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S1. Experimental details

51.1. Synthesis

gCNAr powders were synthesized by thermal condensation of melamine (99%, Sigma-Aldrich) in
an Ar atmosphere [1]. Briefly, melamine powders were introduced in a closed crucible, placed in a
tubular oven and then heated with a constant rate of 3°C/min at 100°C (30 min), 400°C (2.5 h), and finally
550°C (4 h), followed by slow cooling at room temperature. The preparation of gCNar powders was
carried out in a similar way, but operating in air in a muffle furnace. In this case, melamine powders
(typically 3 g) were transferred into a closed crucible and heated at a rate of 3°C/min at 100°C (30 min),
400°C (2 h), and then 550°C (4 h), followed by cooling at room temperature.
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Figure S1. Synthetic protocols used for the preparation of: (a) gCN* and (b) gCN®* powders, and the
corresponding Ni foam-supported samples. The most relevant parameters are also reported.

S1.2. Characterization

High-resolution electron energy loss spectroscopy (EELS) data were acquired on a state-of-the-art
double-corrected and monochromated Thermo Fisher Scientific Titan 80-300 microscope operated at
120 kV to limit beam damage while keeping a sub-nm spatial resolution and an energy resolution of 120
meV, a convergence angle of 19 mrad and a collection angle of 90 mrad. EELS spectra were acquired on
a Direct detection Gatan K2 camera mounted on a GIF Quantum spectrometer. Dual EELS was used to
get absolute energy of the Co L, O K and Fe L edges. EELS data were acquired with 0.2 s/pixel and 0.1
eV/pixel dispersion. High-resolution STEM images were acquired at 300 kV acceleration voltage using
a convergence semi-angle a of 21 mrad, 50 pA probe current and a collection angle of 29-160 mrad for
high angle annular dark field (HAADF) imaging, and 0-20 mrad for bright field imaging (BF). Image
processing was performed using an open source HyperSpy Python software package [2]. Simulated
electron diffraction data as well as high-resolution STEM images were calculated using the JEMS
software [3].
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S2. Chemico-physical characterization
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Figure S2. (a) Diffuse reflectance spectrum and (b) corresponding Tauc plot for gCN=r powders.

Figure S3. FE-SEM micrographs at different magnification levels for sample gCN#r,
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Figure S4. (a) O K edge EELS spectrum acquired on a Co-containing nanoparticle (orange) for gCN4-CoO,
compared to reference spectra taken on powders of CoO (green) and CosOs (purple). (b) EELS spectrum of the OK
edge collected on specimen gCN-CoFe20a.
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Figure S5. Wide-scan XPS spectra of gCNAr deposits before and after functionalization with CoO and CoFe20s.
Quantitative analyses yielded the following atomic percentage ratios: N/C =1.0, 0.8 and 0.7, for gCN#r, gCNA-CoO
and gCN4-CoFe204; Co/N = 0.20, for both gCNA™-CoO and gCNA*-CoFe204; Fe/N = 0.41, for gCNA*-CoFe204; Co/Fe
= 0.50, for gCNA-CoFe204. Co atomic percentage (at.%) values were estimated to be 7.0 and 4.0 % for gCNA-CoO
and gCNA-CoFe20s, respectively. Calculation was performed excluding the adventitious carbon component.
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Figure S6. Cls peaks for bare gCN** supported on Ni foam.
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Figure S7. Cls (a) and N1s (b) photopeaks for gCN@r along with Co2p (c) signal for gCN?*-CoPi. In (c),

stars (*) indicate shake-up peaks. Co atomic percentage (at.%) was estimated to be 2.0 %. Calculation
was performed excluding the adventitious carbon component.
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Figure S8. Top panel: N1s photopeaks for gCNAT deposits on Ni foams before and after functionalization
with CoO and CoFe20s. Bottom panel: Schematic representation of gCN structure [4], in which non-
equivalent N sites are marked. Color codes as in top panel.

The N1s signals resulted from three contributing bands (Figures S7b and S8, top panel): d, the
predominant one, due to attributable to N centers in C=N-C moieties (BE = 398.6 eV), [4-12]; e, ascribed
to tri-coordinated N atoms in N-(C)s moieties (BE = 399.8 eV) [8,13-20]; f, due to carbon atoms in
uncondensed C-NHx (x =1, 2) groups on gCN ring edges (BE = 401.0 eV) [9,10,13-15,17,19] (see Figure
S8, bottom panel). The percentage contribution of component f to the overall N1s signal was evaluated
to be 4.9, 11.0, and 12.4 % for gCN4r, gCN4-CoO, and gCN4-CoFe204 specimens, respectively.
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Figure S9. Ols photopeaks for gCN deposits supported on Ni foams before and after functionalization

with CoO and CoFe20s.

The Ols peak could be fitted by two bands (Figure S9): g, centered at BE =529.8 eV, related to NiO
from the Ni foam substrate [21], as well as to oxygen in CoO and CoFe204 networks, for functionalized
specimens [22-26]; h, centered at BE=531.9 eV, assigned to -OH groups chemisorbed onto N vacancies
[5,7,14,16,26,27]. The percentage contribution of bands g (k) to the overall Ols signal were 26.9% (73.1%),

BE (eV)

for gCNAY; 30.5% (69.5%), for gCNA-CoO; 52.1% (47.9%), for gCNA-CoFez0Ox.
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S3. Functional tests
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Figure 510. Determination of potassium hydrogen phthalate (KHP) concentration vs. time for (a) gCNr-
CoO and (b) gCNA:-CoFe20s. Quantification of KHP was carried out by measuring the m/z = 165 peak
area by flow injection analysis - electrospray mass spectrometry (FIA-ESI/MS). Both samples showed a
comparable degradation efficiency in the dark and under illumination, in line with their modest
photoactivity (see the main paper text).
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