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Abstract
Point cloud registration is a fundamental task in 3D reconstruction and environment perception. We explore the performance
of modern Deep Learning-based registration techniques, in particular Deep Global Registration (DGR) and Learning Multi-
view Registration (LMVR), on an outdoor real world data consisting of thousands of range maps of a building acquired by a
Velodyne LIDAR mounted on a drone. We used these pairwise registration methods in a sequential pipeline to obtain an initial
rough registration. The output of this pipeline can be further globally refined. This simple registration pipeline allow us to
assess if these modern methods are able to deal with this low quality data. Our experiments demonstrated that, despite some
design choices adopted to take into account the peculiarities of the data, more work is required to improve the results of the
registration.

CCS Concepts
• Computing methodologies → Perception;

1. Introduction

Point cloud data is becoming increasingly important to represent
the 3D real world due to a significant decrease in the cost of 3D
scanning sensors, especially those designed for automotive indus-
try like Velodyne LIDAR and other devices designed for games
and virtual presence, such as for example, Kinect (structured light
IR) and Zed camera (stereo matching). However, the 3D scanning
sensors capture the data only in a limited view range. Hence, the
desired object needs to be scanned from different views and then
an algorithm is required to align all the scans into a complete ob-
ject or 3D scene. This process is called 3D registration. It is a fun-
damental task in 3D reconstruction and 3D perception for robots
and autonomous cars. The aim of 3D registration is to estimate the
transformation to align a reference point cloud with another one.
By applying the transformation matrices progressively to all the
scans of the same scene, a 3D object/scene is built. Typically, the
registration error accumulates during these transformations and a
global registration is required at the end.

A pairwise point cloud registration consists of four main steps.
The first step is to extract feature points that are notable, in some
aspect, in both scans. This step has been widely studied in litera-
ture and it can be done through hand-crafted features like spin im-
ages [JH99] as well as deep learning based features like Fully Con-
volutional Geometric Feature (FCGF) [FA21]. The second step is
to match feature points and build correspondences between the fea-
tures of both scans. The third step is to separate inliers and outliers
in the big pool of correspondences. This is done mostly using RAN-

dom SAmple Consensus (RANSAC) [AMCO08,SWK07]. The last
step is to finalise the alignment considering the whole surface and
estimating the final transformation matrix.

In this paper, we explore the performance of modern state of
the art Deep Learning based point cloud registration methods on
challenging data acquired in the ambit of the ENCORE project
(http://encorebim.eu/). This project is devoted to create
new tools and instruments to support the renovation process of ex-
isting building aimed to improve energy efficiency and comfort pa-
rameters. One of the part of the project involves rapid acquisition
of existing buildings. The data have been acquired using a Velo-
dyne LIDAR mounted on a drone, the range maps are collected in
outdoor scenario. Such data consists of a large number of range
maps acquired sequentially during the flight of the drone around
a building. We applied Deep Global Registration (DGR) [CDK20]
and Learning Multi-View Registration (LMVR) [GZW∗20] for the
processing and registration of these sequential range maps because
these are both global registration methods which have achieved
state of the art results on real world datasets e.g 3D Match Bench-
mark [ZSN∗17], ScanNet [DCS∗17] etc. and the conventional reg-
istration approaches fail to deliver any result on our dataset.

Figure 1 shows the visualisation of a part of the acquired range
maps in MeshLab [CRC∗11] and give a better understanding of
our research problem. Even if the sequence of range maps is pre-
aligned, the pre-alignment is not so good, for example we can ob-
serve mis-alignments in some regions. Our final goal is to reduce
the registration error of these range maps. Here, since we are in the
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we adopt a simple registration scheme, described in Section 3. This
approach requires a global registration step at the end, but is simple
and it is useful to understand the improvement of the registration
given by using modern Deep Learning-based registration methods.

Figure 1: A short sequence of range maps acquired by a drone
equipped with a velodyne. Although this sequence is pre-aligned
there are large margins of improvement. The zoom-in shows that
the surface of the wall appears to be over one meter ’thick’ in some
regions, demonstrating the presence of significant registration er-
rors.

2. Related Work

Point cloud registration methods can be broadly classified either as
a local registration or a global registration. Early works introduced
local registration methods which work only if the transformation
between the point clouds is small and the area of overlap between
the point clouds is large. One of the most popular local registration
algorithms is Iterative Closest Point (ICP). Three similar papers re-
lated to this algorithm were published in the same year of 1992. The
most basic algorithm is point to point ICP [BM92] which builds
correspondence for each point using Euclidean distance and com-
putes transformation such that the distance between the correspon-
dent points is minimized. Such an objective function makes it very
sensitive towards outliers. Chen and Medioni [CM91] specifically
considered the problem of aligning data for object modeling. Their
approach considers model range map data to be planar while sensor
range map data to be points and hence, introduces a point to plane
variant of ICP. Zhang article considered a similar approach to that
of [BM92] and also introduced a robust method of outlier rejection
in the correspondence phase of the algorithm. A more generalized
version is plane to plane ICP [SHT09] that considers both scans to
be locally planar and is more robust to incorrect correspondences.
Plane to plane ICP outperforms standard ICP and point to plane
ICP while maintaining the speed and simplicity of other ICP algo-
rithms.

Early work in the area of global registration comes from Li and
Hartley [LH07] who combined Branch and Bound optimization
[BMM99] with Lipschitz optimization [HJ95]. PointNetLK mod-
ifies the classical Lukas & Kanade (LK) algorithm [LK∗81] on top
of the PointNet [QSMG17] classification model and unrolls both of
them into a single recurrent trainable neural network for the point
cloud registration task. DeepICP [LWZ∗19] is an end-to-end deep

neural network for 3D point cloud registration. The network firstly
generates correspondences using learned matched probabilities and
then creates an aligned point cloud. 3DRegNet [PRG∗20] presented
a Procrustes [Gow75] approach using SVD to estimate the transfor-
mation. RPM-Net [Gow75] extracts hybrid features learned from
both spatial coordinates and local geometry and further introduces
a secondary network to predict optimal annealing parameters.

3. Methodology

The paper aims to present our experimental results of modern Deep
Learning based point cloud registration methods on the challenging
outdoor real-world dataset previously mentioned. In the following,
we describe the two methods used in our tests and the registration
pipeline which exploits them to assess their performance in this
scenario.

3.1. Deep Global Registration

Deep Global Registration (DGR) is a differentiable framework for
pairwise registration of 3D scans. First of all, it extracts deep learn-
ing based Fully Convolutional Geometric Features (FCGF) [FA21]
for both scans. Points which do not satisfy transformation equa-
tion are filtered out. Then it uses a U-Net structure that consists
of residual blocks between strided 6D convolutions to predict cor-
respondence probabilities. The U-Net structure formulates inliers
as a foreground segmentation problem and separates inliers cor-
respondences from outliers. Then a weighted Procrustes method
minimises the translation and rotation errors to give a transforma-
tion matrix. It assigns a weight of zero to non-overlapped region
which leads to a significant reduction in the computational com-
plexity. Finally a fine tuning model reduces robust loss function in
a globally consistent manner.

3.2. Learning Multi-View Registration

Learning Multi-view registration (LMVR) formulates the conven-
tional two stage technique as an end-end neural network. During
the forward pass, it estimates pairwise transformation parameters
as well as the transformation synchronization. First of all, it ex-
tracts FCGF features of all points clouds and feeds these features
into a softNN layer to calculate the correspondences between the
point clouds. These correspondences are passed through a series
of registration blocks. The initial registration block outputs the
per-correspondence weights and initial transformation parameters.
These initial weights and parameters are passed into the several
iterations in a registration refinement. After each iteration, the es-
timated transformation parameters are used to pre-align the corre-
spondences concatenated with the weights from previous iteration.
The outputs from these iteration build a graph

3.3. Registration pipeline

The block diagram of the proposed pipeline is shown in Figure 2.
This pipeline takes into account the fact that the range maps have
been collected sequentially. The range maps have been acquired at a
very high sampling rate and their initial position and orientation are
quite close to each other. Hence, most of the methods consider the
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two consecutive range maps as the same. Therefore, in our pipeline,
the range maps are processed using an interval of k range maps. We
start with the pair i and i+ k and then proceed towards the range
map i+2k, and so on.

Figure 2: Block diagram of the proposed methodology

As a first step, we measure the alignment error between the two
input range maps. Then pairwise registration is performed with one
of the two networks in order to calculate the transformation ma-
trix M. The second range map is transformed according to M to
align with the first range map. At this point, we measure the align-
ment error again. If the post-registration alignment error is lower
than the the pre-registration alignment error, it indicates a good
registration and then we accumulate the two range maps into a sin-
gle range map. However if, the post-registration alignment error is
higher than the the pre-registration alignment error, the registration
operation has made our alignment worse and hence, we do not up-
date our range maps and discard the second range map. Finally, the
pipeline is executed again with a new range map process. Hence,
the range map 1 is always updated with the current results and the
registration map 2 is the range map i+hk where h increases during
the processing of the sequence.

The next section details how the registration error is evaluated.

3.4. Alignment error metric

In order to evaluate the registration error, we use a simple error
metric based on the distance between the two range maps weighted
by the corresponding normals. Consider the scenario shown in Fig-
ure 3. Blue circles indicate one range map

−→
Pa and red circles indi-

cate another range map
−→
Pb .

Every range map consists of a cluster of 3D points. For each
point, first, we find the nearest point in the other range map. The
distance vector between the two points is calculated.

d = ‖−−−−→Pa−Pb‖2 (
−→
N Pa ·

−→
N Pb) (1)

where,
−→
N Pa and

−→
N Pb are normals to the points. The magnitude

of this distance vector represents the alignment error. The normals
are used to penalize the pairing of points belonging to different por-
tions of the wall around the corners. This is particularly important
for this type of dataset because corners, such as those on the con-
tours of doors and windows and those formed by different walls
are essentially the only features of the geometry. Note that this is

Figure 3: Illustration of two range maps to measure alignment
error.

especially true for LIDARs such as Velodyne, designed for the au-
tomotive and similar applications and hence with a relatively poor
sampling density.

For this reason the error calculation is performed only consider-
ing the region around the corners, which are found by segmenting
the point cloud in planar regions and then finding the geometric
intersection of the adjacent ones (see [CSAD04]).

We expect this distance error between the range maps to decrease
after point cloud registration.

4. Implementation and Experimental Setup

As pointed in the Section. 1, we are applying point cloud registra-
tion techniques on the ENCORE dataset. The data consists of 7290
point clouds sampled in a sequential manner using a Velodyne LI-
DAR. DGR and LMVR, both require Minkowski Engine [CGS19]
to be installed. Open3D [ZPK18] library is used for reading, vi-
sualising and processing point cloud files. Installing correct ver-
sions of the libraries and CUDA is very important to avoid errors.
Our experimental setup consists of Ubuntu 18 running Python 3.8,
CUDA 10.2, cuDNN 7.6.5, Open3D version 0.10.0, PyTorch 1.7.1
and Minkowski Engine 0.4.3. Installation of CUDA is mandatory
for Minkowski Engine installation. Windows is not currently sup-
ported for Minkowski Engine. Hence, ubuntu and NVIDIA GPU
are recommended for working with Minkowski Engine.

We used 8GB NVIDIA RTX 2070 graphics card and each point
cloud has more than 10000 points. As previously explained, during
the processing of the sequence of range maps, after a good align-
ment the two point clouds are accumulated into a single point cloud.
With this approach we face memory error issue after few updates,
but this is a minor problem since we want to assess the capability of
the modern deep learning registration methods, and not to process
the entire sequence.
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5. Results and Discussions

We started our experiments with conventional registration methods
and moved on to more advanced and complex approaches. The next
sub-sections give details of their performances.

5.1. Conventional registration methods

We started our experiments by applying Open3D [ZPK18] imple-
mentations of ICP variants [BM92, CM91, SHT09] on our pre-
aligned sequences. However, these approaches did not give us any
good registration results. The transformation matrix turns out to
be a unity matrix indicating that these methods consider the point
clouds being already aligned. So we decided to evaluate more ad-
vanced and recent registrations methods on our data.

5.2. Deep learning based registration methods

We applied DGR and LMVR on our dataset and plotted the dis-
tance alignment error before and after registration. Both registra-
tion algorithms give very similar plots. Figure 4 shows alignment
error before and after registration by applying LMVR on the data
using a step of k = 50. The plot shows that at the start point clouds
are well aligned and hence, distance error before and after registra-
tion is similar. But by applying LMVR, alignment of reaming point
clouds is significantly improved and alignment error is reduced sig-
nificantly after doing the registration.

Figure 4: Alignment error before and after doing the LMVR regis-
tration on a series of point clouds

The registration algorithm gives good quality results if there is a
large amount of intersection of point clouds. An example is shown
in Figure 5 in which registration algorithm gives very well aligned
point clouds.

At the same time, our experiments indicate that the two networks
do not produce reliable results sometimes. Even by varying k, both
DGR and LMVR fail sometimes to correctly align the input range
maps. It can be due to lower intersection between the point cloud
regions and the low resolution feature of the data. Our idea is to use
our alignment error metric to be able to detect such poor quality
registrations and discard them. Although the metric 1 is typically
used in ICP to better evaluate the alignment in presence of corners,
it works mostly when the range maps are reasonably aligned, oth-
erwise this measure is not reliable. Hence when network fails the

Figure 5: An example of a good quality registration.

registration, it gives completely random results, and hence the nor-
mal weights drive to a wrong evaluation of the registration quality.
An example is shown in Figure 6; although the distance calculated
using 1 between the range maps is reduced after DGR registration,
it is easy to observe that the registration has failed.

Figure 6: An example of a poor quality registration in which our
alignment error metric fails to consider it a poor quality registra-
tion

6. Conclusions and Future recommendations

In this paper, we reported the preliminary results of the ongoing
effort to explore the performance of modern deep learning based
point cloud registration methods on an outdoor real world dataset.
The quality of registration is poor because the scenario of our
dataset is very different from the typical datasets on which these
methods have been trained. Our dataset is challenging because of
its low resolution, non-uniform distribution of the points, and other
problems such as the presence of flat surfaces and corners. How-
ever, we believe that a better evaluation of the registration error
will help us to correctly discard wrongly aligned pairs and drive to
a dataset with a better rough registration.
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