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Abstract
The orthorhombic γ-black phase of CsPbI3 is well-known to be unstable at room temperature and
strategies are needed to counteract its transformation tendency. In this paper we compare γ-black
CsPbI3 thin films (∼80 nm) formed via two different routes: a fast quenching of the cubic α-phase
from 325 ◦C (HT-γ) or spontaneously cooling the layer from 80 ◦C (LT-γ). The successful
application of the second procedure is allowed by the use of a mother solution containing
Europium with an Eu/Pb ratio as small as 5%. This has been indeed used to form both LT-γ and
HT-γ thin films. The phase transition during the heating and cooling pathways is followed in situ
by spectroscopic ellipsometry and x-ray diffraction analyses. We demonstrate that both γ-black
phases exhibit the same absorption features and critical points as depicted in very details by the
dielectric functions. Minor differences can be found in the intensity of the absorption coefficient,
assigned to an improved lattice quality in the layer that has experienced the high temperature path.
On the other hand, α-black and δ-yellow phases show different critical points in the optical
transitions. Besides providing benchmarking optical parameters to discriminates the different
phases, we demonstrate that the LT-γ phase closely competes with the HT-γ counterpart during
stress tests for stability, with the first one more suited for tandem monolithic architectures that
require thermal treatments under 200 ◦C.

1. Introduction

Two-terminal monolithic perovskite-on-silicon tandem cells represent the most promising innovative
photovoltaic devices for a near-term large-scale commercialization [1, 2]. This technology allows reaching
high efficiencies (the current record is 29.1% [3]) coupling a relatively wide bandgap perovskite solar cell
(top cell) with a silicon solar cell (bottom cell) which absorb in different and complementary regions of the
solar spectrum. Hybrid organic/inorganic perovskites such as methylammonium lead iodide (MAPbI3),
formamidinium lead iodide (FAPbI3) and methylammonium (MA)–formamidinium (FA) mixed perovskite
are the most used and known perovskite absorber layers. If on the one hand, the presence of organic elements
(MA, FA) as the A-site cation of the perovskite crystal structure is the key to achieve high efficiency, on the
other hand, the organic cations are often weak links due to their intrinsic instability when they are exposed to
humidity, elevated temperatures and solar light [4–9].

The structural instability of hybrid perovskites has moved the attention also toward all-inorganic
perovskite materials, in which the organic cation is replaced by an inorganic cation like Cs. Cesium lead
iodide (CsPbI3) with bandgap of∼1.73 eV is a well-matching candidate for silicon-perovskite tandem solar
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cells. The CsPbI3 can exist in four phases: cubic phase (α), tetragonal phase (β), and two orthorhombic
phases (γ and δ). The δ orthorhombic, well-known as ‘yellow phase’, is a non-active non-perovskitic phase,
indeed unusable for photovoltaic applications. The α, β and γ phases, in contrast, have a perovskite
structure that exhibits the photovoltaic behaviour: they are better known as ‘black phases’. Unfortunately, α,
β and γ are stable at high temperatures (>RT) [10, 11] whilst metastable at room temperature (RT),
implying that they spontaneously turn to the yellow orthorhombic phase under ambient conditions or
during operation [12, 13].

For the abovementioned reason, the stabilization of a perovskitic CsPbI3 black phase at room
temperature is the main technological challenge. In previous years, several methods like modifying processes
[14], additives [15] and tuning the tolerance factor of CsPbI3 [16] by elemental doping [17–23] have been
attempted to extend the stability of the black α and β-phases towards operative conditions. All of these
approaches require a thermal annealing of the CsPbI3 film at temperature >250 ◦C, making its integration in
silicon-perovskite tandem solar cells unfeasible. As a matter of fact, in monolithic tandem devices, the
perovskite solar cell is deposited directly on the silicon cell and low-temperature processes (<200 ◦C) are
needed in order to not damage the underlying layers of the bottom cell [24].

Additionally, the orthorhombic γ-phase, which has similar optoelectronic properties to α-phase [25],
can be obtained at low temperature through different strategies [26]. Among the others, the addition of
hydroiodic acid (HI) [27–29], organic ligands (phenethylamine [13], ethylenediamine [30], sulfobetaine
zwitterion [31], organic ammonium cations [32], ethanediamine [33]) or elemental doping (germanium
[34], bismuth [35, 36], strontium [37], indium [38], calcium [39]) can facilitate the formation of stable
orthorhombic CsPbI3 phase at low annealing temperature, acting on the morphology of the perovskite film,
especially on the dimension of grains during the crystallization process [40–42]. The interplay between
surface energy cost and bulk energy gain makes the black and yellow phases to compete in the range of small
grain sizes. Under those morphological conditions, the CsPbI3 γ-phase can become thermodynamically
more stable than the δ-phase [43].

Among the possible stabilization processes of CsPbI3 black phase based on the elemental doping, the
incorporation of Europium atoms into CsPbI3, reported by Miyasaka et al [44], is considered a promising
solution for obtaining a stable black phase. The black γ-phase of CsPbI3:xEu is obtained after annealing the
spin-coated layer at low temperature (85 ◦C) for 15 min. The stability of the black phase (stored in dark and
ambient condition with less than 20% relative humidity) changes with Eu concentration: higher Eu content
results in longer durability of the black phase. The best device efficiency of∼6% was achieved when
Eu/Pb= 5%.

Following this benchmarking method, in this paper, we form a thin γ-CsPbI3 phase on glass substrates at
a temperature of 80 ◦C (LT-γ black) using a relative amount of Pb/Eu= 5% to investigate the optical and
dielectric properties of the layer by spectroscopic ellipsometry in the range of 1–6 eV. We study the phase
transitions that occur while progressively varying the temperature from 30 ◦C to 325 ◦C and after quenching
to 30 ◦C under dry nitrogen environment through sequential in situ analyses. We compare the optical
behaviour of the LT-γ black phase with the one of the cubic α-phase obtained at 325 ◦C through the Critical
Points (CPs) analysis, which provides the transition energies by fitting simultaneously the second derivatives
of the real and imaginary part of the dielectric function [45]. We additionally highlight the effect of the
cooling speed from 325 ◦C to room temperature to eventually produce a HT-γ black phase (∼2.5 ◦C min−1

or∼100 ◦C min−1). The optical behaviour of the HT-γ black phase is finally compared to the one of the
LT-γ black phase cooled from 80 ◦C, all done on the same sample.

2. Materials andmethods

2.1. Perovskite film fabrication
A solution of 1 M PbI2 (Tokyo Chemical Industry) and 1 M CsI (Tokyo Chemical Industry) was prepared by
mixing them in a composite solvent made of DMF and DMSO (3:1 v/v). EuCl3 (Sigma-Aldrich) solution of
0.1 M concentration was made in same mixed solvent of DMF and DMSO (3:1 v/v). The solutions were
stirred at room temperature for 1 h. Then, 1 ml of the PbI2/CsI solution was mixed with 0.5 ml of the EuCl3
solution to reach the desired stoichiometry and then stirred for 1 h. The perovskite film was deposited by
spin-coating the precursor solution on glass substrates in two steps: 1000 rpm for 10 s followed by 5000 rpm
for 25 s in ambient environment. The CsPbI3 prepared with Eu/Pb= 5% film was then annealed at 80 ◦C on
a hot plate for 1 min and cooled to 30 ◦C at 0.5 ◦C–1 ◦C s−1 to form the black LT-γ phase. The final layer on
glass has a thickness of∼80 nm. The sample is hereafter called CsPbI3:5Eu. The composition of the mother
solution was chosen according to the results of paper [44], on the basis of the best solar cell performances
achieved.
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Figure 1. Schematic of the thermal cycle with the observed crystallographic phases. The starting phase was produced after spin
coating, annealing to 80 ◦C for 1 min and cooling down to 30 ◦C. Each step covers 50 ◦C and the whole cycle is done under dry
N2 in order to focus on the intrinsic behaviour of the different phases.

2.2. Spectroscopic ellipsometry
We used a V–VASE, J A Woollam spectroscopic ellipsometry equipped with an autoretarder for optical
characterization. Ellipsometric data have been collected at different angles below and above the Brewster
angle of the glass substrate, over a wide range of wavelengths 245–1240 nm (1–5 eV) with step of 10 nm or
less (5 nm) depending on the curve steepness. The optical model is a three layer model that take into account
the optical constants of the glass substrate, the perovskite layer and the surface layer needed to simulate the
layer roughness. Within the effective model approximation this last layer is assumed to be made 50% of the
upper layer (air) and 50% of the lower layer (perovskite). The presence of a transparent substrate has been
properly taken into account including the possibility that part of the light hits the backsurface of the glass
slide. We build a Kramers–Kronig consistent optical model based on multiple (7) Tauc-Lorentz oscillators to
fit experimental data (psi and delta) and determine the real and imaginary part of the dielectric function.
Measurements have been collected using a slightly overpressurized N2 filled chamber in order to prevent
perovskite degradation in air. The cell setup allowed to vary the temperature in the range 30 ◦C–325 ◦C with
an Instec MK100 heater/cooler system with an accuracy of 0.1 ◦C. Although it is known that CsPbI3 is
orthorhombic and therefore it presents an optical anisotropy along the three axis, this property has not been
taken into account since the sample is a randomly oriented polycrystalline layer.

3. Results and discussion

As described in the experimental section, the starting CsPbI3:5Eu film was obtained by spin-coating and
annealing at 80 ◦C and then cooling down to 30 ◦C (0.5 ◦C–1 ◦C s−1). As a result, a LT-γ black phase was
produced, similarly to what was done in [44].

Our experiment consists of measuring the phase change of the starting layer along the thermal cycle
sketched in figure 1, with the single measurement at a certain temperature taking 15 min (in situ isochronal
and isothermal analyses).

The overall thermal cycle was planned to try to capture and analyse some milestone phases reported in
literature [10, 27, 44, 46] for thick and thin layers or powders but never attempted on thin films (∼80 nm)
with Europium as additive, and in particular a low temperature (LT) γ-black phase, the yellow δ-phase, a
high temperature (HT) α-black phase, and finally a HT γ-black phase after quenching the cubic α-phase
from high temperature.

As the temperature of the CsPbI3:5Eu film is increased again to 80 ◦C, the LT γ-black phase is
transformed to yellow δ-phase (hereafter shown and discussed in more details), and remains in that phase up
to 280 ◦C. At 325 ◦C the film changes from yellow δ to HT-α black phase. When the HT-α black is slowly
cooled from 325 ◦C to RT, the yellow δ-phase is formed again. In figure 2(a), we show the x-ray diffraction
patterns of the LT-γ black, HT-α black and yellow δ-phases formed in situ during analysis under N2 using an
heating stage, with diagnostic peaks identified by the related Miller indexes. In particular we observe that: the
LT-γ black phase is univocally defined by the overlap of three peaks in the region 2θ = 19.5–21◦; the HT-α
black phase has four peaks in the overall range that match with a cubic phase having a= 0.63 nm; the yellow
δ-phase contributes with peculiar peaks, especially at 2θ = 9.88◦ and 2θ = 13.10◦.

3
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Figure 2. In situ results: XRD patterns and characteristic peaks with their Miller indexes of LT-γ black, δ yellow and HT-α black
(a). In situ results: real and imaginary part of the dielectric function of the three black phases (LT-γ black, HT-α black and HT-γ
black) and the yellow phase (δ yellow) (b).

A similar in situ experiment was done at the spectroscopic ellipsometer, wherein the sample was likewise
kept under N2 while changing its temperature using an heating stage. The dielectric function of the three
phases LT-γ black, HT-α black and the yellow δ-phase are shown in figure 2(b).

An alternative quenching pathway was defined in a recent work [27, 46] wherein it was shown that an
orthorhombic γ-black phase can be obtained by a fast quenching of the α-black phase from 350 ◦C to RT. In
this case, the black phase is kinetically frozen thanks to the strain induced in the CsPbI3 thin film [47]. The
method was previously applied to powders, thick and thin layers (>200 nm) of CsPbI3 without additives or
using HI. In a similar way, we have quenched the HT-α black film from 325 ◦C to RT in our ellipsometer
setup which is equipped with a closed-circle circuit into which liquid nitrogen is pumped to cool the sample
at an average rate >100 ◦C min−1 (up to 150 ◦C min−1 in the first minute). Figure 2(b) shows the dielectric
function of this phase in comparison to the other three phases (LT-γ black, HT-α black and of the yellow
δ-phase). From the comparison of the line profiles (shape and position of the features) emerges that the
quenched phase is an orthorhombic γ-black phase (HT-γ black).

Although the two black orthorhombic phases (HT and LT) bear the same crystallographic structure,
similarities and differences can be highlighted in the range 2–4 eV (figure 2(b)). In particular, the HT-γ black
phase shows a slightly higher absorption with respect to the LT-γ black phase. According to the fitting
procedure, the perovskite thickness slightly varied from 72 nm (γ-LT) to 68 nm (γ-HT) as measured at RT
likewise the surface roughness decreased from 5 nm (γ-LT) down to 2 nm (γ-HT), thus denoting a slight
densification of the layer upon annealing. Nonetheless, the two curves have a very similar shape in terms of
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Figure 3. Absorption coefficient (α cm-1) as a function of the photon energy (EeV) for (a) LT γ—black and HT γ-black phases;
(b) δ-yellow and HT α-black phases. (c) Trend of the energy gap (Eg), the second (E1) and the third (E2) critical point values of
CsPbI3 (Eu/Pb= 5%) layers during the thermal cycle. The all data are taken on the same sample along the thermal cycle depicted
in figure 1, and indeed can be straightforwardly compared.

peaks and valleys in the absorption coefficient α (cm−1) figure 3(a) that has been calculated from the real
(ε1) and imaginary (ε2) parts of the dielectric function using the formula [48]:

α=
2E

cℏ

√√
ε21+ ε22− ε1

2
(1)

where E is the photon energy, c is the speed of light in vacuum and ℏ is the reduced Planck constant. The
absorption coefficient of the HT-α black phase compared to that of the non-photoactive δ yellow phase is
drastically different as depicted in figure 3(b).

For a deeper understanding of the optical behaviour of the film along the transition path with a univocal
criterion, we extracted the critical points (CPs) that are associated to specific optical transitions into the
material. This approach, initially used by Cardona et al [49, 50] for semiconductors, has been recently
extended to perovskites. We have recently used the same formalism to quantitatively and thoroughly describe
degradation of perovskites and temperature evolution of inter-band transitions in bulk perovskites [51, 52].

The real (ε1) and imaginary (ε2) part of the dielectric function of the material mirror the electronic band
structure. By fitting simultaneously, the second derivatives of the real part ε1 and the complex part ε2
[49, 50], the CP of the joint density of states, which represent the inter-band allowed transitions, is usually
extracted. The overall fitting function is the sum of several functions, one for each CP’s, described by the
equation [53]:

∂2ε

∂ω2
= n(n− 1)AeiΦ(ω− E+ iΓ)(n−2) for n ̸= 0 (2)
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Table 1. Values of Eg, E1 and E2 critical points with the related error bar of fitting for LT-γ black at 30 ◦C, δ-yellow phase at 100 ◦C,
HT-α black at 325 ◦C and HT γ-black phases as extracted from the critical point analysis.

LT-γ black δ-yellow @100 ◦C HT-α black HT-γ black

Eg (eV) 1.781± 0.001 2.932± 0.001 1.897± 0.001 1.779± 0.001
E1 (eV) 2.628± 0.003 3.268± 0.003 2.125± 0.002 2.565± 0.003
E2 (eV) 3.43± 0.03 4.68± 0.01 3.27± 0.02 3.39± 0.02

Figure 4. Black phase thermal stability evaluated by stress tests in terms of the evolution over the time of Eg and of the related
amplitude A, calculated by CPs analysis, normalized to the respective values at t= 0 for the LT-γ–black phase at 80 ◦C and
100 ◦C, and for the HT-γ black phase at 100 ◦C and 140 ◦C.

where A (eV), Φ, E (eV), Γ(eV) and n are the amplitude, phase, energy position, broadening and the
dimensionality of the CP [45]. In general, the exponent n is−1/2 for one dimensional, 0 for two dimensional
or 1/2 for three dimensional critical points. When describing excitonic optical transitions, typical of
perovskite materials, n is−1, as reported in [54, 55].

Although one can see that the spectra are characterised by five CPs, going from the energy gap (Eg) to
higher energy (above 5 eV), the black-yellow-black phase transition can be effectively described by focusing
on three of CPs. In figure 3(c), we have indeed represented their trend, i.e. the energy gap (Eg), the second
critical point (E1) and the third critical point value (E2) varying during the thermal cycle. When the LT-γ
black phase moves to the δ-yellow phase, the CP energy positions sharply increase, attesting the huge
difference in the two crystallographic structures and the corresponding electronic structures. The values of
energy positions of each CP are reported in table 1. An increase in the temperature within the large interval
of 100 ◦C–300 ◦C only slightly shifts the CP energy. At 325 ◦C, a sudden change of the CP energy occurs. In
particular, all the CP energies move coherently to lower energies, attesting the formation of the α-black
phase. This HT-α black phase, however, is not identical to the LT γ-black phase, as attested by the CP energy
position reported in table 1 and figure 3(c). As previously reported, if the sample is cooled down slowly
(2.5 ◦C min−1), a δ-yellow phase is formed at the end of the path (30 ◦C). The only option to change the
final state is to cool down the sample as quickly as possible (>100 ◦C min−1). As a result, the phase formed
after this fast quenching (HT-γ phase) has similar inter-band transition energies as the ones of the LT-γ
phase (table 1).

An important aspect from the technology point of view is the comparison of the durability of the two γ
phases (LT and HT) in order to eventually validate the use of low-temperature processes to form the black
phase. This evaluation is done through a stress test by monitoring the optical response in situ during
prolonged exposure at a given temperature. They are indeed accelerated ageing tests for which we used N2

6
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environment to explore the thermodynamic intrinsic stability of the two materials [51]. The temperatures
are chosen above the maximum thermal working condition of a solar cell (∼65 ◦C). As a criterion, we used
the change over time of the γ-phase critical point energy (Eg) and its amplitude (A in equation (2)), as
calculated by the CPs analysis. As shown in figure 4, the trend of Eg and A, normalized to the values
measured at t = 0, are strictly related. When the black phase begins to transform into yellow phase, it is
observed that: (a) the amplitude, which accounts for the amount of the black γ-phase in the sample,
decreases; (b) Eg increases. We found that at 100 ◦C, the HT-γ black phase is stable whereas the LT-γ black
phase turns to yellow after 30 min. Increasing the temperature up to 140 ◦C, the HT-γ black phase degrades
quickly and it turns to yellow after 20–30 min. On the other hand, the LT-γ black phase hugely extends its
stability at 80 ◦C, being comparable to those of the HT-γ black phase at 100 ◦C. We argue that the differences
between the LT-γ black and the HT-γ black resides in an improvement of lattice order occurring in HT-γ
black when it is heated up to high temperature (325 ◦C). Nonetheless, the good stability achieved by LT-γ
black under thermal stress at 80 ◦C (higher than the working temperature of a solar cell) demonstrates that
this phase can be considered a feasible solution for photovoltaic application. Furthermore, this comparative
study allows opening a viable perspective for the LT-γ black phase to be used in device architectures that
needs low thermal budget in the process flowchart such as tandem solar cells.

4. Conclusions

The phase evolution of CsPbI3 thin films (∼80 nm) prepared with an Eu/Pb ratio= 5%, has been monitored
during the thermal cycle 30 ◦C–325 ◦C–30 ◦C by in situ spectroscopic ellipsometry measurements and
investigated by CPs analysis. Structural identification has been supported by in-situ x-ray diffraction
analyses. The use of thin layers has allowed revealing the mainstays and the intrinsic behaviour of the material
with respect to what is known for thick and thin layers without additives, powders and single crystals.

The initial orthorhombic black LT-γ phase, obtained by annealing the CsPbI3:5Eu at T= 80 ◦C for
1 min, converts to the yellow δ-phase when the temperature is increased to 100 ◦C and above. The yellow
δ-phase, which drastically differs from the black phases in structure and optical properties, changes to the
cubic HT-α phase at T= 325 ◦C. Starting from that, an orthorhombic γ-black phase structure (HT-γ black)
is reformed by rapid quenching (∼100 ◦C min−1) to RT, similar to what previously reported in literature for
films without additives or using HI [27, 47]. If the cooling speed is not high enough, an orthorhombic yellow
δ-phase is instead formed. The HT-γ and LT-γ black phases have similar inter-band transition energies, but
they differ for the absorption intensity in the range 2–4 eV and for the behaviour under isothermal stress
testing. In particular, under accelerated ageing test in nitrogen environment at T= 100 ◦C, the HT-γ black is
stable within the time of analyses (110 min) as opposed to the LT-γ phase that fully transforms to δ-yellow
after∼30 min. On the other hand, at T= 80 ◦C the LT-γ phase extends its stability window and behaves
similarly to the HT-γ phase at T= 100 ◦C. This result indeed encourages the use of the LT-γ phase under
typical thermal working conditions of solar cells (∼65 ◦C).

Besides providing optical parameter baselines to discriminate the different phases, we disclosed that,
from the technological viewpoint, the LT-γ phase represents a viable solution to be applied in monolithic
tandem solar cells compared to the unfeasible γ–phase formed at HT.
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