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Abstract
The paper describes the results of some benchmarking tests aimed

to verify and validate all the solutions implemented during the deploy-
ment of a HPC heterogeneous resource acquired by the data center of
the University of Naples "Federico II" thanks to the funds of the IBiSCo
(Infrastructure for Big data and Scientific COmputing) Italian National
Project. The first set of benchmarks evaluates how the network inter-
connection technologies affect the inter- and intra-node communications
of GP-GPU workloads. The second set evaluates the performance of the
Lustre parallel file system to ensure an efficient environment for data-
intensive applications. The tests, especially those that analyze the lower
level of the middleware (micro-benchmarks), seem to confirm the ability
of the resource to guarantee the expected performance.

Keywords: Benchmarking High Performance Computing Heteroge-
neous Computing GP-GPU InfiniBand NVLink Lustre CUDA RDMA
UCX MPI

1 Introduction
In the first half of the 1990s, Thomas Sterling and Donald Becker built a cluster
of networked computers, called Beowulf [35], as an alternative to large supercom-
puters. At the time, their idea of providing “Commodity Off The Shelf (COTS)”
based systems has been a great success. This idea is still valid and can inspire
the realization of HPC computing systems, whose computational power is far
from that of the most powerful computers in the world, but whose architecture
is already compliant to incoming exascale era systems (e.g., see The Exascale
Computing Project (ECP) of U.S. Department of Energy [32]). Most likely,
these systems will respond to the following description: multi-node systems,
connected by high performance networks, where each node will have a high
level of internal parallelism which will be also made available by technologies
such as NVIDIA®and Intel®Xe GPUs.

In such context, the data center of the University of Naples "Federico II"
acquired, thanks to the IBiSCo (Infrastructure for Big data and Scientific COm-
puting) project funds [28], a heterogeneous computational resource[2]. The use
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of heterogeneous features aims to ensure the best use of resources for differ-
ent scenarios applications, such as distributed memory computing, GP-GPU
(General-Purpose computing on Graphics Processing Units) accelerated work-
loads and their combinations (e.g., see [3, 4, 6, 7, 10]).

In the context of High Performance Computing, it is a common practice to
evaluate performance (in terms of speedup, throughput, I/O speed, etc.) as a
response to the HPC workload [17]. For this purpose, there are different suites
of benchmarks, among the main ones:

• The Standard Performance Evaluation Corporation (SPEC)[31] is a con-
sortium whose goals are to provide the industry with performance measurement
tools since 1994. The development of the benchmark suites includes tools to an-
alyze all the components of computing systems: from processors to compilers,
from interconnects to run-time libraries. In the context of HPC systems can
be considered: the SPECmpi for evaluating MPI-parallel performance across a
wide range of cluster and SMP hardware emphasizing the performance of the
type of computer processor, the number of computer processors, the communi-
cation interconnect, and the shared file system. The SPEChpc provides a set
of application benchmark suites using a comprehensive measure of real-world
performance offering well-selected science and engineering codes that are repre-
sentative of HPC workloads.

• The HPC Challenge (HPCC) benchmark suite [15] was developed to pro-
vide a set of standardized hardware probes based on commonly occurring com-
putational software kernels such as some parallel BLAS operations 1 as well as
tools to analyze communications performance, attempting to span from high to
low-level components of an HPC system.

• The CORAL Benchmarks: CORAL is a U.S. Department of Energy (DOE)
project that will culminate in three ultra-high performance supercomputers at
Lawrence Livermore, Oak Ridge, and Argonne national laboratories. In such
context, a suite of benchmarks was developed to evaluate performances on super-
computers deployed during the project [8]. CORAL Benchmark categories rep-
resent DOE Workloads and among them should be considered: the Throughput
Benchmarks representing full applications; The Skeleton Benchmarks investigat-
ing various platform characteristics including network performance, threading
overheads, I/O, memory, system software, and programming models.

The benchmarks described above use one of three possible strategies: high-
level, low-level, and hybrid. In the first case, the benchmarks evaluate perfor-
mance by testing the application-level components; in the second case, they test
low-level system functions. The strategy we use is “hybrid” also according to
the approach described in [21, 23]: the tests evaluate the performance of the
highest level components (macro benchmark tests), which can be considered
tests from “the applications point of view”; down to the evaluation of the lowest
level components (micro benchmark test).

1The BLAS (Basic Linear Algebra Subprograms) are routines that provide optimized stan-
dard building blocks for performing basic vector and matrix operations. Some vendors supply
its optimized implementation of the BLAS.
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Our work tests and analyzes all the IBiSCo cluster components. The first
set of benchmarks evaluates how the network interconnection technologies affect
the inter- and intra-node communications of GP-GPU workloads. The second
set evaluates the performance of the Lustre parallel file system to ensure efficient
access to data storage which is a critical issue for data-intensive applications.
In Section 2 we describe the cluster architecture and its middleware layer which
implements all the necessary software tools for communication and data storage
services. Section 3 shows tests carried out to validate what is described in the
previous section. In section 4 we discuss positive aspects, observed deficiencies,
and suggestions on how to improve the obtained results. The conclusion (Section
5) will summarize the contents of the work.

2 The Architecture of the Hybrid High Perfor-
mance Computing Cluster

The architecture of this cluster is depicted as a set of multiple layers (Figure 1).
The highest layer of the architecture consists of the application layer. The low-
est one consists of the hardware resources, which comprises 32 computing nodes
and 4 storage nodes. In particular, it provides 1) 128 NVIDIA Volta GPUs and
about 1600 physical cores (from Intel Gen 2 Xeon Gold CPUs) distributed on 32
nodes whose connections are based on InfiniBand [18] and NVLink2 [12] tech-
nologies; 2) 320 TB distributed on 4 storage nodes connected to the computing
nodes by an InfiniBand network. The top one is the application layer which is
exposed to users. The efficient use of cluster technologies is made possible by a
software layer interposed between the lowest and the highest levels, namely the
middleware, which is based on a combination of the following technologies:

1. OpenFabrics Enterprise Distribution (OFED) [26] for drivers and libraries
needed by the Mellanox InfiniBand network cards.

2. CUDA Toolkit [25] for drivers, libraries and, development environments,
enables NVIDA GP-GPU.

3. “MPI-CUDA aware” [22] implementation of OpenMPI [27] through the
UCX open-source framework [29].

4. Lustre [33] - a distributed, parallel and open source file system - provides
high performance access to storage resources.

Bandwidth and latency in message exchange among processes is one of the
issues preventing the full exploitation of GP-GPU potential. In this regard,
NVIDIA introduced CUDA Inter-Process Copy (IPC) [19] and GPUDirect Re-
mote Direct Memory Access (RDMA) [14] technologies for intra- and inter-node
GPU process communications to make this solution available for InfiniBand-
based clusters. To optimize inter-node GPU-to-GPU communications for small
messages, NVIDIA offers NVIDIA gdrcopy [30]. To combine these technologies
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Figure 1: The Layered Cluster Architecture

with communication libraries (i.e., OpenMPI), we used the UCX open-source
framework. UCX is a communication framework optimized for modern, high-
bandwidth, low-latency networks. It exposes a set of abstract communication
primitives that automatically choose the best available hardware resources. Sup-
ported technologies include RDMA (both InfiniBand and RoCE), TCP, GPU,
shared memory, and atomic network operations.

As previously stated, a key aspect of high-performance computing is the ef-
ficient delivery of data to and from the computing nodes. The implementation
adopted in the IBiSCo cluster is based on Lustre, a high-performance, parallel,
and distributed file system. High-performance is guaranteed by Lustre flexibil-
ity in supporting multiple storage technologies, from the common ones based
on Ethernet and TCP/IP to those with high-speed and low latency such as In-
finiBand, RDMA and RoCE. Storage nodes host the OSTs2 for the two Lustre
exposed file systems, one for user home directories and one for jobs scratch area.
In particular, the home file system is characterized by large disk space needs
and fault tolerance, therefore it is made up of RAID-5 SAS HDD array. On the
other hand, the scratch area needs fast disk access times and no redundancy
requirement, hence it is hosted on SATA SSD disks.

3 Cluster Benchmarking
We have created a set of micro- and macro-benchmarks to study communication
and access to resources. As for the communication tests: the micro-benchmarks
have highlighted some limitations, mainly because they work with either very
small or very large problems. For both intra- and inter-node communication,
although peak performance is achieved (50 and 10 GB / s respectively), the
tests show sudden increases. Growth should be "softened" by decreasing in-
termediate peaks. The discontinuity is due to several factors: first of all to
the technologies used, such as the GDRCopy, which works with small message
sizes. The growth of the message size leads to an automatic deactivation of
the technology. This feature is essential. Depending on the type of application
that uses the resources, it may be more appropriate to use one configuration
of the benchmarking algorithm than another. For this reason, the choice of a

2The Lustre Object Storage Targets (OST) are the block devices on which data is dis-
tributed
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benchmark that keeps pace with current technologies is indispensable for the
evaluation of the cluster. As for the macro-benchmarks, the real limitation is
given by Linpack: all communications to and from GPU devices are obtained
using the PCI Channel and not NVLink (since the implementation of these
benchmarks does not provide for GPU-to-GPU), this implies that the cluster
resources are not fully exploited. Summing up, benchmark results are provided
which should be useful for:

1. filling the lack of deep understanding on how modern GP-GPU can be
connected and the actual impact of “state-of-the-art” hardware/software
technologies on multi-GPU application performance;

2. evaluating the usage of parallel file systems in applications with intensive
parallel data access.

3.1 Communication and computation
3.1.1 Micro-benchmark tests

We evaluate the basic characteristics of the four GPU interconnections focus-
ing on both MPI Peer-to-Peer (P2P) and MPI Collective (CL) GPU-TO-GPU
communication patterns. Both for intra- and inter-node P2P, we pay special
attention to assessing the communication technologies in terms of latency and
bandwidth on message size. Eventually, we evaluate the latency of the collective
communication patterns on both intra- and inter-node scenarios. The tool used
for measuring latency and bandwidth is the CUDA-aware version of MPI OSU
Micro-Benchmarks [5] which evaluates latency and bandwidth of P2P tests as
follows:

Latency Test: the latency tests are performed in a ping-pong fashion, by
using blocking versions of the MPI functions (MPI_Send and MPI_Recv).
The sender sends a message with certain data size and waits for a reply.
The recipient receives the message and returns a response with the same
data size. Many iterations of this test are performed and average one-way
latency numbers are obtained3.

Bandwidth Test: Non-blocking versions of the MPI functions (MPI_Isend
and MPI_Irecv) are used in this case. The sender sends a fixed number of
consecutive messages to the recipient and waits for its reply. The recipient
sends the reply only after all these messages are received. This process is
repeated for several iterations and the bandwidth is calculated based on
elapsed time (until the sender receives the reply from the recipient) and
the number of bytes sent by the sender. The goal of this bandwidth test
is to determine the maximum sustained data rate which can be achieved
at thethe network level.

3We used the default number of iterations that the benchmark provides: 1000 iterations
for small messages and 100 iterations for large messages.
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Conversely, the latency of collective communications is measured via the fol-
lowing procedure: fixing a message size, many calls of MPI_BCast, MPI_Gather,
MPI_Reduce (with MPI_SUM operation type) functions are carried out to com-
pute time spent in a single call. All those time values are averaged to compute
the latency number of the Broadcast, Gather, and Reduce tests respectively
for each considered message size.

All the tests described above are carried out to evaluate the performance of
both intra- and inter-node communications of the cluster where different combi-
nations of RDMA, IPC, and gdrcopy are used as summarized in the description
of Figure 2. Plots of trends (as a function of message size) for P2P intra- and
inter-node communications are respectively reported in Figure 2-(a) and 2-(b).
As a term of comparison, Figure 2-(c) shows the behavior of P2P Host-to-Host
communications. In all latency plots, we show, as an error bar, the value of σ
where σ

2 is the Sample Variance 4 of the measured latency times used for each
mean computation: just in very few cases the variance appears significant).

In Figure 3-(a) and 3-(b) are respectively reported plots (as a function of
message size) for collective intra- and inter-node communications where different
combinations of RDMA, IPC, and gdrcopy are used. During the tests, in the
case of intra-node collective communications, all the tasks are spawned on a
single node. Conversely, when inter-node collective communication is considered
one task is spawned on a single node. Tests are performed with different task
numbers P . Lines in the plots representing tests executed on P = 2, 3, 4 are
marked respectively with ■, ◆ and ▼ symbols.

All plots use a logarithmic scale with base 2 and 10 respectively for the x
and y coordinate axis. From Figures 2 and 3, we can state the following:

• Significant differences can be found between the performance of intra- and
inter-node P2P communications. The intra-node communication seems to
reach the maximum bandwidth performance of 50GB/s, guaranteed by
the NVLink technology, already with medium-sized messages. The same
behavior cannot be witnessed during inter-node communication since the
performance (about 10GB/s) is comparable to the peak performance of
the InfiniBand technology achieved only transmitting large-sized messages.

• The use of gdrcopy technology (see blue and green lines of all the plots in
Figure 2-(a) and 2-(b)) significantly improves the performance of P2P
communications with small messages. A combination of gdrcopy and
GPUDirect RDMA technologies seems to be the best choice to improve
performance in all the tested configurations: it is more noticeable in P2P
inter-node communications (see green lines of all the plots in Figure 2-(a)
and 2-(b)) although the best performance for large messages is obtained
using the GPUDirect RDMA without gdrcopy (see green lines of all the
plots in Figure 2-(b)).

4The following formula is used to compute the Sample Variance σ
2 of a set of n values

{xi}i=1,...,n whose mean value is x̄: σ
2
=

∑n−1
i=1 (xi−x̄)2

n−1
.
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Figure 2: Communication and computation micro-benchmarks results. Latency
and bandwidth of P2P GPU-TO-GPU intra-node (a) and inter-node (b) commu-
nication and of Host-to-Host (c) communication on the considered sub-clusters

• All the configurations tested show equivalent performance when P2P intra-
node communication uses large messages (see Figure 2-(a)).

• The sustainable performance values for GPU-TO-GPU inter-node commu-
nications seem to be, in most cases, about a tenth of the value measured
for Host-to-Host communications, which reach the InfiniBand peak per-
formance (see Figure 2-(c)).

• No particularly significant changes can be observed in the Collective Re-
duce test if different combinations of RDMA, IPC, and gdrcopy are used.
These differences seem more noticeable in inter-node communications (see
Figure 3-(b))

• In the other Collective Tests certain differences, can only be found for small
message sizes when different combinations of RDMA, IPC, and gdrcopy
are used.
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Figure 3: Communication and computation micro-benchmarks results. Latency
of GPU-to-GPU collective communications on the cluster: intra-node (a) and
inter-node (b) communications

3.1.2 Macro-benchmark tests

To evaluate how the implemented multi-GPU heterogeneous computational re-
source responds to a typical parallel workload from Scientific Computing, the
CUDA-Aware version of the High Performance Linpack (HPL) Benchmark is
used. The HPL benchmark [1] is a software package that solves a (random)
dense linear system in double precision arithmetic on distributed-memory ar-
chitectures. The HPL package provides a timing program to quantify the time
it took to compute it. The best performance evaluation, in terms of thethe num-
ber of floating operations per second, is currently used to compile the list of the
most powerful computers in the world [34]. The CUDA-Aware HPL benchmark
[11] uses CUDA libraries to accelerate the HPL benchmark on heterogeneous
clusters, where both CPUs and GPUs are used with minor or no modifications
to the source code of HPL. A host library intercepts the calls to BLAS DGEMM
and DTRSM procedures and executes them simultaneously on both GPUs and
CPU cores. However, the benchmark has a limit: all communications to and
from GPU devices are performed using the PCI channel.

In Figure 4 we show the results of the CUDA-Aware HPL benchmark exe-
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cuted on some nodes of the IBiSCo cluster: the number of total MPI tasks is
4P where P is the number of involved nodes. The tests are performed using
different values for the problem dimension N . The graphs show:

T (P,N): The execution time of the benchmark as a function of the number
P of nodes for some values of N ;

S (P,N): The Speed-Up of the execution as a function of the number P of
nodes for some values of N . So, S (P,N) = T (1,N)

T (P,N) ;

SP (P,N): The Sustained Performance (expressed in GigaFLOPS) is obtained
during the execution as a function of the problem dimension N for some
values of P . It represents the number of Floating Point operations exe-
cutable by an algorithm in a time range;

SPF (P,N): The fraction of Peak Performance is obtained during the exe-
cution as a function of the problem dimension N for some values of P .
So, SPF (P,N) = SP (P,N)

PP (P ) where PP (P ) is the Peak Performance of P

nodes when for each node all four GPU devices are considered5.

From the plots in Figure 4 we can observe:
• the super linear speedup which is most remarkable for large problems. We

think this is due to the increased time spent on CPU-GPU communications
mainly as a consequence of a saturated PCI channel (indeed that all the
four GPUs of a node are involved in computations);

• the very low scalability of the benchmark as the number of parallel tasks
increase;

• the very small fraction of the Peak Performance scored during executions:
if we consider very large problems we get just under 10% of max compu-
tational power which can be guaranteed by the computational resources.

3.2 Communication and data storage
3.2.1 Micro-benchmark tests

We evaluate the basic characteristics of the implemented Lustre file systems
using the IOzone File system Benchmark [20], which generates and measures
the time to complete a set of file operations as read, write, re-read, re-write. In
Figure 5 we show the throughput performance for the same above-mentioned
operations both with and without the SYNC IOZone option6. The plots show
single stream performance as a “Heat Map” of file size and request size for two
Lustre-based file systems which are an aggregation of SAS HDDs and SATA
SSDs respectively both available on storage nodes. In the same plots, we show,

5Let PP (P ) = (4NCoresGPUClockGPU +NCoresCPUClockCPU )P .
6When this option is activated, IOZone will open the files with the O_SYNC flag. This forces

all writes to the file to go completely to disk before returning to the benchmark.
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Figure 4: Communication and computation macro-benchmarks results: The
CUDA-Aware HPL benchmark Execution Time T (P ) (a), Speed-Up S (P ) (b),
the Sustained Performance SP (P,N) (c) and the fraction of Peak Performance
SPF (P,N) (d).

as a term of comparison, the results of the same test performed using two XFS
file systems configured on different types of local disks (SATA SSD and PCIe
NVMe SSD) available on computing nodes. All plots use a logarithmic scale
with base 2 for the x and y coordinate axes. From such plots, the following
statements can be argued:

• on read operations, all the tested file systems show comparable perfor-
mance and suffer from large file size;

• the Lustre file system seems to be especially performing on write opera-
tions when file size increases. This is more noticeable if the option SYNC
is activated;

• on write operations, the performance of Lustre file systems seems to be
comparable (in terms of order of magnitude) with results obtained on slow
local disks (especially if the option SYNC is disabled);

3.2.2 Macro-benchmark tests

We use a benchmark based on the Block-Tridiagonal (BT) problem of the NAS
Parallel Benchmarks (NPB)[24], which is employed to test the I/O capabili-
ties of high-performance computing systems, especially parallel systems. As
improvements were made to parallel systems, the speed with which computed
results are being written to and read from files still represents a bottleneck in
practical applications. The benchmark, named BT-IO, is based on the MPI
I/O Application Programmer Interface [9] which is part of the MPI. In Figure
6 we report the results of th BT-IO benchmark in its “simple” configuration
where data, scattered in memory across the processors, are written to the same
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Figure 5: Communication and storage micro-benchmarks results: IOZone
throughput performance (in KB/s) for read (a) and write operations with (b)
and without (c) the SYNC options. For better readability, we preferred to use a
different color map in each plot.
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Figure 6: Communication and storage macro-benchmarks results. BT-IO re-
sults: the total time of execution versus the time spent during IO phases (a),
the throughput of computing (b) and IO (c) stages expressed in MFlops/sec
and MB/s respectively

file. What is considered here is the class “E” problem dimension. During execu-
tion, one MPI task is allocated to each node, and both the Lustre file systems
described above are considered. From such plots we can argue:

• time spent during the IO stages might account for a significant portion
(> 50%) of total execution time when the number of parallel tasks is large;

• the write pattern used by the tests, where each processor writes the data
elements it is responsible for directly into an output file, confirms the weak
performance due to a very high degree of fragmentation [36]. The Lustre
file system based on SSD disks better manages the such type of pattern
also when the number of processors becomes large;

• IO throughput seems far from the values measured by micro-benchmarks
which appear to be about a bigger order of magnitude.

4 Discussion on the results
The tests that analyze the lower level of the middleware (micro-benchmarks),
seem to confirm the ability of the resource to guarantee the expected perfor-
mance.

11



All the macro-benchmarks confirm that the goal of achieving the maximum
performance of IT systems is extremely demanding. Although useful for eval-
uating the cluster created and highlighting the strengths of its resources, the
benchmarks are also intended to bring out any issues. In this case, the problems
in some of the results shown depend largely on the chosen benchmarks. In fact,
for the most part, they cannot fully keep up with new technologies.

Our future work will be to find (or create) a version of macro benchmarks
that can to make the most of the heterogeneity of the systems with solutions
that: 1) use both the CPU and GPU present on the individual nodes, 2) exploit
all the most performing communications channels available, 3) by CUDA-Aware
messages passing library and innovative tools such as the Software for Linear
Algebra Targeting Exascale (SLATE) library [13] or innovative approach as the
HPL-AI Mixed-Precision Benchmark [16].

5 Conclusion
The paper describes the results of some benchmarking tests aimed to verify and
validate all the solutions implemented during the deployment of a computing
cluster within the Italian National Project IBiSCo able to satisfy the different
computing needs of the project partners. All the strategies implemented have
been verified and evaluated by the appropriate tools used to estimate some
significant performance indexes of all the components of the system from a
micro and macro point of view. From the communication between nodes with
multiple GP-GPU in a distributed memory environment to the efficiency of the
application during the IO phases.
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