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Abstract
We study the problem of multiple column folding in the design of compact
PLA’s of m rows and n columns. A set of theoretical results leads to the
construction of a heuristic folding algorithm, which runs in time O (m2n + mn?2),

and provides suboptimal solutions.

1. Introduction

Programmable logic arrays (PLA) are effective means to implement multiple
output switching functions {2], [4], [7]. A PLA has the structure of a matrix, as
shown in fig. 1(a). The input variables run vertically through a section of the matrix
(AND plane), which generates the product terms for the Boolean functions. These
terms run horizontally through the PLA, to reach the input terminals of another
section of the matrix (OR plane) where the sums of products are formed.The output
variables of the PLA emerge vertically from the OR plane.

In fig. 1(a), inputs and outputs are indicated with lower and upper case letters,
respectively. A mark, shown with a dot, in the AND plane, at the intersection of
column 1 and row }, indicates that the variable i is present in product j. Similarly, a
mark in the OR plane, in row j and column k, indicates that the product j is present

-

in sum k.
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In the physical design of a chip, a PLA could be directly implemented with the
gates in the positions of the marks. However, such a solution cause in general a
significant waste of silicon area, because most PLA matrices are very sparse. For
this reason, a technique called column folding is used, aimed to determining a
permutation of the rows of the array, such that a compaction of the columns is then
possible, with the same column containing two input or two Ompﬁt variables
(fig. 1(b)); or several input variables, or output variables (fig. 1(c)). In the two
cases, we speak of simple or multiple column folding, respectively. Similarly, row
folding, or combined row-column folding, may be considered [1].

Let A=m-n be the area of the given array, where m and n are the numbers of
rows and columns, respectively. If simple column folding is used, the resulting
area is A' 2 A/2, and this figure can go down to A/4 for combined simple row-
column folding. The sparsity of the matrix can be better exploited in connection
with multiple folding [1], [5]. A theoretical lower bound to the area A’ is given by
m-(n; + ng), where n; (ny) is the maximum number of marks presents in the AND
(OR) portion of a row. In this case, special paths must be provided to route input
and output variables from the left and right sides of the chip to the split physical
columns inside the array (fig. 1(c)). If the PLA is part of a larger circuit, some
constraints on the mutual positions of inputs and outputs may be imposed
(constrained folding).

For a given PLA, the aim of folding should be to determine a folded array with
roinimum area (or minimum number of columns). Since this problem has been
shown to be NP-hard [7], efficient heuristic algorithms must be developed. In this
paper we study the problem of multiple column folding without constraints, as an
extension of the approach given in [6] for simple column folding. Our theoretical
approach leads to the construction of a heuristic folding algorithm, which produces

interesting results on PLA design.




2. Graph theoretical interpretation of multiple column folding

A graph interpretation of multiple column folding has been first presented in
[1], [3]. We follow a similar approach. For a given PLA array P, we introduce an
undirected multigraph M = (V, E), that is a graph where two vertices may be
connected by more than one edge (fig. 2(a)). M is called column intersection
multigraph. Each vertex v € V corresponds to an input or output column of P and
retains the fype (t= input, or t = output) of the corresponding variable. An edge
(v1,vy) € Eislabeled by h, if the two corresponding columns have a mark on the
same row h. This row is associated with the cligue h of M, that is th:; set of all
vertices connected by edges labelled h. If v and vy are connected in M, or are of
different types, the corresponding columns cannot be implemented on the same
physical column (i.e., the two columns cannot be folded together). As a
consequence, the cardinality of the maximum clique of vertices of type input (or
output) is a lower bound to the number of input columns (or output columns) of the
folded array.

An ordered set vi, ..., vk, k 2 2, of vertices of the same type t, such that
(viyvi) € E for 1 <1i<j<k, iscalled a t-column folding list (+-CFL, or simply
CFL if tis implicit). Such a list will be represented on M with a set of directed
edges from vj to viz1, 1 £1 < k-1, called the edges of the -CFL (fig. 2(b)). Note
that M has now the two families of undirected and directed edges, with different
meanings. A CFL indicates a set of columns that can be folded together in the
specified order (e.g., from top to bottom on the new folded column). This order,
however, puts some constraints on the permutation of the rows, that may be
incompatible with another CFL.

Following [1], we now give a necessary and sufficient condition for the joint
folding of several lists. Let S be a set of disjoint CFL’s, and let Dg be the set of

directed edges inserted in M to represent such CFL’s. We say that S can be




physically irmoplemented , if all its CFL’s can be jointly folded. Let an alternating
cycle C in M be a cycle formed by chains of edges of Dg, alternated with single
undirected edges of E, where all the edges of Dg inserted in C have the same

direction. We have:

Theorem 1 S can be physically implemented if and only if M contains no

alternating cycles.

The proof of theorem 1 is essentially the same reported in [1], because the
column intersection graph considered in the above paper has an alternating cycle if

and only if our multigraph has an alternating cycle.

The number of columns of a folded array is denoted by ng < n (the rows are
still m). The folded array is optimal if ng is minimum. If the a.rraj;,f is folded
according to a set S of CFL’s satisfying theorem 1, we have ng= s+ u, with
s=1S1 and u equal to the number of unfolded columns. Note that
IDgl =n-s-u. An optimal folded array is therefore relative a set S which

minimizes (s + u), that is, maximizes the cardinality of the set Dyg.

3. Structure of the folding algorithm

The heuristic algorithm presented in this paper builds the folded array row by
row, and column by column. When a variable v is required for the first time, in the
row currently built, a new or an available column ¢ is assigned to v. This column is
then made newly available when v is no more required. To describe this
mechanism, we need some terminology.

A new column c is created, when a variable v is assigned to it for the first time.
¢ assumes the type (input or output) of v, and is then called taken, while v is called
alive. As soon as v is no more needed, v is killed and ¢ becomes free. At any given

step, some variables are alive, some are killed, and the remaining, called furure
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variables, are still to be considered. When a future variable is needed, it is assigned
to a new colurmnn, or to a free column of the same type (which becomes again
taken). |

Let P be the array to be folded, and Qj denote the new array under construction,
after j rows have been created. Qj is called j-folded array. The algorithm starts with
Qg = @, and builds Qp,, the (final) folded array, according to the following
computational structure:

for J:=1 o m do {build Qj}

SELECT (h); {row h is chosen from P}

INSERT (h); {Q4 is built from Qy-1}

KILL {the status of the columns of P and Q4 is updated}
endfor

The procedure SELECT chooses a row h from P such that h has not been
already selected. This choice is guided by the theoretical results of the next section.
If they do not apply, the choice is made at random. The procedure INSERT builds
Qj+1 by inserting in the array the selected row h. If, in the original array P, h has
marks in some columns corresponding to future variables, these va:;iabﬁes are
assigned to free columns of the same type (if any). If these columns are not
enough, new columns are inserted in the array. The procedure KILL kills the
variables in P no more needed in the remaining rows, and sets free in Qj the
respective columns. The crucial point of the whole algorithm is then the criterion
used for choosing row h in SELECT, to be discussed later.

The formal version of the algorithm, called FOLDING ALGORITHM, is
presented below. It makes use of five matrices Sp, SQ, VR, Ve, Z (see fig. 3,
relative to the array of fig. 1(a)). Sp [1:2;1:n] gives information about the columns
and associated variables of P. For each column k, the first row Sp [1,k] indicates
the type te€ {input, output), and the second row Sp [2,k] indicates the status
s & {killed, future, alive}, where killed is denoted by -, future is denoted by 0,
and alive is denoted by the number of the column of Q to which k has been
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assigned. Initially each column is future (fig. 3(a)). The array Sg [1:3;1:n] is
relative to the columns of Qj. In fact S [1,k], Sq [2,k] and Sq [3, k] contain the
type t € {input, output}, the status z € {new, taken, free}, and the pointer to a
t-CFL which will be associated to column k, respectively. The initial contents of
Sq is void.

VR [1:m] and V¢ [1:n] contain further row and column information. In fact,
after step i, VR [h] contains the number of variables relative to the row h of P,
which are still future variables for Qj. When row h is selected in Qj, Vg [h] is set
to *-’. V¢ [k] contains the number of rows of P connected to column k, not yet
built in Qj. Initially, Vg and V¢ contain the number of marks in each row and in
each column of P, respectively (see fig. 3(a)).

The last vector Z [1:m] gives the order in which the rows of P are selected, that
is, Z[j] indicates the j-th choice. If applied to the array P of fig. 1(a), algorithm
FOLDING builds the folded array Qg of fig. 1(c). After step 3 (i.e., after rows 1,
8, and 7 have been selected to build Q3), the contents of the various matrices are
shown in fig. 3(b).

FOLDING ALGORITHM

create Vpll:m]l, Z [l:m], Vg{l:n]l, Spll:2;1:n], Spll:3:1:n]
for h := 1 to m do )

Vr [h] := number of marks in the row h of P
endfor;
for k := 1 ton do
Sp [1, k]) := type of column k of P;
Sp [2, k] := 0; {0 for future}
Ve [k] := number of marks in column k of P
andfor;
count := 0;
Qo =8g := Z := blank; {end inizialization}
for j := 1 to m do {build Qj}
Z[31 := SELECT (h); {row h is chosen in P}
INSERT (Z[31); {Q3 is built from Qj-1}
KILL {update columns status of P and Qj}
endfor

and FOLDING ALGORITHM.




function SELECT (h : output):
choose row h from P such that h has not been already selected;
raetuzn h

and SELECT.

procedure INSERT (h : input):
Vr [h] = Y-7; {h has been selected}
for 3 := 1 to n do
i€ P [h,3] = dot then {variable 3j appears in row h}
begin
Ve [31 = Ve [31 - 1: {update V¢l
i€ Sp 12, 31 = 0 then
begin
for w:= 1 to m do {update VRr}
if P [w,j] = dot amnd Vg [w] # ‘-’ then
Vr [w] = Vg [w] - 1
endfor;
if 3 a free column ¢ € Qy-1 with the same type of jJ
then
insert J as the last element of the list Sg [3,c]
alse {insert new column in Q}
count := count + 1;
c := count;
Sg [1,¢] = Sp [1,31:
So [3,c] := pointer to a new t-CFL
j is inserted as the first element of Sp [3,c]
endif;
Sp 12,31 := ¢ {37 becomes alive}
Sg [2,¢] := t {t for taken}
aendif;
Qri, Sp [zvj}j = dot
endi £
endforx

and INSERT.

procedure KILL:

for 3 := 1 to n do
if vg [3]1 = 0 then
begin
So [2, 8p [2,31] := £ {f for column free}
Sp (3,21 = "=7; { - for column killed}
VCI[3] = =73
endif
endfor
end EILL.




The time complexity T of FOLDING is O (m(S+I+K)) where S, I and K are the
complexities of SELECT, INSERT and KILL respectively. While S will be
discussed later, the analysis of the program immediately shows that I is

O (n(m-+n)) and K is O(n), hence we have:

T € O (mS+m2n+mn?) 1

The correctness of the algorithm is also immediate, since the PLA folded array is

directly built row by row, and no alternating cycle may appear (Theorem 1).

4. Theoretical results and the specification of SELECT.

The efficiency of the algorithm FOLDING relays upon a proper choice of row h
in the procedure SELECT. This choice will be guided by two theorems, derived in
this section, aimed to construct the array Qj41 from Qj in the best possible way. To
present this point formally, denote by Fj a final (i.e., m rows) folded array
derived from Qj by folding the maximum number of the remaining columns. F; will
be called a j-suboptimal array. Note that Fjmay not be an optimal array, since Q;
may have been built with non optimal choices. Clearly, more than one j-suboptimal
array may exist. For a generic j, finding Fjis an NP hard problem, as can be
immediately proved by extending the result of [7]. Our aim is then finding a
heuristic solution as close to F;as possible. The procedure will be based on the
following results.

Let R(A) denote the set of rows of a subarray A (P2A), and let R(v,A) be the

sets of rows of A where variable v has marks. For a given Q; we have:

Theorem 2. Givenr € R(P) - R(Q)), let v1, ..., vk, k > 0, be the variables for
which b has marks, and let R(vi,Qj) # @ for 1 €1 € k. Then, there exists a

j-suboptimal array Fj with r in position j + 1.




Proof. Let Fj* be a j-suboptimal array for Qj, with row r of P built on row j+q
of Fj*, 1 £ q < m-j. If g=1, then Fj = Fj". If g>1, (see fig.4.a), Fj is built with a
cyclic shift of the rows j+1,..., j+q of Fj", which are brought into positions
2, ..., j+q, j+1 (see fig. 4.b). In fact, these rows maintain their marks in the
new array. Each variable of Fj* killed ( or born) in row k, j+1 <k < j+q, is killed
(or born) in row k+1 in Fj, while the variables in row j+q bring their Fmarks into
row j+1. The resulting array clearly is a folded array for P, with the same size of

F;*, hence is j-suboptimal. a

Theorem 3. Let v be a variable of type t with R(v,Q;) # @, and let
B = R(v,P) - R(v,Qj) # @. Let u be a variable of type t with R(u;Qj) =@,
such that R(u,P) o B. And, for any other variable w, R(w,Qj) =@, let
R(w,P) " B =@. Then:

Case 1. if Q; has a free column cf of type t, then there exists an Fj with u
assigned to cf, and all the rows of B in positions j+1, ... , j+IBl (in any order);

Case 2. 1f Qj has no free columns, then there exists an F;j with u assigned to a

new column, and all the rows of B in position j+1, ... ,j+IBl (in any order).

Proof. Let Fj"‘ be a suboptimal array for Qj, such that Fj* does not satisfy the
stated properties for Fj. Then, Fj can be built by rearranging Fj* as follows.

Case 1. We have two subcases, namely:

1.1 uis assigned to ¢y # cgin Fj* (fig. 5(a)); or

1.2 uisassigned to cfin Fj*, but the rows of B are different from

j+1, ..., j+IBl (fig. 6(a)).

Let ¢y be the column of v in Fj*; V be the portion of ¢y below v, and let
B={b1, ... ,.bq}.

In case 1.1, let U be the lower portion of ¢y including u, and Z be the lower

portion of ¢¢ from row j+1. We can then permute the rows by placing by, ... ,bq in

k4
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positions j+1, ... , j+q, moving (the marks of) U to ¢f, moving Z to ¢y from row
j*+g+1, and moving v to ¢, (fig. 5(b)).

Note that Z may contain only future variables, hence Z does not have marks in
the rows of B by hypothesis, and can start from row j+q+1 in F;. Any other
column cy is obviously rearranged (see fig. 5).

Case 1.2, is similar, as indicated in fig. 6.

Case 2. As case 1, by letting the upper portion of column ¢f to be void up to

TOW J. J

Y

Theorem 2 is applied, whenever possible, in the procedure SELECT‘, leading to
the inclusion of the row r in Qj4+1. In the example of fig. 1(c), Q3 is built from Qo
by selecting row 7 which satisfies theorem 2. Theorem 3 is tried whenever theorem
2 does not apply. In the example of fig. 1(c), theorem 3, case 1, is applied for the
selection of row 2 (construction of Qq) with v = e, t =input, u=c, B = {2},
and c¢ = first column. Note that the application of theorem 3 may cause theorem 2
to apply again.

If, starting from subarray Qj, the algorithm FOLDING reaches a final array by
all choices guided by the two theorems, a j-suboptimal array is found. Otherwise, a
random row selection [8} is be done at some step j'>j, and a j'-suboptimal array is
sought for.

Specifically, the function SELECT takes the following form, for the selection of
row h:

function SELECT (h: output):

i€ (3 r: r as in theorem 2)

then h:=r
else if (3 v, u: v, u as in theorem 3}

then h:=b, where b & B;

@lse h:=random selection
andif
endif;
raturn (h) ;
and SELECT.




Note that, if theorem 3 applies, the rows of whole set B could be selected,to build
Qj+iBi from Qj, with an obvious modification of the algorithm.

It can be easily shown that, in SELECT, the existence of row r can be verified in
time O (m). Furthermore the existence of columns v, u can be verified in time
O (mn) with clever programming. That is, the time complexity S of SELECT is
O (m-n), and, for the overall complexity of the algorithm FOLDING we have

from (1):
T e (m?n + mn?) 2

S. Conclusion and discussion

In this note we have presented some theoretical results which guidg a heuristic
algorithm for multiple folding of PLA’s. Our algorithm builds the fold.ed array row
by row, with a ime complexity comparable to the one of other known algorithms for
simple folding (e.g., see [3]). We have run our algorithm on a large set of
personality matrices, some of which published in literature. The results on sixteen
arrays of different sizes and densities (i.e., the percent of marks in the array) are
reported in Table 1. In particular, array 15 is the array of [3]. The FOLDING
algorithm could reach better results with a more sophisticated criterion of row
selection in function SELECT, at the expense of a higher computational complexity.

In particular theorem 3 can be extended as follows, to treat sets of variables:

Theorem 4. Let V, U be two sets of variables of the same type t, IVI=IUl, such
that Vve V:R(v,Q)#9D and B(v)=R(v,P) - R(v,Qj)) # J; and Vue U:
R(u,Qp)=@. Let B = u__, B(v), and U . R(u,P) 2 B. And, for any other
variable w, R(w,Qj) =@, let B N R(w,P) = @. If Q;j has a set C of free columns
of type t, with ICl 2 IUl, then there exists on Fj with the variables of U assigned to

columns of C, and all the rows of B in position j+1, .... ,j+BI (in any order).
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The proof of theorem 4 is an extension of the one of theorem 3, and is not
reported here. Although quite powerful, theorem 4 has not been implemented in the

procedure SELECT for sake of simplicity.

array original folded
# m  n |[d% m | n |d%
1 1512010} 15 |5 |41
2 15 115116 15 |7 |35
3 15 1 15126 15 | 12 | 33
4 16 | 20 14, 16 | 9 31
5 16 12011316 |9 |30
6 20 | 20| 14 ] 20 | 10 | 29
7 20 0 20¢ 131 20 18 |33
8 25 | 15,15} 25 |7 |33
9 25 [ 22113 | 25 | 10 | 29
10 |30 {2913} 30 |18 | 20
11 31 1 20 14 0 31 {13 21
12 35 125011 35 | 16 | 17
13 42 300 13 | 42 | 23 | 17
14 | 45 4017 45 119 | 15
15 52 1 42112 ) 52 | 18 | 27
16 | 55 150]6 | 55 20 15

Table 1. Results of algorithm FOLDING on
twenty arrays of m rows, and n columns, with density d.
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