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Abstract—In many real-life applications, one needs to solve
partial differential equations (PDEs) to predict the behavior of
a system, most often by numerical methods. This goal is often
hampered by the fact that the parameters of the equations might
be not known exactly, and modeled as random variables; one
therefore would like to assess how this uncertainty propagates
to the solution of the PDE. To this end, in this contribution we
discuss the Multi-Index Stochastic Collocation (MISC) method,
and show its effectiveness with on a numerical test.
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I. INTRODUCTION

In many applications, scientists and engineers need to
solve ordinary / partial differential equations (ODEs / PDEs
respectively) to predict the behavior of a system, either
analytically or more commonly by computer simulations (in
the remainder of this contribution we focus only on PDEs).
While the mathematical structure of these PDEs is often well-
understood (at least for classical applications, such as solid
mechanics, fluid dynamics, heat exchange, electromagnetism,
etc) and numerous well-studied numerical methods exist to
approximate their solutions, the predictive power of these
simulations is often hampered by the fact that the parameters
of the equations might be not known exactly, and they might
be considered e.g. as random variables (or random fields).
“Parameters” here is used in a broad sense, and includes
physical/chemical coefficients (e.g., density, viscosity, ther-
mal conductivity, permeability), shape of the domain, initial
conditions, boundary conditions, which can be thoughts as
the “inputs” or “data” of the PDE, as opposed to the solution
of the PDE, which can be thought as the “output” of the
PDE. This uncertainty can be due to multiple reasons, such as
limited experimental measurements, or intrinsic randomness
of the quantity (e.g. rainfall, earthquakes).

It is therefore crucial to assess how the uncertainty on the
data/inputs of the ODEs/PDEs propagates to the outputs of
these equations, i.e., to compute mean, variance and higher
moments of the solution, and ideally its probability density
function. This is the goal of the so-called forward Uncertainty
Quantification (UQ) analyses. Other related tasks are inverse
UQ and Optimization Under Uncertainty): they can be tackled
with similar approaches, but we do not discuss them here. In
this context, it is useful to think of the solution of the PDE as
a random function, that associates to each realization of the
random parameters the corresponding solution of the PDE. In
the following, assuming that the PDE depends on N random

parameters: we denote by y ∈ RN the vector containing the
realizations of the random parameters, by Γ ⊂ RN the set in
which y can take values (the so-called “parameter space”),
and by u(x,y) the solution of the PDE, where we have also
highlighted the dependence of u on the space/time variables
x.

Most methods for forward UQ rely on solving the PDE for
multiple realizations of the random parameters (i.e., sampling
u(y) over Γ) and then post-processing the corresponding
solutions to obtain the desidered statistical information on
the solution. The most trivial of these methods is of course
the Monte Carlo method, whereby the statistical information
for the solution is obtained by simply averaging the samples
of u(y) obtained. It is of course possible to replace Monte-
Carlo with more effective sampling methods, such as Quasi
Monte Carlo or Latin Hypercube Sampling, see e.g. [7]. These
methods however do not take full advantage of the possible
smoothness of the function to be sampled, i.e. the fact that the
map y → u(x,y) could be not only a continuous function but
actually a function whose derivatives up to a certain degree
might be continuous or square-integrable – even an analytic
function at times. These properties derive from the structure
of the PDE at hand. This fact can instead been exploited
by methods that are more traditional of the numerical anal-
ysis background, i.e., numerical quadrature and interpolation
methods (stemming from the fact that computing an expected
value / higher moment is nothing but a weighted integral
over the parameter space Γ). On the other hand, classical
numerical quadrature/interpolation methods scale poorly with
the dimension N of the parameter space – in the worst
case, the number of required samples grows exponentially
with N (“curse of dimensionality”). In addition to this, the
function u(y) to be sampled is typically expensive to evaluate
(since it requires solving numerically a PDE), so that naive
approaches become unbearably expensive. A very popular and
quite effective approach to reduce the “curse of dimension-
ality” effect are the so-called “sparse-grids” schemes, i.e.,
quadrature/interpolation schemes carefully designed to deal
with high-dimensional, possibly smooth functions, see e.g.
[9], [10].

Another very popular approach to reduce the computational
complexity is the so-called multi-level approach, first pro-
posed in the context of numerical finance and then applied
to engineering applications [2], [3]. In this approach, a first
sampling of the parameters space is performed by solving the
required PDEs with a coarse computational mesh (hence, with
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a cheap method); then, a refinement of the mesh is introduced
and a few additional PDEs are solved, to correct the previous
estimate. The procedure can be iterated on a hierarchy of
increasingly refined meshes where at each level less and
less PDEs are solved. In this way, the computational cost of
the procedure is substantially reduced without compromising
the accuracy of the prediction. In this version (and in the
several improvements proposed in literature, see e.g. [5], [8])
the sampling strategy at each level is still a Monte-Carlo
/ Quasi-Monte-Carlo strategy, i.e., strategies that again do
not fully exploit the regularity of the solution u. This can
be reached instead combining the multi-level strategy with
the sparse-grids schemes mentioned above, [1], [4], [11]. In
this contribution we focus on one specific example of such
method, the Multi-Index Stochastic Collocation method. In
particular, our exposition follows closely [1].

II. MULTI-INDEX STOCHASTIC COLLOCATION (MISC)

To fix the ideas, let’s consider a specific PDE with random
coefficients for which we want to perform a forward UQ anal-
ysis. For instance, let’s consider the heat equation to compute
the pointwise temperature of a metal bar being heated, whose
heat-conduction coefficient is uncertain. In this scenario, the
parameter y represents the heat conduction coefficient: one
parameter N = 1 is enough if the bar is homogeneous, while
if the bar is composite with pieces with different material,
then we will need N > 1. Each yn, n = 1, . . . N can be
thought as a uniform random variable over a certain range
yn ∼ U(an, bn), and we can assume yn to be independent.
The parameter space Γ is the hypercube obtained by tak-
ing Cartesian products of each [an, bn], and the probability
density function of y is simply ρ(y) =

∏N
n=1

1
bn−an

. The
solution u of the PDE is the pointwise temperature in the
bar, and is a function of the spatial coordinate x as well as
of the random heat-conductivities y, i.e. u = u(x,y).

Let us now consider an exahedral mesh to approximate
u for a given value of the heat coefficient, by solving the
PDE. For simplicity, let us assume that all the elements have
the same size and are allowed to be non-cubic, i.e., their
edges have size h1 = c12

−α1 , h2 = c22
−α2 , h3 = c32

−α3 ,
for some constants c1, c2, c3 and user-defined integer values
α1, α2, α3. We collect the three values of αi in a multi-
index α = [α1, α2, α3]; prescribing the multi-index α thus
prescribes the computational mesh to be generated. If this
flexibility is not allowed by the mesh-generator (or by the
problem itself), one can set α1 = α2 = α3 = α, i.e.,
controlling the mesh-generation by a single integer value α.
Let us denote by Gα the quantity of interest of our UQ
analysis computed over the mesh specified by α; this could be
for instance the value of the temperature in a specific point of
the bar being heated. Thus, the final goal of the UQ analysis
is to compute an approximation of e.g. E[Gα], i.e., of the
expected value of Gα.

The MISC method can be used for this goal. It is based on
selecting the values yj as points of a Cartesian grid obtained
by tensorization of univariate quadrature rules (which should
be chosen according to ρ(y) for computational efficiency). In
this work, we use as univariate quadrature rule the Clenshaw–
Curtis (CC) univariate quadrature, which is optimal when
y1, y2, . . . , yN are uniform and independent random variables

as in our case. Then, for a multi-index β ∈ NN and given the
function m(i) with m(0) = 0, m(1) = 1, m(i) = 2i−1 + 1
for i ≥ 2, m(β1) CC values are generated for y1, m(β2)
CC values for y2 etc, and then consider the grid obtained
by taking the Cartesian product of the N sets of points
thus generated. The quadrature weight of each point of the
Cartesian grid is immediately obtained by taking the product
of the corresponding univariate weights. The approximation
of E[Gα] computed over this grid is denoted as Qα,β. Clearly,
one would like to have both multi-indices α and β with large
components, say α = α⋆ and β = β⋆, i.e., to average the
values of many PDE solutions over a refined computational
mesh. However, as we already mentioned this is typically
unfeasible due to computational costs.

Instead, the idea of MISC resorts to the previously men-
tioned multi-level approach, i.e. the single, highly refined
approximation Qα⋆,β⋆ is replaced by a linear combination of
many coarser Qα,β, where whenever one refines the spatial
discretization α, the quadrature level β is kept to a minimum
and vice versa (of course, the combined cost of computing
the set of coarse discretizations should be smaller than the
cost of the highly refined one). In formula,

E[Gα⋆ ] ≈ Qα⋆,β⋆ ≈
∑

[α,β]∈I
c[α,β]Qα,β (1)

where c[α,β] is a real number and I is a collection of feasible
discretizations, designed with the purpose just explained. For
instance,

I = {α ∈ R3,β ∈ RN : |α|+ |β| ≤ L}
for some integer value L. A suitable set I can be designed can
either be designed a-priori, by a careful analysis of the PDE
at hand, see e.g. [1], or on-the-run by adaptive algorithms,
see e.g. [6]; in this contribution the focus is on the former
option.

III. NUMERICAL RESULTS

To show the effectiveness of MISC, we briefly comment
in this section on a set of results originally reported in [1], to
which we refer the interested reader for details. The metal bar
is shown in Figure 1 top-left. The pointwise heat-conductivity
is modeled as a random field, parametrizes with N = 3 i.i.d.
uniform random variables, yi ∼ U(−1, 1), i.e., Γ = [−1, 1]3;
one possible realization of this random field is shown in
Figure 1 top-right. The quantity of interest (the quantity Gα)
is the integral of the temperature over the metal bar, and we
aim at computing its expected value, E[Gα].

Figure 1 bottom-left reports the growth of the computa-
tional time required to approximate E[Gα] as we require
a smaller and smaller tolerance. The methods considered
are MISC, the standard Multi-Level Monte-Carlo method
(MLMC) and a certain variant of MLMC, called Multi-
Index Monte Carlo (MIMC). We can immediately see that
the computational time required by MISC grows significantly
slower than for MLMC and MIMC, especially for small
tolerances. We also report in dotted lines the theoretical
growth of the computational times for all these methods (as
well as standard Monte-Carlo), which show good agreement
between the theory and the actual computational times.

Finally, Figure 1 bottom-right shows for the number of
PDEs solved on each mesh, for some of the tolerances
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