insights into the balance between productivity, economic returns 
and environmental sustainability.

AquaCrop simulations, conducted across a range of irrigation vol
umes (from a minimum of 65 mm to a maximum of 661 mm), 

Fig. 4. Truth values of normalized index (Score; TWi) for all water-related parameters (Variable) of the processing tomato cropping system in response to seasonal 
irrigation regimes of a) 500 mm, b) 600 mm, c) 700 mm and d) aggregated multi-objective index score (Imobj).
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demonstrated a clear dependency of crop yield and profitability on 
adequate water supply, aligning with similar findings through modelling 
exercises (Rinaldi et al., 2011).

Specifically, irrigation volumes of 400 and beyond mm were iden
tified as beneficial for enhancing crop yields, aligning with previous 
studies that have shown the positive effects of increased water avail
ability (between 400 mm and 600 mm) on tomato productivity in 
Mediterranean environments (Giuliani et al., 2005; Rana et al., 2000).

However, this research goes beyond traditional productivity assess
ments by examining the broader implications of varying irrigation 
strategies. The increase in irrigation volumes did not uniformly translate 
to improvements in all aspects of the cropping system. While higher 
water availability boosted productivity and economic returns, signifi
cant challenges were observed in terms of water use efficiency and 
environmental sustainability.

Our findings indicated that WP and water efficiencies initially 
improved with increased irrigation but plateaued and subsequently 
declined at volumes above 350–400 mm. This suggests a threshold 
beyond which the crop’s capacity to utilize additional water effectively 
diminishes, leading to inefficiencies. Similarly, Katerji et al. (2013) in 
simulated scenarios, experienced increasing values of WP as irrigation 
volumes increased up to approximately 380 mm, after which it stabi
lized until seasonal irrigation volumes of 460 mm, and then decreased 
with higher volumes up to around 500 mm.

Environmental impacts, particularly those related to drainage and 
Blue_FP, showed a marked response to increased irrigation volumes.

Seasonal volumes below 400 mm did not generate drainage losses, 
indicating efficient use of water within the crop’s root zone. However, as 
irrigation volumes exceeded this threshold, a pronounced increase in 
drainage was observed, indicating that the excess water bypassed the 
crop’s uptake capacity and was lost to deeper soil layers. What was 
found under the simulated scenarios was corroborated by observations 
from field experiments, where it was observed that increasing seasonal 
irrigation from 400 mm to 600 mm resulted in almost all the additional 
water being surplus, with drainage of approximately 175 mm (Vázquez 
et al., 2006).

Concerning Blue_FP, our findings aligned with previous studies car
ried out under similar Mediterranean conditions, where increasing 
irrigation volumes beyond crop requirements resulted in a linear rise in 
Blue_FP (Chouchane et al., 2015). The additional water consumed 
beyond optimal volumes was not fully utilized by the crop, leading to 
higher water wastage and environmental burden. In this context, the 
increase in Blue_FP under surplus irrigation (from 500 mm to 700 mm) 
mirrored observations from other Mediterranean cropping systems, 
where excessive irrigation volumes were linked to higher environmental 
footprints without corresponding gains in yield (Ventrella et al., 2018).

This is a critical finding, as it highlights the point at which irrigation 
practices shift from being beneficial to potentially harmful, contrib
uting, for example, to water wastage and increased leaching of nutrients, 
as well as to a water supply that exceeds the actual needs of the crop.

The simulated scenarios demonstrated that as seasonal irrigation 
volumes increased, mainly from limited water inputs up to 500 mm, 
there was a marked increase in the profitability of processing tomato 
cultivation. Beyond this threshold, additional water inputs did not result 
in further increases in NetInc, aligning with findings reported by several 
other authors (Rinaldi et al., 2015; Rinaldi and Ubaldo, 2007; Sarker 
et al., 2016). Moreover, pushing irrigation volumes beyond these levels 
led to drastic reductions in economic efficiency of irrigation, with de
clines of up to 66 % in the most intensive irrigation regime.

While crop productivity and profitability are confined to specific 
spatial and temporal contexts (limited to the farm and the cropping 
year), the consequences of drainage and Blue_FP extend beyond indi
vidual farms and growing seasons, both spatially and temporally.

Excessive drainage and surplus irrigation water relative to the crop’s 
actual needs can lead to nitrate leaching, posing a significant risk of 
groundwater contamination. This leaching can result in the degradation 

of water quality in aquifers, contributing to eutrophication in nearby 
water bodies and negatively impacting aquatic ecosystems (Dupas et al., 
2015).

Furthermore, the waste of irrigation resources due to over-irrigation 
not only diminishes the efficiency of water use but also reduces the 
availability of water for other essential purposes, such as domestic 
consumption and industrial applications. This over-extraction increases 
competition for water resources, exacerbating the challenges associated 
with water scarcity, especially in regions already facing significant 
water stress (Rosa et al., 2020).

Regression analysis is a widely used method in agronomy to quantify 
the relationships between water supply and crop response across various 
variables, as demonstrated in this study. It can provide a general un
derstanding of how dependent variables change in response to inde
pendent variables, such as increased yield with higher irrigation or 
reduced water efficiency with more irrigation. In this context, the non- 
standardized regressions used to assess individual water-related pa
rameters revealed that while increased irrigation volumes enhanced 
yields and economic returns, they did not yield comparable benefits in 
environmental terms.

The lack of clear convergence among various water-related param
eters has made it challenging to identify the optimal balance between 
maximum productivity and environmental sustainability, underscoring 
the inherent trade-offs in irrigation management. Regression analysis 
has previously been applied in a multi-objective approach. Methods like 
Central Composite Design (CCD) require an initial assessment to deter
mine the most appropriate model type (e.g., linear, multiple) and order 
(e.g., quadratic, cubic) to describe the relationships between irrigation 
parameters and crop productivity or water consumption. This process 
involves defining key factors such as the number of levels for each 
variable and positioning axial points, which extend beyond the factorial 
design to capture non-linear relationships. Additionally, statistical in
dicators such as R2, adjusted R2, and lack of fit are used to evaluate the 
model’s accuracy and its suitability for decision-making (Mahmoodi- 
Eshkaftaki and Rafiee, 2020). This complexity poses challenges, 
requiring substantial statistical expertise and time.

The framework developed in this paper aims to reduce the 
complexity of these analyses while maintaining a balance between 
replicability, usability, readability, and reliability of the resulting 
estimates.

4.2. Shifting paradigms: introducing TWi for a holistic evaluation of 
irrigation strategies

The evaluation of irrigation strategies through TWi provides a valu
able tool for understanding the impact of varying irrigation volumes on 
multiple performance metrics. Unlike traditional methods that might 
assess variables in isolation, TWi offers a unified approach to quantify 
how changes in irrigation volumes affect productivity, economic 
returns, and efficiency, enabling a comprehensive comparison across 
different irrigation regimes.

The development of TWi focused on ease of application (using 
standardized polynomial regressions and weighting of the related pa
rameters), robustness of its foundations (utilizing a process model like 
AquaCrop), and its replicability in different pedo-climatic contexts.

Although this approach is based on methods already widely used in 
other studies (irrigation response curves for water-related parameters; 
use of crop simulation models), it integrates them to provide both 
qualitative assessments (the impact of irrigation ranging from strong to 
non-significant on cropping system parameters) and quantitative eval
uations (TWi values).

In this regard, under the pedo-climatic conditions used for field trials 
and replicated in the simulation scenarios, it emerged that irrigation had 
a “very strong” impact on certain variables such as crop productivity and 
profitability. However, on other parameters, such as water use effi
ciencies, the impact of different irrigation regimes was found to be poor. 
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This confirms that parameters like WUE or WP represent the balance 
between gains (such as carbon acquisition or crop yield) and costs (such 
as transpiration and water applied; Wang et al., 2024) and are exten
sively used in simulation models as constant parameters (e.g., CropSyst) 
throughout or for most of the crop growing cycle (e.g., AquaCrop). The 
qualitative assessment provided by TWi offers an initial guide for the 
decision-making process, highlighting which aspects to prioritize when 
balancing the benefits and costs associated with different irrigation re
gimes. Specifically, to streamline the decision-making process con
cerning which cropping system water related parameters need 
evaluation, water use efficiencies could be excluded a priori, as they are 
either unaffected by or minimally impacted by different water supply 
strategies. This preliminary check becomes even more valuable when 
the water-related parameters to be analyzed are numerous. In such 
cases, the proposed framework - highly flexible and adaptable to user 
needs - provides an initial ranking. This ranking offers insights into 
which parameters require greater attention and which can be dis
regarded due to their minimal influence from irrigation regimes.

After this initial screening (if deemed necessary), the framework 
using TWi can quantify how (increasing or decreasing) and to what 
extent the various water-related parameters change with different irri
gation regimes. As previously mentioned, this verification process is 
crucial when the user’s goal is a comprehensive evaluation of the im
pacts of irrigation management on different aspects of the cropping 
system, including productive and economic performance, environ
mental impacts, and water use efficiencies. Indeed, the framework, 
through the algorithms implemented for calculating TWi, assigns a nu
merical value to each parameter of the cropping system, making them 
comparable. These values are obtained through a process of standardi
zation (StVi; Eq. 14) and normalization (WVi; Eq. 15). This approach 
allowed for the quantification of the actual impact of irrigation on each 
water-related parameter, thereby isolating it from other factors that 
could influence the same parameter.

The framework suggested, for example, that the impact of irrigation 
was very strong with respect to production (WVi = 1; Table 6), but 
weaker concerning water use efficiencies (WVi = 0.29 for IrrUE and WVi 
= 0.30 for WP; Table 6).

In fact, the dynamics of WP and IrrUE could be influenced not only by 
irrigation but also by other factors, such as rainfall during the crop cycle 
and canopy development, which affected the amount of water evapo
rated, intercepted and drained.

Moreover, if specific analytical needs require placing more emphasis 
on specific targets (e.g., environmental variables rather than on crop 
productivity and profitability) with respect to the irrigation regime, the 
value of k can be adjusted, accordingly.

The application of unbalanced values of k across different variables 
became even more crucial in the multi objective analysis when aggre
gating the TWi of individual water-related parameters into Imobj for 
screening, ranking, and ultimately optimizing the seasonal irrigation 
volume. The use of the aggregated index facilitated practical decision- 
making by, consolidating diverse criteria into a single scalar value 
while accounting for the complex trade-offs inherent in multi-objective 
optimization. TWi and Imobj offer a more practical and user-friendly 
alternative to other multi-objective functions (i.e. AHP and TOPSIS), 
making it particularly suitable for applications where simplicity, effi
ciency, and clear interpretation of results are paramount. Unlike AHP 
(Ren et al., 2019), which necessitates a complex series of pairwise 
comparisons and intricate calculations to derive weights and consis
tency ratios, TWi simplifies this by leveraging regression-based approach 
and straightforward weighting of parameters that integrate directly with 
simulation outputs, allowing for a more intuitive and less resource- 
intensive evaluation.

Similarly, TOPSIS (Wang et al., 2019) requires the normalization of 
decision matrices, the identification of ideal and negative-ideal solu
tions, and the calculation of distances from these solutions. This multi- 
step process can be complex and time-consuming, especially when 

dealing with large datasets or numerous criteria. The framework pro
posed in this paper streamlines this by providing a single composite 
score for each irrigation scenario based on its impact on various pa
rameters. This not only simplifies the analysis but also enhances the 
clarity of the results, allowing for easier comparison across different 
irrigation strategies.

Under the environmental conditions of the experimental trials and as 
reflected in the simulated irrigation scenarios, assigning equal impor
tance to each variable (k = 5 in Eq. 15), the optimal range of seasonal 
water supply to enhance the overall performance of the system by 
maximizing Imobj, which was found to be between 300 and 400 mm, with 
a slight superiority of the index for the 400 mm scenario compared to 
that of the 300 mm scenario (Fig. 4d).

These results were closely interconnected with the pedo-climatic 
context under which the field trials were carried out, and thus used 
for the calibration of AquaCrop and subsequently for the parameteri
zation of the evaluative framework. For example, factors such as the 
amount of natural water inputs (e.g., rainfall) at the experimental site, 
the hydrogeological characteristics of the soil (including depth, infil
tration capacity, and water storage potential available for the crop), and 
the irrigation volumes specified for different irrigation scenarios all 
influenced AquaCrop’s response. This response was reflected in terms of 
evapotranspiration, plant growth, productivity, as well as any water 
surplus that resulted in drainage and unproductive water use.

Analyzing in depth what led Imobj to indicate this volume as prefer
able (to optimize both agronomic and ecological aspects), it could be 
highlighted that, from an agronomic perspective, 400 mm of seasonal 
water supply returned higher productivity values compared to lower 
irrigation levels, while being in line with those of higher levels (as 
clearly expressed by the TWi values, Figs. 3 and 4).

Considering the ecological aspect (therefore water use efficiencies 
and environmental sustainability), it was highlighted that 400 mm of 
irrigation volume resulted in a neutral situation between the more 
performing irrigation options and the less performing ones in eco- 
friendly terms. It never reached critical TWi values (negative, except 
for a negligible − 0.001 for IrrUE) as recorded at higher irrigation vol
umes but was slightly lower than the values seen with the lower irri
gation regimes (200 mm and 300 mm), even though these were less 
effective in terms of productivity and profitability.

However, as the calculation of Imobj is set up, one can obtain an exact 
value (rather than a range) for the seasonal irrigation volume by using 
an objective function aimed at maximizing Imobj. By building the 
framework within Excel, it is then possible to use the generalized 
reduced gradient code for nonlinear programming in the Excel add-in 
Solver (Lasdon et al., 1978), setting Imobj as the objective cell and 
establishing a maximum irrigation constraint of 700 mm. In this specific 
case, the framework returns an optimized value of 354 mm as the sea
sonal irrigation volume to maximize Imobj.

In cases where one wants to compare not only different irrigation 
scenarios but also identify the best irrigation scenario while empha
sizing certain variables over others, Imobj with an unbalanced k comes 
into play.

To clarify this concept, an additional analysis was conducted, 
emphasizing the importance of water use efficiencies, IrrEcEff, drainage, 
and Blue_FP, while reducing the weight on crop yield and NetInc when 
verifying the irrigation scenario with the highest score in terms of Imobj 
and comparing it with scenarios with balanced importance (k = 5). This 
approach can be useful in circumstances where reducing environmental 
impacts is a priority (e.g. in polluted areas), particularly in addressing 
issues caused by the unproductive use of irrigation water, such as 
drainage, nitrate leaching, impacts on aquifers, and water diversion for 
other sectors (i.e. human consumption and/or industrial use), as high
lighted in section 4.1.

Weights were assigned accordingly, with a value of k equal to 
0 (lowest importance) for yield and NetInc parameters, k equal to 10 
(highest importance) for Blue_FP and IrrEcEff, and k equal to 0 (highest 
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importance) for drainage and the two water efficiencies (set at 0 because 
StVi for these parameters was found to be less than b, see Eq. 15–16).

By prioritizing aspects related to environmental sustainability and 
water use efficiencies, it emerged that the two scenarios with the highest 
irrigation volumes (600 mm and 700 mm) were even more penalizing in 
terms of irrigation resource management, as indicated by even lower 
Imobj values compared to the same scenarios with equal and balanced k 
values (Fig. 5a). Conversely, in the scenarios with lower water supply, 
water savings resulted in an Imobj that shifted from a negative value 
(− 1.64) for seasonal volumes of 100 mm to a positive value (0.46), while 
for a seasonal water amount of 200 mm, Imobj experienced a marked 
improvement, increasing from 0.35 when k was set to 5 to 1.52 when 
unbalanced k values were used in favour of parameters related to water 
savings.

The Imobj values result from the aggregation of TWi specifically for 
each water-related parameter of the cropping system. The analysis of 
TWi for instance, comparing the scenario of 400 mm (with k = 5) versus 
300 mm (with unbalanced k values for prioritizing the water saving), 
provided a clear picture of the effect of different k values on system 
score. (Fig. 5b). The TWi values for yield and NetInc under the 400 mm 
water supply scenario were significantly higher than those of the other 
parameters, despite almost none of these parameters reaching critical 
scores. As a result, the Imobj was higher for the 400 mm scenario 
compared to the 300 mm seasonal irrigation volume scenario with 
balanced k, even though the environmental sustainability parameters 
were superior in the latter. However, when comparing the 400 mm 
scenario with the 300 mm scenario, the Imobj score for the 300 mm 
scenario was higher, indicating greater environmental sustainability. 
This was supported by particularly favourable TWi scores for environ
mental parameters and water use efficiency in the 300 mm scenario 
compared to the 400 mm scenario, despite a substantial reduction in 
scores for productivity and profitability with 300 mm of water supply.

Although the information presented thus far is based on the indus
trial tomato cropping system cultivated in Capitanata and calibrated on 
climatic trends from several years closely correlated with the experi
mental fields, the framework is highly adaptable to specific water 
resource and pedo-climatic conditions, as well as to various herbaceous 
crops. These conditions - such as rainfall inputs and soil type - impact the 
response of the first layer of the system (namely, the AquaCrop simu
lations), which subsequently influences the upper layers and ultimately 
the final output of the system. In our study, the results obtained and the 
associated discussions were based on an average trend spread over 
multiple simulated crop years, providing a general indication for opti
mizing seasonal irrigation volumes rather than offering specific rec
ommendations for individual years. Additionally, the modularity of the 
response based on parameter k allows for the adaptation of the 

framework to meet specific needs, such as prioritizing water savings 
over maximum productivity in contexts with limited water resources.

Therefore, any productive agricultural system can be fed into this 
new multi-objective tool, as it does not have a rigid structure (the 
AquaCrop crop model can be replaced by other process models or utilize 
independent experimental data if sufficiently numerous to adequately 
support the regression analysis) and is adaptable to specific analytical 
needs (it is possible to add additional parameters of the cropping system 
beyond those analyzed in this paper). Moreover, all analyses and 
equations presented in the text are easily importable and executable in 
the most common electronic spreadsheets, as well as the processing of all 
outputs derived from these analyses (i.e., parameters of the regression 
models) to arrive at TWi and Imobj, thereby expanding the fields of 
application to various production systems.

In any case, certain limitations must be acknowledged when select
ing the mechanistic model to replicate real scenarios. In our study, 
compared to more complex simulation models, the lower complexity of 
AquaCrop - due to the limited number of parameters and coefficients 
that need to be calibrated - makes it an ideal choice as a balanced 
compromise between ease of use and the adequacy of the outputs 
necessary to form the foundational basis of the proposed framework (i. 
e., the response of water-related parameters to seasonal irrigation vol
umes). However, since AquaCrop is essentially based on water dynamics 
and crop productivity, it lacks certain features that account for the im
pacts of climate change on crop responses. For instance, heat waves - 
which are expected to become increasingly frequent and intense during 
the growing cycle of spring-summer crops like tomatoes - can signifi
cantly reduce yield under field conditions and compromise the accuracy 
of model’s simulations.

5. Conclusions

The study presented a comprehensive framework for evaluating the 
impact of irrigation strategies on processing tomato cultivation in 
Mediterranean environments. By combining AquaCrop simulations with 
a weighted empirical model, the framework identified optimal irrigation 
volumes that balance productivity, profitability, water use efficiency, 
and environmental sustainability. The results showed that seasonal 
irrigation volumes around 400 mm optimize overall system perfor
mance, while volumes closer to 300 mm may be preferable when 
prioritizing water conservation and environmental sustainability 
without compromising profitability.

This approach emphasizes the importance of integrating multiple 
parameters to provide a balanced assessment of irrigation strategies.

Limitations of this research included the specific pedo-climatic 
context in which the framework was developed and calibrated, which 

Fig. 5. Comparison between a) the aggregated multi-objective index score (Imobj) resulting from application of equal (light blue bars) k values (see Eq. 15–16) and 
unbalanced k values (white bars) and b) the related TWi (Score) when applying 400 mm (k = 5; dark blue bars), 300 mm (k = 5; light blue bars) and 300 mm 
(unbalanced k; white bars) of seasonal water supply. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

P. Garofalo et al.                                                                                                                                                                                                                               Agricultural Systems 223 (2025) 104198 

15 



may limit its generalizability to other regions. The findings from this 
paper can be adapted to similar climatic contexts of the study area, but 
in different cultivation regions, recalibration of the proposed framework 
will be required (although the layers that constitute it remain un
changed) to obtain responses tailored to specific pedo-climatic contexts. 
Moreover, validation of the framework is necessary under climate 
change scenarios, where the impacts of varying environmental condi
tions (e.g., heat waves) must be carefully evaluated due to the lack of 
specific algorithms implemented in AquaCrop and other simulation 
models to replicate such conditions. Furthermore, the integration of this 
approach into a dedicated Decision Support System (DSS) remains an 
ongoing development to enhance practical application. Currently, the 
spreadsheet, where the fully functional framework is structured, can be 
provided upon request to the authors.
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