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Abstract8

The mechanical behavior of masonry materials has a common feature: a non-9

linear behavior with high compressive strength and very low tensile strength.10

As a consequence, old masonry buildings generally present cracks due to per-11

manent loads and/or accidental events. Therefore, the characterization of12

the global dynamic behavior of masonry structures should take into account13

the presence of existing cracks. This paper presents a numerical approach14

coupling linear perturbation and modal analysis in order to estimate the dy-15

namic properties of masonry constructions, taking into account the existence16

of structural damage. First, the approach is validated on a masonry arch17

subjected to increasing loads, via three FE codes. Then, the same procedure18

is applied to a real masonry structure affected by a severe crack distribution.19
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1. Introduction22

Safeguarding of cultural heritage is an acquired principle nowadays, widely23

shared by all communities. Preservation of the past is an indispensable re-24

quirement for our society to foster knowledge, awareness of identity, and25

ability to think of and plan the future. With regard to architectural her-26

itage, age-old buildings and monuments need to be preserved not only from27

damage mechanisms and deterioration processes induced by anthropogenic28

and environmental actions, but also from the aging effects they are exposed29

to during their lifetime. Furthermore, ancient structures are particularly30

vulnerable to seismic actions, whose consequences should be prevented - or31

at least mitigated - with effective strengthening measures and maintenance32

plans. For this purpose, Structural Health Monitoring (SHM) and Finite El-33

ement (FE) analysis represent complementary techniques which may help to34

understand the complex dynamic behavior of ancient buildings and estimate35

the mechanical properties of their constituent materials with use of limited36

invasive testing procedures. In addition, if long–term monitoring protocols37

are conducted, important information can be catched on the interactions be-38

tween the structure under consideration and the surrounding environment39

[4], [44], as well as on the evolution of the structural health over time. In40

fact, significant changes in the structure’s dynamic properties can reveal the41

presence of structural damage, as pointed out in [21], [40], [43], where de-42

creasing values of natural frequencies were measured at the onset of damage.43

Moreover, dynamic monitorig can represent a valuable tool to assess the ef-44
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fectiveness of strengthening interventions, as shown in [33], [34], [44], where45

evident rising in the natural frequencies was observed in the monitored his-46

torical structures after restoration works.47

Structural health monitoring is usually coupled with FE analysis via48

model updating procedures [1], [2], [5], [10], [12], [46], [52], in order to de-49

rive realistic information about the boundary conditions and the mechani-50

cal properties of the structure’s constituent materials, especially when more51

invasive techniques are not viable as in case of heritage buildings. These52

procedures typically consist in tuning some parameters of the FE model in53

order to minimize the distance between numerical and experimental modal54

properties (natural frequencies and mode shapes).55

In this regard, it is worth noting that modal analysis is carried out within56

the framework of linear elasticity. This setting could be unsuited for masonry57

buildings, which may exhibit nonlinear behavior even for the self–weight and58

sometimes show extended crack patterns. Therefore, the dynamic behavior59

of these constructions should be analyzed by taking into account the existing60

damage so as to avoid erroneous evaluations of the parameters, which may in61

turn compromise the outcome of further numerical simulations. A common62

approach to this problem consists in simulating the actual damage observed63

on the structure by reducing the stiffness of those finite elements belonging64

to the cracked or damaged parts [7], [10], [41], [43].65

In [23] a numerical procedure implemented in the non commercial FE66

software NOSA–ITACA (www.nosaitaca.it) is described. Here, the masonry67
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material is modeled via the masonry–like constitutive equation [14], [30].68

This procedure allows evaluating the natural frequencies and mode shapes69

of masonry buildings in the presence of cracks, via linear perturbation anal-70

ysis and consists of the following steps: first, the initial loads and boundary71

conditions are applied to the FE model and the resulting nonlinear equilib-72

rium problem is solved through an iterative scheme. Then, a modal analysis73

about the equilibrium solution is performed, by using the tangent stiffness74

matrix calculated in the last iteration before convergence is reached, thereby75

allowing the user to automatically take into account the effects of the stress76

distribution on the structure’s stiffness.77

Other applications of linear perturbation, sometimes referred to as pre-78

stressed modal analysis, are in the framework of large deformation problems79

[13], [24], [36], [53]. With regard to masonry buildings, an example is shown80

in [18], where linear perturbation is applied via a commercial code to a his-81

toric masonry building.82

This paper focuses on the use of linear perturbation to evaluate modal83

properties of ancient masonry buildings in the presence of cracks. The84

method is described in Section 2 and applied to a masonry arch in Section85

3, where the results obtained via different constitutive equations and FE86

codes (DIANA, MARC, NOSA-ITACA) are compared and discussed. Then,87

a real case application is presented in Section 4, where the Mogadouro clock88

tower is analyzed via the NOSA-ITACA code, before and after the restora-89

tion works carried out in 2005. The paper demonstrates that, by adopting90
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the appropriate constitutive model, different FE codes do provide the same91

modal features in the presence of a damaged structure. Moreover, making92

use of the experimental results at the authors’ disposal [44], [45], it is shown93

that linear perturbation analysis combined with finite element modal updat-94

ing allows identifying the tower’s material properties (i.e. Young’s modulus95

and tensile strength) that consistently reflect the damaged condition of the96

structure before restoration as well as the increase of the structural stiffness97

resulting from the subsequent strengthening intervention.98

2. Constitutive equations, linear perturbation and modal analysis99

In recent years the advancement of computer technology and introduc-100

tion of innovative mathematical models made it possible to assess the struc-101

tural safety of complex ancient masonry buildings by taking into account102

the nonlinear behavior of masonry materials, whose response to tension is103

completely different from that to compression and whose mechanical char-104

acteristics are the result of both their constituent elements and the building105

techniques used. The numerous studies conducted in the last decades, aimed106

at modeling the behavior of masonry structures, led to the formulation of107

different constitutive laws that can be grouped into two main classes. The108

first class includes those models in which the macroscopic behavior of the109

masonry material is obtained from the micro-mechanical behavior of its sin-110

gular components [37], [50], [48], [26], [16], [17]. The second class contains111

instead the so-called macro-mechanical models, in which the masonry mate-112
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rial is modeled either as an equivalent continuum [6], [14], [30], [51], [35], or113

as an assembly of macro elements with few degrees of freedom characterized114

by certain global behaviors [25], [39], [49]. Models originally formulated for115

concrete and subsequently applied to masonry structures [9], [47], [11] can be116

included in this latter group. A comprehensive review of constitutive models117

for masonry falls outside the scope of this paper and the reader is referred118

to [27], [28], [29] and [42] for a thorough discussion.119

When dealing with the analysis of ancient masonry buildings, constitutive120

equations belonging to the second class are preferable. In fact, the applica-121

tion of micro-mechanical models is not straightforward, since it is difficult122

to identify a homogeneous and/or periodic structure in historical masonries.123

Moreover, the use of micro-mechanical models requires accurate knowledge124

of several parameters related to mechanical properties of the masonry con-125

stituent elements, which can not be easily determined; furthermore, the em-126

ployment of the micro-mechanical models to complex structures calls for high127

computational cost. On the other hand, the application of macro-mechanical128

models does require the knowledge of a few parameters, which can be ob-129

tained from experimental tests, literature values or even from indications130

provided by national building codes and regulations.131

Among macro–mechanical models, the constitutive equation for low ten-132

sion materials, implemented in MARC [32], and the Rankine model, im-133

plemented in DIANA [15], are largely adopted to simulate the structural134

behavior of masonry constructions. Along with these models, both based135
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on the theory of infinitesimal plasticity, the nonlinear elastic equation of136

masonry-like materials [30] is able to realistically describe the behavior of137

masonry buildings by taking into consideration their zero or low tensile138

strength. This constitutive equation has been implemented in NOSA-ITACA139

[8], [22], a finite element code developed and freely distributed by ISTI-CNR140

(www.nosaitaca.it). Here, masonry is modeled as an isotropic nonlinear elas-141

tic material with zero tensile strength and infinite compressive strength [14].142

It is possible to prove that for every infinitesimal strain tensor E, there exists143

a unique triplet (T,Ee,Ef ) of symmetric tensors such that E is the sum of144

an elastic strain Ee and a positive semidefinite fracture strain Ef , and the145

Cauchy stress T, negative semidefinite and orthogonal to Ef , depends lin-146

early and isotropically on Ee, through the Young’s modulus E and Poisson’s147

ratio ν [14], [30].148

Masonry-like materials are then characterized by the stress function T149

given by T(E) = T, whose explicit expression is reported in [30], along with150

its properties. In particular, T is differentiable in an open dense subset of151

the set of all strains [38] and the derivative DET(E) of T(E) with respect152

to E is a positive semidefinite symmetric fourth–order tensor, whose explicit153

expression is reported in [30]. The equation of masonry-like materials has154

been then generalized in order to take into account a weak tensile strength155

σt ≥ 0 [30].156

The constitutive law of low tensile materials implemented in MARC [32]157

is based on the nonlinear concrete cracking formulation described in [9]. Ma-158
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sonry is modeled as a nonlinear isotropic material in which a crack can de-159

velop orthogonal to the direction of the maximum principal stress, when it160

exceeds the strength of the material σt. After the occurrence of the first161

crack, a second crack may arise orthogonal to the first. In the same way, a162

third crack could open perpendicularly to the first two. In this situation the163

material loses all its load-carrying capacity across the crack, except when a164

tension softening behavior is considered, which can have a linear trend with165

slope equal to Es.166

The Rankine plasticity model implemented in DIANA [15] employes the167

Rankine yield criterion to simulate tensile cracking in concrete and rock168

under monotonic loading conditions. The yield function depends on both the169

maximum principal stress and a yield value σ̃t that describes the nonlinear170

exponential tensile softening behavior of the material, involving the tensile171

strength σt and the fracture energy GI
f [19].172

Although the mechanical behavior of masonry constructions is clearly173

nonlinear, modal analysis, which is based on the assumption that masonry174

constituent materials feature a linear elastic behavior, is widely used in prac-175

tical applications. Indeed, it provides important qualitative information on176

the global dynamic behavior of masonry structures, thereby allowing to as-177

sess their seismic vulnerability in compliance with the Italian and European178

regulations. On the other hand, traditional modal analysis does not take into179

account the influence that both the nonlinear behavior of the masonry mate-180

rial and the presence of cracked regions can have on the natural frequencies181
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of masonry structures. While the effects of cracks on the vibration frequen-182

cies are taken into account in different fields of mechanical and aerospace183

engineering through the so-called linear perturbation analysis, such effects184

are not fully explored yet as far as the civil engineering field is concerned.185

In this paper the linear perturbation approach is coupled with modal186

analysis, with the aim of assessing the dependence of the dynamic properties187

of a masonry structure on the stress field and crack distribution induced by188

the loads acting on the structure. Apart from the examples described in [23],189

where a masonry beam, an arch on piers and the San Frediano bell tower in190

Lucca have been analyzed, coupling linear perturbation and modal analysis is191

far from being fully investigated, although it allows for calculating the natural192

frequencies and mode shapes of a masonry body exhibiting a crack distribu-193

tion due to the applied loads. In this regard, the procedure implemented in194

the NOSA–ITACA code consists in calculating the numerical solution to the195

nonlinear equilibrium problem of a masonry structure discretized into finite196

elements, subjected to given boundary and loading conditions, and then con-197

sidering the linear equation governing the undamped free vibrations of the198

structure about the equilibrium state199

Mü+KTu = 0. (1)

In equation (1) u is the displacement vector, which belongs to Rn and200

depends on time t, ü is the second-derivative of u with respect to t, and201
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KT and M ∈ Rn×n are the tangent stiffness and mass matrices of the finite-202

element assemblage. Note that KT is symmetric and positive semidefinite,203

M is symmetric and positive definite. Equation (1) is similar to the equation204

of the motion of a linear elastic body, though here the elastic stiffness matrix,205

calculated using the elasticity tensor, is replaced by the tangent stiffness ma-206

trix KT, calculated using the solution to the equilibrium problem and then207

takes into account the presence of cracks in body.208

209

By assuming that210

u = ϕ sin(ωt), (2)

with ϕ a vector of Rn and ω a real scalar, equation (1) can be transformed211

into the constrained generalized eigenvalue problem212

KT ϕ = ω2M ϕ, (3)
213

Tϕ = 0, (4)

with T ∈ Rm×n and m ≪ n.214

215

Condition (4) expresses the fixed constraints and the master-slave rela-216

tions assigned to displacement u, written in terms of vector ϕ. The restriction217

of the matrix KT to the null subspace of Rn defined by (4) is positive definite.218
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Therefore, given the structure under examination, discretized into finite219

elements, and given the mechanical properties of the constituent materials220

together with the kinematic constraints and loads acting on the structure,221

the procedure implemented in NOSA-ITACA consists of the following steps.222

Step 1. A preliminary modal analysis is conducted by assuming the struc-223

ture’s constituent material to be linear elastic, with stiffness matrix K. The224

generalized eigenvalue problem (3)-(4) is then solved, with K in place of KT,225

and the natural frequencies fi,E = ωi,E/2π and mode shapes ϕl
i calculated.226

Step 2. The solution of the nonlinear equilibrium problem of the structure227

is found and the derivative of the stress function needed to calculate the228

tangent stiffness matrix KT to be used in the next step is evaluated.229

Step 3. The generalized eigenvalue problem (3)-(4) is finally solved and230

the natural frequencies fi = ωi/2π of the structure in the presence of cracks231

are estimated.232

Similar procedures based on linear perturbation followed by modal analy-233

sis are implemented in MARC and DIANA. The three codes NOSA-ITACA,234

MARC and DIANA, which adopt different constitutive equations for ma-235

sonry, have been used with the twofold aim of (1) studying the static behavior236

of a masonry arch subjected to its own weight and a vertical concentrated237

load and, after a linear perturbation, (2) assessing the dependence of the238

natural frequencies and mode shapes on the crack distribution. The results239

of this comparative study are reported in Section 3 and show that, in spite of240
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the different constitutive equations adopted, the dependence of the dynami-241

cal properties of the arch on the loads is very similar for the three codes.242

3. Application to a masonry arch and software benchmarking243

The numerical method for modal analysis described in Section 2 is here244

applied to the semi-circular masonry arch shown in Figure 1. The system is245

fully clamped at the springings and its geometry features a mean radius of246

0.77 m, a span of 1.50 m, a cross section of 0.16 m×1 m and a springing angle247

of about 13◦. The arch is subjected to a plane stress state due to its self-248

weight and to a concentrated load P applied at the extrados at a quarter of249

the span. The arch is discretized into 784 8-node isoparametric quadrilateral250

elements with quadratic shape functions (corresponding to element 2, 26251

and CQ16M of the NOSA-ITACA [8], MARC [32] and DIANA [15] libraries,252

respectively), for a total of 2565 nodes. Figure 2 shows the mesh generated253

by NOSA-ITACA, later converted in the MARC and DIANA format.254
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Figure 1: Geometry of the arch (length in meters).

Figure 2: Mesh of the arch created by NOSA-ITACA code.

The numerical analyses conducted with NOSA-ITACA, MARC and DI-255

ANA have manifold goals. Firstly, they are aimed at analysing the static256
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behavior of the arch modeled by adopting three different constitutive equa-257

tions. Secondly they allow comparing the natural frequencies of the arch in258

the linear elastic case with those in the presence of the damage induced by259

the increasing vertical load. Several parametric numerical experiments have260

been carried out, as the tensile strength σt of the material varies, revealing261

that, in the presence of cracks, the values of the frequencies calculated by262

the three codes are comparable.263

A preliminary modal analysis (step 1, Section 2) was performed by as-264

suming the arch made of a linear elastic material with Young’s modulus265

E = 3 · 109 Pa, Poisson’s ratio ν = 0.2 and mass density ρ = 1930 kg/m3.266

The first four corresponding natural frequencies fi,E (i = 1...4) (calculated267

by the three codes) are268

269

f1,E = 92.33 Hz; f2,E = 163.64 Hz; f3,E = 266.95 Hz; f4,E = 297.95 Hz.270

Then, by following the procedure outlined in Section 2, step 2, damage271

was induced in the arch by applying the self-weight along with an incremen-272

tal vertical load. At each increment the frequencies fi,j (the i-th frequency273

calculated by j-th code: N (NOSA-ITACA), M (MARC) and D(DIANA))274

and the corresponding mode shapes were calculated.275

In order to perform nonlinear static analysis in DIANA and MARC, the276

parameters GI
f and Es (see Section 2) have to be assigned, in addition to the277

tensile strength σt, set to vary from 0 Pa to 5 · 104 Pa. The Mode-I fracture278
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energy with GI
f = 25 Nm/m2 was assumed in DIANA, while Es was calcu-279

lated, for each analysis performed in MARC, by imposing the equivalence280

between the areas below the softening curves of both codes.281

The value of the vertical load applied to the arch was increased through eight282

increments from 0 kN to 4 kN. Each analysis was repeated by decreasing the283

value of σt from 5 · 104 Pa to 5 · 103 Pa. For values of σt lower than 5 · 103 Pa,284

only NOSA-ITACA and DIANA reach the convergence for any value of the285

vertical load.286

It is pointed out that in terms of displacement, stress and cracking fields,287

the results provided by the three codes show very good agreement for each288

value of the vertical load up to a tensile stress of 5 · 103 Pa. Figures 3, 4,289

5, 6 and 7 display for the three codes the plots relevant to the norm of dis-290

placements, the components of the Cauchy stress tensor and the maximum291

eigenvalue of the fracture strain, calculated for σt = 5 · 103 Pa and P = 4 kN.292

Despite the different constitutive equations adopted, NOSA-ITACA and DI-293

ANA provide the same results, whereas the values obtained in MARC exhibit294

an increment of about 5− 10% with respect to the afore-mentioned codes.295
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Figure 3: Norm of displacement [m] (P = 4 kN, σt = 5 · 103 Pa).

Figure 4: Cauchy stress component σx [Pa] (P = 4 kN, σt = 5 · 103 Pa).

16



Figure 5: Cauchy stress component σy [Pa] (P = 4 kN, σt = 5 · 103 Pa).

Figure 6: Cauchy stress component τxy [Pa] (P = 4 kN, σt = 5 · 103 Pa).
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Figure 7: Maximum eigenvalue of the fracture strain tensor (P = 4 kN, σt = 5 · 103 Pa).

Figures 8, 9, 10, 11 show the variation of the first four frequencies fi,j296

of the arch, calculated in the three codes via linear perturbation analysis,297

versus decreasing values of tensile strength σt for P = 3 kN (continuous line)298

and P = 4 kN (dashed line). The corresponding mode shapes for the linear299

elastic case are also shown. Tables 1, 2, and 3, 4 report, for the same load300

conditions P, the values of σt used in the different analyses along with the301

corresponding relative frequency errors δi,j defined by302

δi,j =
(fi,E − fi,j)

fi,E
, for i = 1...4 and j = N, M, D (5)

where fi,E is the i-th frequency calculated by standard modal analysis and303

fi,j the i-th frequency calculated by j-th code via linear perturbation analysis,304
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(N stands for NOSA-ITACA, M for MARC and D for DIANA).305

Figure 8: First frequency f1,j versus tensile strength σt for P = 3 kN (continuous line)
and P = 4 kN (dashed line).
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Figure 9: Second frequency f2,j versus tensile strength σt for P = 3 kN (continuous line)
and P = 4 kN (dashed line).

Figure 10: Third frequency f3,j versus tensile strength σt for P = 3 kN (continuous line)
and P = 4 kN (dashed line).

20



Figure 11: Fourth f4,j versus tensile strength σt for P = 3 kN (continuous line) and P =
4 kN (dashed line).

σt[Pa] δ1,N[%] δ1,M[%] δ1,D[%] δ2,N[%] δ2,M[%] δ2,D[%]
0 60.20 – 57.61 27.28 – 31.28

1000 49.80 – 49.13 19.09 – 19.47
2500 37.21 – 35.52 14.03 – 12.74
5000 25.93 29.35 26.68 9.06 11.45 9.63
7500 19.81 21.07 20.19 6.79 7.15 7.26
10000 15.80 16.77 16.26 5.32 5.60 5.75
17500 8.20 8.06 7.57 2.67 2.51 2.38
25000 3.56 3.06 2.89 1.14 0.95 0.95
50000 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: δi,j, i = 1,2 ; j = N, M, D ; P = 3 kN.
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σt[Pa] δ3,N[%] δ3,M[%] δ3,D[%] δ4,N[%] δ4,M[%] δ4,D[%]
0 28.95 – 35.24 26.71 – 25.08

1000 22.86 – 20.45 19.43 – 14.92
2500 14.42 – 13.31 9.81 – 10.99
5000 8.36 10.21 8.17 5.66 5.88 5.56
7500 5.29 6.24 4.92 3.63 3.47 3.65
10000 3.52 4.30 3.19 2.69 2.54 2.77
17500 1.35 1.57 1.47 1.21 1.19 1.21
25000 0.60 0.70 0.39 0.50 0.41 0.45
50000 0.00 0.00 0.00 0.00 0.00 0.00

Table 2: δi,j, i = 3,4 ; j = N, M, D ; P = 3 kN.

σt[Pa] δ1,N[%] δ1,M[%] δ1,D[%] δ2,N[%] δ2,M[%] δ2,D[%]
0 77.20 – 74.92 47.38 – 44.10

1000 66.79 – 67.90 36.94 – 35.28
2500 57.29 – 56.32 25.63 – 24.42
5000 44.50 55.15 44.38 16.19 21.67 15.91
7500 35.57 36.42 34.72 12.32 12.95 12.03
10000 29.27 29.94 28.12 10.32 10.50 9.76
17500 16.15 17.01 16.45 5.53 5.62 5.81
25000 9.42 9.80 9.66 3.19 3.20 3.28
50000 0.56 0.51 0.95 0.19 0.17 0.34

Table 3: δi,j, i = 1,2 ; j = N, M, D ; P = 4 kN.
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σt[Pa] δ3,N[%] δ3,M[%] δ3,D[%] δ4,N[%] δ4,M[%] δ4,D[%]
0 48.70 – 44.65 50.06 – 36.55

1000 40.01 – 34.17 37.21 – 29.39
2500 27.26 – 26.15 22.03 – 21.90
5000 18.79 26.05 17.98 11.59 13.52 12.88
7500 13.17 13.71 12.54 9.02 8.58 8.16
10000 9.26 9.82 8.84 5.62 5.83 5.60
17500 3.72 4.24 3.45 2.46 2.40 2.55
25000 1.79 1.76 1.70 1.35 1.34 1.43
50000 0.08 0.08 0.04 0.08 0.07 0.13

Table 4: δi,j, i = 3,4 ; j = N, M, D ; P = 4 kN.

As expected, the figures highlight that the frequencies of the arch decrease306

as the vertical load increases and the tensile strength decreases. As outlined307

in Tables 1, 2, 3 and 4, regardless of the value of the vertical load, the308

fundamental frequency falls faster than the other frequencies; approximately309

27% against 9%, when P = 3 kN and σt = 5 · 103 Pa, and 50% against 20%,310

when P = 4 kN and σt = 5 · 103 Pa. This is due to the chosen vertical load311

position, which induces a deformation in the arch similar to the first mode312

shape (Figure 12, 13).313

Figure 12 shows the mode shapes corresponding to the first four frequencies314

of the arch for σt = 5 · 103 Pa and P = 3 kN. Figure 13 shows the same315

four mode shapes but for σt = 5 · 103 Pa and P = 4 kN. The figures report316

the degree of consistency, expressed in terms of MAC, viz. Modal Assurance317

Criterion [31] , calculated between the i-th mode shape of the damaged arch318

and the corresponding mode shape calculated via standard modal analysis.319

It is noticed that frequencies are much more sensitive than mode shapes to320
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damage; for example when σt = 5 · 103 Pa and P = 3 kN, the first frequency321

shows a relative variation of about 25% while the MAC value is equal to322

0.99, whereas when σt = 5 · 103 Pa and P = 4 kN, the first frequency has323

a relative downshift of about 50% (which indeed corresponds to a severe324

damage condition), but the MAC still continues to be rather high, showing325

values not lower than 0.90.326

Figure 12: First four mode shapes of the damaged arch (P = 3 kN, σt = 5 · 103 Pa).

24



Figure 13: First four mode shapes of the damaged arch (P = 4 kN, σt = 5 · 103 Pa).

In order to validate the frequencies values calculated by the three FE327

codes, the load-displacement curves corresponding to σt = 5 · 103 Pa were328

plotted (Figure 14) for nodes 755 and 673, positioned respectively at the329

application point of vertical load and the corresponding point at the intrados330

of the arch (Figure 2).331
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Figure 14: Vertical load versus displacement magnitude of node 673 (on the left) and node
755 (on the right), σt = 5 · 103 Pa.

For each curve, its fourth-degree interpolating polynomial is determined332

and then the slopes kT,P0 and kT,P4 of the tangents at the origin and at P =333

4 kN, (dashed lines in Figure 14) are calculated. The slope kS of the secant334

passing for those points (dashed-dot lines in Figure 14) is also calculated.335

Since the loss of frequency is expected to be related to the square root of the336

loss of stiffness (mass being equal), the following quantities were calculated as337

for the first frequency, i.e. the one suffering a major decrease due to damage338

f̃1,T = f1,E ·

√
kT,P4

kT,P0

, (6)

f̃1,S = f1,E ·

√
kS

kT,P0

, (7)
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The results obtained are summarized in Tables 5 and 6 for all the three339

codes. It is worth noting that the first frequency f̃1,T calculated by using the340

tangent stiffness is a good approximation of the frequency f1,j computed via341

linear perturbation analysis, whereas the choice of the secant stiffness matrix342

would lead to an overestimation of the frequency of the damaged structure.343

Code P [kN] kT [kN/m] kS [kN/m] f̃1,T [Hz] f̃1,S [Hz] f1,j [Hz]

N
0 254.48

143.52 50.87 69.34 51.24
4 77.26

M
0 260.23

133.68 41.76 66.18 41.41
4 53.23

D
0 254.48

143.55 50.88 69.34 51.35
4 77.28

Table 5: Comparison of the first frequency of the arch using the tangent stiffness kT and
the secant stiffness kS evaluated in node 673 with the numerical frequency obtained via
linear perturbation analysis.

Code P [kN] kT [kN/m] kS [kN/m] f̃1,T [Hz] f̃1,S [Hz] f1,j [Hz]

N
0 180.68

112.31 54.16 72.79 51.24
4 62.16

M
0 173.20

133.68 46.54 70.75 41.41
4 53.23

D
0 180.68

114.69 54.78 73.56 51.35
4 63.61

Table 6: Comparison of the first frequency of the arch using the tangent stiffness kT and
the secant stiffness kS evaluated in node 755 with the numerical frequency obtained via
linear perturbation analysis.
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4. Application to a real case study: the Mogadouro clock tower344

4.1. Description of the case study345

The Mogadouro clock tower (Figure 15) is a historic masonry structure346

located inside the castle perimeter of the homonymous town in the Northeast347

of Portugal and likely built after 1559 to serve the neighbouring church as348

a bell tower. The fabric features a rectangular cross section of 4.7 x4.7 m2,349

with masonry walls of about 1 m thickness, and a height of 20.4 m. The350

central part of the walls is built of rubble stones with thick mortar joints,351

whereas the corners are made of large granite units with dry joints. Eight352

masonry columns support the roof body, forming two rectangular openings353

of about 0.9 x2.0 m2 per façade.354
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Figure 15: Clock tower and castle of Mogadouro.

Due to the lack of maintenance, the tower did appear in very poor condi-355

tions. Beyond material degradation and biological growth, out-of-plane dis-356

placements and cracks could be clearly observed. The most damaged parts357

were the East and West façades, where two deep passing cracks were about358

to separate the box cross section of the tower into two U halves (Figures 16,359

17). As the structural safety was jeopardized, rehabilitation works aimed at360

reinstating the sound condition of the structure were carried out in 2005.361

The intervention included: lime grout injections for sealing and walls consol-362

idation, substitution of deteriorated material, and installation of pre-stressed363

tie-rods to restrain cracks from possible reopening.364
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Figure 16: Damage in the tower: (a) South, (b) East, (c) North and (d) West façades;
cracks on the (e) East and (f) West fronts; (g) inner crack in the West façade; and (h)
example of material loss [44], [45].

4.2. Dynamic identification of the tower before and after rehabilitation365

To evaluate the structural response pre- and post-rehabilitation, two cam-366

paigns of Ambient Vibrations Tests (AVTs) were carried out making use of367

ambient excitation sources, such as wind and traffic [44], [45]. The response368

of the tower was measured in 54 selected points distributed along three lev-369

els, according to the layout displayed in Figure 17. The dynamic equipment370

consisted of 4 uniaxial piezoelectric accelerometers with a bandwidth rang-371

ing from 0.15 to 1000 Hz (5%), a dynamic range of ±0.5g, a sensitivity of372
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10 V/g, 8µg of resolution and 0.21 kg of weight, connected by coaxial cables373

to a front-end data acquisition system with a 24-bit ADC, provided with374

anti-aliasing filters. The front-end was connected to a laptop by an Ethernet375

cable. The accelerometers were bolted to aluminium plates, which were in376

turn glued to the stones through an epoxy layer. As the acquisition system377

was composed only by 4 channels, 27 test setups were necessary to record378

the accelerations in all selected measurement points. A preliminary FE dy-379

namic analysis assisted in the selection of the acquisition parameters. Thus,380

to ensure an acquisition time window 2000 times larger than the estimated381

fundamental period of the structure, the output signals were recorded with382

a sampling frequency of 256 Hz for a duration of about 11 minutes. Same383

test planning and measurement points were adopted before and after the384

reinstatement works.385
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Figure 17: Sensor layout for AVTs: (a) South, (b) East, (c) North and (d) West façades
[44], [45].

For each structural condition (before and after rehabilitation), the modal386

parameters were estimated by comparing the results from two established and387

complementary OMA techniques: the Enhanced Frequency Domain Decom-388

position (EFDD) method and the Stochastic Subspace Identification (SSI)389

method, both implemented in ARTeMIS software [3]. In total, seven modes390

of vibration were identified in the frequency ranges 2-9 Hz and 2-17 Hz for391

the damaged and undamaged conditions, respectively. Tables 7 and 8 sum-392

marize the obtained results in terms of natural frequencies fi,exp, damping393

ratios ξi,exp, Coefficient of Variation CV and percentage differences ∆ before394

and after rehabilitation. Mode shapes and MAC values are illustrated in395
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Figure 18. For the sake of brevity, only the modal features identified by the396

SSI are shown.397

Mode
Before After

∆f [%]
fi,exp[Hz] CVf [%] fi,exp[Hz] CVf [%]

1 2.15 1.85 2.56 0.21 +19.28
2 2.58 1.05 2.76 0.30 +6.70
3 4.98 0.69 7.15 0.27 +43.67
4 5.74 1.56 8.86 0.47 +54.37
5 6.76 1.13 9.21 0.21 +36.13
6 7.69 2.94 15.21 2.24 +97.87
7 8.98 1.21 16.91 1.40 +88.27

Avg – 1.49 – 0.73 +49.47

Table 7: Dynamic response of Mogadouro tower before and after rehabilitation in terms
of frequencies [44], [45].

Mode
Before After

∆ξ[%]
ξi,exp[%] CVξ[%] ξi,exp[%] CVξ[%]

1 2.68 219.51 1.25 0.13 -53.26
2 1.71 94.02 1.35 0.17 -21.00
3 2.05 65.33 1.20 0.14 -41.32
4 2.40 24.27 1.31 0.13 -45.72
5 2.14 31.74 1.16 0.12 -45.65
6 2.33 55.98 2.54 0.24 +9.11
7 2.30 46.39 1.49 0.23 -35.07

Avg 2.23 76.75 1.47 0.17 -40.34

Table 8: Dynamic response of Mogadouro tower before and after rehabilitation in terms
of damping [44], [45].
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Figure 18: Experimental mode shapes and MAC values before and after rehabilitation
works [44].

The comparison between the global parameters estimated before and after398

the consolidation works revealed a significant increase of frequency values,399

reading an average upshift of 50%, and a damping decrease of around 40%.400

Such results consistently reflected the actual structural conditions of the401

tower, i.e. a lower-stiffness system with ongoing non-linear phenomena effects402

before rehabilitation and a higher-stiffness system with reduced non-linear403

phenomena effects after rehabilitation. In what concerns the experimental404

mode shapes, similar configurations were observed pre- and post-intervention405

for the first five modes of vibration, identifying four dominant bending modes406

in the two main planes of the tower (modes 1, 2, 4 and 5) and one torsional407
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mode (mode 3), whereas higher-frequency mode shapes (modes 6 and 7)408

switched order after the works. Although comparable in configuration, the409

presence of local damage mechanisms before the structural intervention did410

likely induce local protuberances in the experimental mode shapes of the411

damaged tower, especially in the upper part of the structure and in the areas412

close to the cracks. Hence the poor degree of correlation characterizing the413

mode shape vectors before and after (MAC < 0.65). On the contrary, the414

structure featured a monolithic behaviour after the rehabilitation works.415

4.3. Modal analysis with linear perturbation416

In this subsection the linear perturbation analysis is applied to the Mo-417

gadouro clock tower. The analysis is performed by using only NOSA-ITACA418

code for two reasons: (1) in DIANA, the Rankine plasticity model describing419

the tensile regime of the material is implemented only for plane stress, plane420

strain and axisymmetric elements, but not for brick elements, which are the421

ones employed in modeling the tower; (2) the MARC code turned out to be422

unable to reach the convergence for σt = 0 Pa, a value that is crucial for a423

realistic modeling of eastern and western façades, where two passing cracks424

were present before rehabilitation.425

In [44] and [45] a FE model updating (based on standard modal analysis) is426

performed to tune the Young’s modulus of different parts of the structure,427

in order to minimize the differences between numerical and experimental428

modal parameters (frequencies and mode shapes) of the tower after rehabili-429
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tation; subsequently, the Young’s moduli obtained are reduced with the aim430

of fitting the experimental frequencies and mode shapes of the tower before431

rehabilitation. Here, a different approach is followed, based on model up-432

dating aimed at matching both fracture distribution and frequencies of the433

tower. With the purpose of reproducing numerically the actual crack pattern434

of the tower before rehabilitation and matching its experimental frequencies435

as well, the scheme described in Section 2 (nonlinear static analysis436

– linear perturbation – modal analysis) has been applied in an iter-437

ative way. In particular, once the solution to the equilibrium problem of the438

structure subjected to its own weight is calculated along with the correspond-439

ing fracture distribution, linear perturbation analysis and modal analysis are440

conducted to estimate frequencies and mode shapes of the tower in the pres-441

ence of cracks. The materials Young’s moduli and tensile strengths are tuned442

and their optimal values calculated in such a way as to match the crack443

distribution and minimize the discrepancy between experimental444

and numerical frequencies. The same procedure was then repeated to445

tune the tensile strength of the repaired walls, keeping the Young’s moduli446

fixed and trying to match the experimental natural frequencies and mode447

shapes of the tower after rehabilitation.448

The FE mesh of the tower, shown in Figure 19, consists of 18024 isopara-449

metric 8−node brick elements, 352 thick shell elements, used to discretize450

the roof, and 23467 nodes; the model includes also two meters of foundation451

[44], [45] with the same thickness as the façades. The tower is assumed to452
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be clamped at the base and constituted by the materials whose (optimal)453

mechanical properties, calculated via model updating, are indicated in Table454

9. The foundation is modeled by a linear elastic material, which is indeed an455

acceptable assumption considering the high material compaction at the base456

of the tower and the soil confinement. Regarding pillars and roof, the use of457

a linear elastic material is suggested by the observation that these elements458

do not affect the overall structural behavior of the tower. Indeed, the low459

elastic modulus adopted for the roof does allow the tower cross section to460

freely deform within its own plane.461

Figure 19: Mogadouro tower, mesh and distribution of material properties (before reha-
bilitation).
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Mat. n◦ Tower’s portion ϱ[kg/m3] E[GPa] σt[kPa]
1 (orange) façades South and North (bottom) 2200 2.500 15.0
2 (green) façades East, West and North (top) 2200 2.500 0.0
3 (red) corners 2400 3.500 15.0

4 (indigo) pillars 2200 1.210 –
5 (grey) roof 2000 0.195 –
6 (cyan) foundation 2200 3.500 –

Table 9: Optimal values of the material mechanical properties before rehabilitation.

Numerical solution to the equilibrium problem for the optimal values of462

the Young’s moduli and tensile strengths in Table 9 yields the results reported463

in Figures 20, 21 and 22 that show, for each façade, the actual (on the left)464

and numerical (on the right) crack patterns before rehabilitation. The South465

wall is not reported because it shows no cracks (neither in the numerical466

model nor in the reality). A very good agreement can be observed between467

real and numerical fracture strains.468
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Figure 20: Mogadouro tower West façade, surveyed (on the left) and numerical (on the
right) cracking pattern.
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Figure 21: Mogadouro tower North façade, surveyed (on the left) and numerical (on the
right) cracking pattern.
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Figure 22: Mogadouro tower East façade, surveyed (on the left) and numerical (on the
right) cracking pattern.

Table 10 summarizes the results of the modal analysis before rehabilita-469

tion in terms of experimental (fi,exp) and numerical (fi,N) frequencies, relative470

frequency error, and MAC values between experimental and numerical mode471

shapes (evaluated considering just the nodes monitored during the experi-472

mental campaigns [44], [45]). The four frequencies and the first two mode473

shapes are very well approximated, while the correlation of the third and474

fourth numerical mode shapes with their experimental counterparts is quite475
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low (particularly for the fourth mode). The poor match between the476

third experimental and numerical mode shapes before rehabilita-477

tion is inherent to the adopted modeling strategy and likely due to478

the fact that, as far as the numerical solution is concerned, pass-479

ing cracks in the East and West façades do not allow the tower’s480

section to undergo torsional deformations. On the contrary, in the481

real case, such a deformation is made possible by interlocking ef-482

fect and friction between the units. It is also possible that other483

(non-visible damage) can affect this mode.484

Mode fi,exp [Hz] fi,N [Hz] ∆f [%] MAC
1 2.15 2.15 0.00 0.94
2 2.58 2.60 -0.78 0.96
3 4.98 4.92 1.20 0.32
4 5.74 5.88 -2.44 0.01

Table 10: Comparison between experimental (fi,exp) and numerical frequencies (fi,N);
relative frequency error ∆f = (fi,exp − fi,N)/fi,exp and MAC values before rehabilitation.

Figure 23 shows the first four experimental and numerical (calculated by485

NOSA-ITACA) mode shapes of the Mogadouro tower before rehabilitation.486
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Figure 23: First four mode shapes of the Mogadouro tower before rehabilitation.

Subsequently, the same FE model is adopted to perform the analysis of487

the tower after rehabilitation, considering a tensile strength σt = 10 kPa488

for the restored walls (material 2 in Figure 19), while the other mechanical489

properties are kept fixed.490

The results are summarized in table 11; Figure 24 shows the first four491

experimental and numerical mode shapes after rehabilitation. All492

frequencies increase with respect to the unreinforced case, consistently with493

the experimental results. In this case, a good approximation is achieved for494

43



all four mode shapes, and a very great accuracy is obtained in the assessment495

of the first two frequencies.496

Mode fi,exp [Hz] fi,N [Hz] ∆f [%] MAC
1 2.56 2.59 -1.17 0.98
2 2.76 2.75 0.36 0.98
3 7.15 8.39 -17.34 0.97
4 8.86 9.32 -5.19 0.74

Table 11: Comparison between experimental (fi,exp) and numerical frequencies (fi,N);
relative frequency error ∆f = (fi,exp − fi,N)/fi,exp and MAC values after rehabilitation.

Figure 24: First four mode shapes of the Mogadouro tower after rehabilitation.
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Table 12 recapitulates experimental and numerical results in terms of497

natural frequencies, before and after rehabilitation of the tower, pointing out498

that the linear perturbation analysis allows to catch the dynamic behavior499

of the structure in damaged conditions with reasonable accuracy. The table500

shows also that the numerical increase of the natural frequencies, due to501

restoration of the tower and obtained in the numerical model through an502

increase of tensile strength of the damaged walls, is in agreement with the503

experimental results, apart from the third frequency, which is overestimated504

by the code.505

Mode
Before After ∆f [%]

fi,exp [Hz] fi,N [Hz] fi,exp [Hz] fi,N [Hz] exp num

1 2.15 2.15 2.56 2.59 +19.28 +20.46
2 2.58 2.60 2.76 2.75 +6.70 +5.77
3 4.98 4.92 7.15 8.39 +43.67 +70.52
4 5.74 5.88 8.86 9.32 +54.37 +58.50

Table 12: Summary of the experimental and numerical results before and after rehabili-
tation.

For the sake of comparison, the optimal values of the Young’s506

modulus ES calculated via a model updating based on standard507

modal analysis [44], [45] are reported in table 13 together with the508

corresponding values ENL obtained by a model updating based on509

linear perturbation analysis. As expected, in the standard modal510

analysis the lowest values of the Young’s modulus are obtained in511

the cracked façades.512

45



Before After

ES[GPa] ELP[GPa] ES[GPa] ELP[GPa]

South façade 0.687 2.500 1.974 2.500
North façade 2.210 2.500 2.210 2.500
West façade 0.302 2.500 1.075 2.500
East façade 0.276 2.500 0.804 2.500
Corners 3.870 3.500 3.875 3.500

Table 13: Comparison between the optimal values of the Young’s modulus ES (standard
modal analysis) and ELP (linear perturbation and modal analysis).

Tables 14 and 15 show the frequencies and MAC values calcu-513

lated via standard modal analysis and linear perturbation analysis,514

before and after rehabilitation; for the sake of completeness the ex-515

perimental frequencies are reported as well.516

Mode fi,exp [Hz]
Linear Perturbation Standard

fi [Hz] ∆f [%] MAC fi [Hz] ∆f [%] MAC

1 2.15 2.15 0.00 0.94 2.07 3.72 0.97
2 2.58 2.60 -0.78 0.96 2.40 6.98 0.97
3 4.98 4.92 1.20 0.32 5.14 -3.21 0.96
4 5.74 5.88 -2.44 0.01 5.88 -2.44 0.73

Table 14: Comparison between the frequencies calculated via standard modal analysis and
linear perturbation before rehabilitation.
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Mode fi,exp [Hz]
Linear Perturbation Standard

fi [Hz] ∆f [%] MAC fi [Hz] ∆f [%] MAC

1 2.56 2.59 -1.17 0.98 2.54 0.78 0.99
2 2.76 2.75 0.36 0.98 2.68 2.90 0.99
3 7.15 8.39 -17.34 0.97 7.33 -2.52 1.00
4 8.86 9.32 -5.19 0.74 8.62 2.71 0.98

Table 15: Comparison between the frequencies calculated via standard modal analysis and
linear perturbation after rehabilitation.
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5. Conclusions517

The present paper investigated the dependence of the dynamic properties518

of masonry structures on the nonlinear behavior of the constituent materials.519

As the mechanical response of masonry constructions is remarkably differ-520

ent in tension and in compression, and cracks may arise due permanent and521

accidental loads, standard modal analysis may result unrealistic. In this522

context, a linear perturbation approach must be used to adequately estimate523

the dynamic properties of masonry constructions in the presence of cracked524

regions. After a brief description of the constitutive equations and numer-525

ical procedures implemented in different FE codes (NOSA-ITACA, DIANA526

and MARC), the proposed approach, which couples linear perturbation and527

modal analysis, is described. The numerical procedure is then applied to528

a masonry arch with the aim of comparing and cross-validating the results529

obtained from the afore-mentioned FE codes in terms of natural frequencies530

and mode shapes for decreasing values of tensile strength. It is demonstrated531

that, despite the different constitutive equations the three codes rely on, the532

dependence of the dynamic properties of the masonry arch on the applied533

loads and induced crack distribution is consistent among the three of them,534

showing comparable frequency downshifts and MAC values over the different535

damage scenarios. Finally, with the purpose of validating the same approach536

on a real case-study structure, the procedure is applied to a historic masonry537

tower affected by a serious crack pattern. After solving the nonlinear equilib-538

rium problem of the structure subjected to its own weight and reproducing539
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the actual fracture distribution, a modal analysis about the equilibrium so-540

lution is carried out to estimate frequencies and mode shapes of the tower541

in the presence of cracks as well as after the rehabilitation works. A FE542

model updating is used to tune the optimal values for both Young’s modu-543

lus and tensile strength in the different parts of the tower, according to the544

observed structural conditions before and after the intervention. The com-545

parison between numerical and experimental results showed that546

the combination of linear perturbation and modal analysis enables547

to estimate with reasonable accuracy the first two frequencies and548

mode shapes of the masonry tower in both damaged and reinforced549

conditions. The method proposed seems to be promising and fur-550

ther applications are necessary to confirm the reliability of the551

adopted approach for the solution of the dynamic problem in case552

of structures built with masonry materials.553
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