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The characterization of the distance from equilibrium is a debated problem in particular in the
treatment of experimental signals. If the signal is a 1-dimensional time-series, such a goal becomes
challenging. A paradigmatic example is the angular diffusion of a rotator immersed in a vibro-
fluidized granular gas. Here, we experimentally observe that the rotator’s angular velocity exhibits
significative differences with respect to an equilibrium process. Exploiting the presence of two
relevant time-scales and non-Gaussian velocity increments, we quantify the breakdown of time-
reversal asymmetry, which would vanish in the case of a 1d Gaussian process. We deduce a new
model for the massive probe, with two linearly coupled variables, incorporating both Gaussian and
Poissonian noise, the latter motivated by the rarefied collisions with the granular bath particles.
Our model reproduces the experiment in a range of densities, from dilute to moderately dense, with
a meaningful dependence of the parameters on the density. We believe the framework proposed here
opens the way to a more consistent and meaningful treatment of out-of-equilibrium and dissipative
systems.

Introduction. Non equilibrium systems, even after the
seminal contribution of the pioneers in the last century,
still represent a challenging frontier of statistical mechan-
ics [1]. For sure the archetypal example of non equilib-
rium is Brownian Motion and its formalization in terms
of equations of motion with a random force [2]. Follow-
ing this original starting point, many phenomena have
been modelled in terms of stochastic differential equa-
tions, in particular continuous stochastic processes in-
volving white noise [3]. In addition, more general Markov
processes (e.g. Master equations) have been used, par-
ticularly for biological and chemical systems [4].
In the last decades stochastic thermodynamics entered
the scene, a new approach in terms of Markov processes
which attempts to formalise concepts such as work, heat
and entropy for mesoscopic systems [5–8]. While its theo-
retical framework can be considered basically mature, the
treatment of data coming from experiments remains a de-
bated problem. For instance it is not always obvious how
to infer, from experimental signals, relevant features such
as the equilibrium or non-equilibrium nature of the sys-
tem [9–13]. In addition, in several non-trivial situations,
it is not straightforward how to follow Langevin’s path in
order to achieve an appropriate mathematical modelling
of the system under investigation [14, 15]. Among non-
equilibrium systems, granular gases demonstrated to be
particularly interesting [16]. In fact, they are experimen-
tally accessible and, being non-Hamiltonian and dissipa-
tive, constitute an intriguing theoretical challenge [17].
Here, we present an analysis of experimental data ob-
tained from a vibrofluidized granular setup [18]. A mas-
sive probe is suspended in the granular gas and, under
the effect of the collisions, it performs a rotational mo-
tion. The aim of this Letter is to investigate the sta-
tistical features of the probe’s motion for inferring the
properties of the granular system, in particular to shed
light on the non-equilibrium nature of the system as well

as its modelling in terms of a suitable stochastic process.
We stress that the non-equilibrium nature of the system
is indisputable (for instance it lacks equipartition of en-
ergy [19]) . Nonetheless, previous attempts have shown
that, both at the experimental and theoretical level, re-
vealing this nature is particularly difficult when looking
only at the isolated tracer dynamics, i.e. without re-
sorting to the study of correlations with the surrounding
medium [20] or by perturbing the experiment with an
external force [21]. Our analysis shows that the system

FIG. 1. Scheme of the experimental setup (left) and time
series of the probe’s angular velocity ω(t) (right) for different
values of the number of spheres N .

exhibits both non-Gaussian and non-equilibrium prop-
erties. Therefore, a description in terms of linear dif-
ferential equation with Gaussian white noise lacks im-
portant features of the underlying dynamics. This can
appear surprising, in view of several studies of driven
granular gases, where the usual linear Langevin equation
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has been found successful for the description of other fea-
tures of massive probes, particularly its several diffusion
regimes [15, 22–24]. An important outcome of our study
is that even remaining in the context of linear models,
the introduction of a suitable non-Gaussian noise is suf-
ficient to catch the non equilibrium statistical properties
of the system. We expect such an ingredient to be rele-
vant not only for granular systems but for other kinds of
macroscopic ’baths’, e.g. in active matter [25].
Setup. The setup used here is an improved version of the
one used in [18], see also [26, 27]. The granular medium
made of N spheres (N = {500, 750, 1000}) of diameter
d = 4mm is placed in a cylindrical container of volume
∼ 7300 times that of a sphere (the average volume frac-
tion is therefore in the range ∼ 7− 14%). The container
is vertically shaken with a sinusoidal signal whose am-
plitude and frequency are A = 1.6mm and fext = 53
Hz. A blade, our “massive tracer” with cross section
∼ 32mm× 5mm, is suspended into the granular medium
and rotates around a vertical axis z (see left panel of
Fig. 1). Its angular velocity ω(t) and the traveled an-

gle of rotation θ(t) =
∫ t

0
ω(t′)dt′ are measured with a

time-resolution of 2 kHz. The blade, interacting with the
spheres, performs a motion qualitatively similar to an an-
gular Brownian motion (right panels Fig. 1). The shaking
intensity is measured by the normalized mean squared
acceleration of the vibrating plate Γ =

√
2⟨z̈2⟩/g ≃ 18

where g is the acceleration of gravity.
Results. The time correlation function of the angular
velocity C(t) = ⟨ω(t)ω(0)⟩ contains information on the
relevant time scales of the system, where ⟨·⟩ denotes en-
semble averages and can be replaced by temporal av-
erages over long trajectories assuming stationarity and
ergodicity. At first glance, it might seem that the cor-
relations decay exponentially with a single relaxation
time. Since C(t) → 0 fast enough when t → ∞, i.e.∫∞
0

C(t)dt < ∞, at large times the angle θ of the blade

performs a standard diffusion, i.e.
〈
|θ(t)− θ(0)|2

〉
∼ t.

One might be tempted to describe the system with a
simple one-dimensional Gaussian model, i.e. ω̇ + ηω = ξ
where η is the damping and ξ is a Gaussian white noise.
However, a closer inspection reveals that the system has
at least two relevant time scales, see Fig. 2 and its in-
set. Thus such a model with a single time scale is in-
adequate to reproduce the C(t). This is not enough,
since ”Fickian yet non Gaussian diffusion” has been ob-
served in many physical system ranging from colloidal
systems to super-cooled liquids [28–31], therefore it is
crucial to investigate the signal statistics by calculat-
ing higher order moments. Moreover, the non-Gaussian
statistics of the signal allows one to deduce information
about the time reversal symmetry of the system. In
fact, as discussed in [12], a one-dimensional Gaussian
signal is always invariant under time reversal, even if
produced by an out-of-equilibrium physical system. On
the contrary, if its statistics is non-Gaussian, the signal
may break time reversal symmetry, and therefore one
may quantify the distance from equilibrium of the un-

FIG. 2. Comparison between experiment (red) and mod-
els (blue and green) in the case of N = 1000: time correla-
tion function C(t) (a) and H(t) (b). Numerical integration of
Eq. (1) is done with two different choices for the noise ξ1: it is
a Poisson compound noise (green line) or a white noise (blue
line). The model parameters were obtained by fitting in linear
scale the experimental curves for C(t) and H(t) (or only C(t)
in the case of the Gaussian simulation) with the expressions
in (2). By looking at the best fit with C(t) = Ae−at both in
linear (inset) and logarithmic scale, one notes the impossibil-
ity to mimic the experimental data with a single time scale.
All simulation data are been obtained with the same statistics
of experimental data in order to appreciate the relevance of
the finite-time fluctuations.

derlying physical system. Often, the entropy produc-
tion is used for quantifying temporal asymmetries, but
it is a notoriously difficult quantity to measure, given
the large amount of data required to obtain accurate es-
timates [32]. Therefore, we take an alternative route by
using higher order correlation function for detecting tem-
poral asymmetries. Indeed, a system is at equilibrium if
Cfg(t) = ⟨f(t)g(0)⟩ = Cgf (t) = Cfg(−t) for all functions
f and g. Thus, as proposed by Pomeau [33], if observ-
ables f and g exist, such that Cfg(t) ̸= Cfg(−t), the dif-
ference Cfg(t)−Cfg(−t) can quantify the distance from
equilibrium. We find that the simplest functions that
provide a non-trivial results are f = ω and g = ω3. As
shown in Fig. 2 b), H(t) = Cωω3(t) − Cωω3(−t) is sig-



3

FIG. 3. Statistical distribution of the standardized angular

velocity increments aτ (t) = ∆τω/
√〈

(∆τω)2
〉
: comparison

between models and the experiment with N = 1000. In panel
a) we show the distributions of the variables at three differ-
ent lag-times τ : the empty symbols are experimental data,
while solid curves are the interpolation of the numerical inte-
gration of the model in Eq. (1) with Poisson compound noise
ξ1. The black line is the normal distribution for reference.
Panel b) shows the absolute value of the excess kurtosis κ(τ)
as a function of τ for experimental measurements (red circles)
and numerical simulations with ξ1 chosen to be a compound
Poisson noise (green squares) or white noise (blue triangles).

nificantly different from zero for short times t, indicating
that the underlying dynamics is out of equilibrium. Fur-
ther corroboration of the non-Gaussianity of the system
is obtained by looking at the statistics of the standardized
angular velocity increments aτ (t) = ∆τω/

√
⟨(∆τω)2⟩

(∆τω = [ω(t+ τ)− ω(t)]) by varying the lag-time τ .
Note that, as in turbulence, derivatives or other filters
are widely used to highlight the statistical properties of
a system [34]. It has been found [15] that the probability
density function (pdf) of the probe’s velocity is Gaussian-
like but the pdfs of the increments aτ are not for small
values of τ and become Gaussian-like for τ > 10−2s, as
shown in Fig. 3 a) In particular, by looking at the ex-

cess kurtosis κ(t) =
(〈

a4τ
〉
/
〈
a2τ

〉2 − 3
)
we note that it is

much larger than the statistical fluctuations due to the

finiteness of the observations as shown in Fig. 3 b) and
that is close to zero, corresponding to the Gaussian-like
case, just at τ > 10−2s. An effective model should there-
fore be able to account for: multiple time scales, stan-
dard diffusion at large times, Gaussian-like velocity pdf,
non-Gaussianity of velocity increments and time reversal
asymmetry.
Model. Typically, the information available to an ob-

server does not allow to adopt a prescribed protocol to
determine a model. Therefore it is necessary to assume
that a certain description is relevant (at a given scale)
and check a posteriori its validity. The presence of mul-
tiple time scales as well as non Gaussianity could be ex-
plained by considering non-linear 1d models driven by
white noise processes. However, such 1d models can
not be out-of-equilibrium, unless with periodic bound-
ary conditions, and therefore can not reproduce one of
the main observed property, that is the aforementioned
lack of time reversal symmetry of the angular velocity
signal. Thus, a meaningful effective model should have
at least two degrees of freedom [12]. Among the pos-
sible 2d systems, we choose to focus our attention on
linear systems for two reasons. The first is that they
have already been shown to correctly reproduce many
properties of this system [15, 18, 22, 24]. The second one
is related to the observation that

〈
(θ − θ0)

2
〉
∼ t even

if ω is not Gaussian. Popular theoretical frameworks to
explain this phenomenon rely on superstatistics such as
diffusing diffusivity or, differently, on Continuous Time
Random Walk (CTWR)[35–37]. But we note that every
linear system driven by a delta-correlated noise shows a
standard diffusion, regardless of the distribution density
of the stochastic forcing. There is of course a third clue
about the linearity of the process, which is the observa-
tion of a correlation function which decays exponentially
in time. None of these arguments is compelling, but to-
gether they are a strong hint in favour of the choice of a
linear process. We also note that in [15] the linearity of
the model is not assumed a priori but obtained from the
analysis of the signal. Of course in an Occam Razor based
approach one should prefer a linear model (which has less
parameters than non-linear ones) if there are no evidences
for non-linearities. In the following, we propose a linear
non-Gaussian stochastic process and give evidence that
it is suitable to model the vibrofluidized granular gas ex-
periment investigated in this Letter. Let us consider the
following linear stochastic differential equation{

ω̇ + γω = Ω+ ξ1

Ω̇ + µΩ = ξ2
(1)

where γ is a damping coefficient for the probe and arises
both from the average effect of collisions with the gran-
ular gas as well as with other sources of viscosity (air,
solid friction, etc.), the variable Ω is a collective variable
which takes into account the inertial effect of the sur-
rounding granular medium and 1/µ is its typical relax-
ation timescale. The fluctuating force ξ2(t) is a typical
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white noise representing fluctuations of Ω (⟨ξ2(t)⟩ = 0
and ⟨ξ2(t)ξ2(t′)⟩ = σ2

2δ(t − t′)), while for ξ1(t) we will
consider two cases: a white Gaussian noise or a com-
pound Poisson process, i.e. ξ1(t) =

∑
j zjδ(t− tj) (where

δ(t) is a Dirac delta) with intensity λ and normally dis-
tributed jumps. This means that the time intervals be-
tween jumps ∆j = tj−tj−1 are independent of each other
and exponential distributed (P (∆) ∼ λe−λ∆), while the
amplitude of the jumps zj is sampled from a normal dis-
tribution (P (z) ∼ Nσ(z)) with zero mean and standard

deviation σ. Note that
〈
ξ41
〉
c
=

〈
ξ41
〉
− 3

〈
ξ21
〉2

=3λσ4

and that ξ1 tends to a standard Gaussian white noise
(⟨ξ1(t)⟩ = 0 and ⟨ξ1(t)ξ1(t′)⟩ = σ2

1δ(t − t′)) in the limit
λ → ∞, σ → 0 with λσ2 = σ2

1 = constant. The use
of such noise has both a physical and a mathematical
justification. From a physical point of view, ξ1 can be in-
terpreted as the process originating from instantaneous
collisions of granular particles with the blade. A rigorous
justification for the model in Eq. 1 could be obtained by
the design of a kinetic theory for inelastic hard spheres
including the specific setup of our experiment. Recently,
it has been shown that non-Gaussian white noises like
ξ1 can be derived from microscopic theories through a
systematic expansion of the Boltzmann-Lorentz equa-
tion governing the evolution of the blade [38–40]. In
our opinion those studies offer a general justification for
non-Gaussian white noise in vibrated and diluted granu-
lar experiments. However, this reasoning cannot explain
the existence of the second degree of freedom Ω. We
conjecture that the missing ingredient in those previous
theory is the interaction between the granular bath and
the particular boundary conditions in our setup, which
prevent the rapid thermalization of the tangential com-
ponents of the velocities of the spheres, which is likely
to be responsible for the memory here modelled in terms
of Ω. In addition, even from a mathematical point of
view, by virtue of the Levy-Ito decomposition theorem,
the used noise has an interesting structure since it is one
of the three contributions to process with independent
and identically distributed increments [41–43]. As shown
in [38–40, 44, 45], a system driven by Levy noises (like
ξ1) is necessarily out of equilibrium. Thus, it should be
sufficiently general to capture, at least qualitatively, the
relevant features of the granular gas. For our model C(t)
and H(t) are given by

C(t) = Ae−γt +Be−µt, H(t) = D
(
e−γt − e−3γt

)
A = λσ2 −B, B =

σ2
2

γ2 − µ2
, D =

3λσ4

4γ
(2)

These expression can be employed to infer the model
parameters from the experimental results. For instance,
to get a good and robust match of both curves without
fitting too many parameters at once, we infer the inverse
relaxation time γ and the product 3λσ4 = 4Dγ from
H(t), then, once γ fixed, we can fit C(t) via A,B and
µ so, by inverting the expressions in (2), we get the re-
maining parameters.

FIG. 4. Comparison between experiments with different N .
The empty symbols are experimental data, while solid curves
come from numerical integration of the model in Eq. (1) with
Poisson process for ξ1(t). The inset shows the corresponding
correlation functions.

h(mm) N γ
(
s−1

)
µ
(
s−1

)
σ2

(
s−5/2

)
σ(s−1) λ (s−1)

5 1000 122.9 26.17 1647 1.415 1261
5 750 105.3 25.13 1776 1.631 1116
5 500 96.04 29.35 2965 1.943 1024
15 500 107.5 22.41 1880 1.058 1617

TABLE I. Table with the best fit parameters (the errors are
order 5%−10%) for the different experiments. The values are
those used for numerical simulations.

In Fig. 2 we verify that the numerical integration of the
model is able to reproduce experimental results when
ξ1(t) is a compound Poisson noise, while the choice of
ξ1(t) to be white noise only reproduces the time correla-
tion of the system, while it is inadequate to predict the
non-equilibrium nature of the real process.
We can check the consistency of the model by comparing
the distribution of the increments aτ and the behaviour
of κ(τ) as a function of τ . Fig. 3 a) shows a very good
agreement in a wide range of lag-times: the model cor-
rectly reproduces the pdfs as well as their behavior for
τ ≫ 1/λ ∼ 10−3s. Regarding κ(τ), it can be seen from
Fig.3 b) that the model has a little discrepancy in the
long times behavior but matches well enough the func-
tional shape of experimental curve in almost all range of
lag-times and moreover correctly predicts its relaxation
timescale τ ∼ 1/γ ∼ 10−2s.
To conclude, we note that the model reproduces quite
faithfully the dynamics of the system as the experimen-
tal conditions vary, as can be seen from Fig. 4 showing
C(t) and H(t) for different number of particles N . The
upper rows of Table I reports the parameters of the model
obtained with the procedure explained above by varying
N . We observe that the observed trends of the parame-
ters follow a simple physical interpretation in agreement
with our expectations. Indeed, since in all experiment
the shaker injects a similar amount of energy (weakly
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dependent upon the number of particles) which is then
dissipated through the collisions, increasing N leads to a
lower kinetic energy per particle and therefore lower val-
ues for the noise amplitudes σ and σ2. On the contrary,
since the number of collision increases both the damping
coefficient γ and the collision rate λ are observed to in-
crease. Moreover, in order to check whether our physical
interpretation is consistent, we performed additional ex-
periments with a different blade (h = 15mm) in the most
diluted case (N = 500). Having increased the cross sec-
tion of the probe we expect a greater number of collisions
between particles and blade which should lead to an in-
crease of the damping coefficient γ and of the collision
rate λ on the one hand, and in a decrease of the noise
amplitudes σ and σ2 on the other. These expectations
are confirmed by the experimental results, as can be seen
by comparing the last two rows of Table I.

Conclusions. We have analysed out-of-equilibrium
Brownian-like motion in an experiment with a rotating
tracer immersed in a vibro-fluidized granular medium.
We provide a detailed quantification of how far from equi-
librium such a system is by just looking at the ω signal
of the tracer. Until now such a task was only possi-
ble through the use of auxiliary observables or specific
experiments such as perturbation-response experiments.

Careful examination of the angular velocity time-series
revealed clear non-equilibrium features in the shape of
non-Gaussian velocity increments and asymmetric time-
correlations. These observations led us to propose a
model for the tracer’s dynamics incorporating Poisso-
nian (non-Gaussian) noise, coherent with the physical
intuition of a dynamics where collisions are sparse in
time. We underline that for this model entropy pro-
duction diverges, since most of the trajectories have no
time-reversed counterpart [46]. Finally, we stress that
the techniques we used to analyse experimental signals
are absolutely general and can be applied for modeling
other systems well beyond the realm of granular mate-
rial. In addition, these techniques open the perspective
of extending the general procedure used in [15] to derive
Langevin equations also for non-Gaussian noises.
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Phys. Rev. X 12, 041026 (2022).

[14] M. Baldovin, F. Cecconi, M. Cencini, A. Puglisi, and
A. Vulpiani, Entropy 20, 807 (2018).

[15] M. Baldovin, A. Puglisi, and A. Vulpiani, PloS One 14,
e0212135 (2019).
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