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Abstract
Little is known about the immunoediting process in precancerous lesions. We explored this
aspect of benign colorectal adenomas with a descriptive analysis of the immune pathways
and immune cells whose regulation is linked to the morphology and size of these lesions.
Two series of polypoid and nonpolypoid colorectal adenomas were used in this study: 1) 84
samples (42 lesions, each with matched samples of normal mucosa) whose gene expres-
sion data were used to quantify the tumor morphology- and size-related dysregulation of
immune pathways collected in the Molecular Signature Database, using Gene Set Enrich-
ment Analysis; 2) 40 other lesions examined with immunohistochemistry to quantify the
presence of immune cells in the stromal compartment. In the analysis of transcriptomic
data, 429 immune pathways displayed significant differential regulation in neoplasms of dif-
ferent morphology and size. Most pathways were significantly upregulated or downregu-
lated in polypoid lesions versus nonpolypoid lesions (regardless of size). Differential
pathway regulation associated with lesion size was observed only in polypoid neoplasms.
These findings were mirrored by tissue immunostaining with CD4, CD8, FOXP3, MHC-I,
CD68, and CD163 antibodies: stromal immune cell counts (mainly T lymphocytes and mac-
rophages) were significantly higher in polypoid lesions. Certain markers displayed signifi-
cant size-related differences regardless of lesion morphology. Multivariate analysis of
variance showed that the marker panel clearly discriminated between precancerous lesions
of different morphologies and sizes. Statistical analysis of immunostained cell counts fully
support the results of the transcriptomic data analysis: the density of infiltration of most
immune cells in the stroma of polypoid precancerous lesions was significantly higher than
that observed in nonpolypoid lesions. Large neoplasms also have more immune cells in
their stroma than small lesions. Immunoediting in precancerous colorectal tumors may vary
with lesion morphology and stage of development, and this variability could influence a
given lesion’s trajectory to cancer.
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Introduction
The immune system plays a Janus-like role in the development and progression of cancer,
exerting tumor-promoting and tumor-suppressive effects. This duality is the basis of the pro-
cess known as immunoediting, whereby the immune system shapes (or edits) the evolution of
tumorigenesis, qualitatively and quantitatively [1]. Outcomes envisioned by this model range
from 1) the outright elimination of tiny, nascent neoplastic lesions by joint intervention of the
innate and adaptive immune systems; 2) a state of equilibrium between tumor cells and host,
during which the adaptive immune system checks frank outgrowth and maintains a state
mildly conducive to slow neoplastic proliferation; and 3) tumor escape, characterized by the
emergence, under selective immune pressure, of decreasingly immunogenic neoplastic cell
populations and a state of frank immunosuppression [1]. Recognition and ongoing characteri-
zation of these phenomena have prompted attempts to combat or control cancer by pharma-
ceutical modulation of the immunoediting process (e.g., enhancing the presence of immune
effector cells with anti-tumor activities, inhibiting or eliminating molecular and cellular media-
tors of cancer-induced immunosuppression). The mechanisms underlying the equilibrium
phase are of particular interest. This state of relative dormancy is typical of the benign, preinva-
sive stages of tumorigenesis, and it can keep malignancy at bay for years—up to two decades in
some cases of colorectal neoplasia [2, 3, 4]. Prolongation or durable recapitulation of this state
is thus regarded as a potentially achievable end point of immunotherapy [1]. The incidence of
precancerous colorectal lesions and/or of “interval” cancers (those occurring before the follow-
up colonoscopy) can be reduced by chemopreventive interventions with aspirin or other non-
steroidal anti-inflammatory drugs, which alter the tumor microenvironment, rendering it
more conducive to the elimination of nascent tumors or the arrest or suppression of the growth
of larger lesions [5, 6].

Little is known about the mechanisms underpinning the equilibrium phase in colorectal
tumorigenesis. The immune landscape of epithelial tumors is highly complex, and the charac-
teristics (cell types, extension, functionality) of intralesional immune-cell populations vary
with the cell-type origin of the tumor and the site where it develops. In large bowel neoplasms,
for example, the superficial layer of epithelial cells is the only barrier between the tumor stroma
and the bacterial flora of the gut. The composition of the immune infiltrate in these tumors is
thus likely to reflect its dual nature, as a response to immunogenic epithelial tumor-cell anti-
gens and to any microbial products that pass through the neoplastic epithelium.

Immune cell infiltrates in invasive colorectal cancers have been well-characterized [7–21],
but less is known about the immunomes of precancerous colorectal tumors [22–28]. The pres-
ent study was an attempt to close that gap.

Precancerous colorectal lesions vary widely in morphology, size, and histology. Their gross
appearance at endoscopy is broadly classified as “polypoid” or “nonpolypoid” [29]. The former
tumors protrude into the gut lumen and are attached to the mucosa with a pedicle or stalk
(pedunculated lesions, type Ip) or with a shorter, broader base (sessile lesions, type Is). Nonpo-
lypoid lesions are still erroneously described as “flat” by many authors, although most are actu-
ally slightly elevated (< 2.5 mm above the mucosal surface; type IIa). Those that are truly flat
or slightly depressed are rare (reviewed in [4]). In both morphological classes, increasing size
reflect the lesion’s advancement on the road to cancer [30]. Most precancerous colorectal
lesions—polypoid or nonpolypoid—are adenomas, and their degree of dysplasia increases with
their size. Nonadenomatous precancerous lesions, the so-called sessile serrated adenomas/pol-
yps, are much less common and rarely display epithelial dysplasia [31].

For years, the prevalence of nonpolypoid colorectal neoplasms in Western countries has
been markedly underestimated. Today, however, thanks to improved awareness and training
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of colonoscopists and to advances in endoscopic technology, these lesions represent up to
~40% of the precancerous lesions identified during colonoscopy, particularly those found in
the proximal colon [32, 33]. Some investigators have suggested that these tumors progress
more rapidly to cancer than polypoid lesions [34], but in other studies the frequencies of carci-
noma in nonpolypoid lesions resembled [35,36] or was lower than [33] that observed in polyp-
oid lesions. The discrepancies are largely due to inconsistencies between studies in the use of
endoscopic and histologic classifications of precancerous colorectal tumors (reviewed in [37]).
At the molecular level (i.e., gene expression, genetic and epigenetic alterations), however,
unequivocal differences have been documented between the epithelia of nonpolypoid and pol-
ypoid lesions [37, 38]. Therefore, these two categories of lesions can reasonably be expected to
differ in terms of their tumor microenvironments, immune-cell infiltrates in particular.

In this study, we used gene set enrichment analysis (GSEA) [39] to explore a gene expres-
sion data set derived from endoscopic biopsies of polypoid and nonpolypoid colorectal adeno-
mas. Our aim was to identify immune pathway regulation profiles related to lesion
morphology and/or size. The results were validated by immunohistochemical analysis of for-
malin-fixed, paraffin-embedded (FFPE) sections from a second series of precancerous colorec-
tal tissues.

Results
Gene set enrichment analysis
To identify biological pathways that might play key roles in the development of precancerous
lesions in the colorectum, we used gene set enrichment analysis (GSEA) (Subramanian et al.
2005) with the Molecular Signatures Database (MSigDB) to explore the transcriptomic profiles
of 42 precancerous colorectal neoplasms: 17 were polypoid lesions (9 small, 8 large), and 25
were nonpolypoid (10 small, 15 large) (see Methods for details). The original data had been
obtained with microarray analysis of endoscopic mucosal biopsies containing neoplastic epi-
thelium as well as stroma. The results were normalized to matched samples of non-neoplastic
colorectal mucosa.

GSEA of our transcriptomic data using all the collections in the MSigDB revealed enrich-
ment for immune-related pathways in the set of genes differentially expressed in the two mor-
phologic classes of lesions. We therefore restricted our analysis to the C7 collection, which
included 1910 gene sets representing various cell states and perturbations within the immune
system. Five group comparisons were performed: 1. polypoid vs. nonpolypoid (all lesion sizes);
2. polypoid vs. nonpolypoid (small lesions only); 3. polypoid vs. nonpolypoid (large lesions only);
4. small vs. large (polypoid lesions only); 5. small vs. large (nonpolypoid lesions only). Diameter,
the standard measurement of lesion size in endoscopic reports, was analyzed as an index of the
precancerous lesions’malignant potential [30].

Fig 1 and S1 Table show the 429 immune pathways that displayed significant differential
regulation (p-values< 0.05) in the GSEA of one or more of the five group comparisons. Two
hundred sixty-five pathways were significantly upregulated (n = 219) or downregulated
(n = 46) in polypoid lesions relative to their nonpolypoid counterparts (all sizes). This mor-
phology-associated difference was equally striking within both size classes: 145 immune path-
ways were upregulated (n = 35) or downregulated (n = 110) in small polypoid lesions
compared with small nonpolypoid lesions, and the same number were differentially regulated
(144 upregulations, 1 downregulation) in large polypoid lesions relative to large lesions with
nonpolypoid morphologies. Lesion size was also associated with differential regulation of
numerous immune pathways in the polypoid lesions (4 upregulated pathways and 143 downre-
gulated pathways in small vs. large polypoid tumors). In the nonpolypoid group, only 1
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pathway displayed downregulation in small lesions compared with the large lesions. Collec-
tively, these findings strongly suggest that the immunologic signatures of polypoid adenomas
are markedly different from those of their nonpolypoid counterparts, independently of their
size. However, the signature of polypoid lesions also appears to change appreciably with lesion
size.

Fig 1. Distribution of immune pathways displaying significant dysregulation in GSEA analysis of the five group comparisons.Colored
circles represent 429 pathways that exhibited significant dysregulation (p-value < 0.05) in the GSEA analysis of one (blue), two (red), or three
(yellow) of the five group comparisons: 1) polypoid vs. nonpolypoid (all lesions sizes, green squares); 2) polypoid vs. nonpolypoid (small lesions
only, green diamonds); 3) polypoid vs. nonpolypoid (large lesions only, green triangles.); 4) small vs. large (polypoid lesions only, orange
squares.); 5) small vs. large (nonpolypoid lesions only, orange triangle). The complete list of differentially regulated pathways with their p-values is
reported in S1 Table.

doi:10.1371/journal.pone.0159373.g001
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Immunohistochemistry studies
The results reported above were based on transcriptomic analysis of composite tissue biopsies
with epithelial to stromal cell ratios of around 2:1. Assuming they are valid, one would expect
to see similar trends emerge from analyses restricted to the stromal immune-cell landscape of
precancerous colorectal lesions. We therefore examined a second, archival series of 40 colorec-
tal adenomas (see Methods for details)—19 polypoid lesions (10 small, 9 large), 21 nonpoly-
poid lesions (10 small, 11 large). Immunohistochemistry was used for this purpose since it
preserves tissue architecture and allows quantification of cellularity in specific tumor regions.
These lesions were subjected to the same five group comparisons used for the pathway
analysis.

The immune cell populations most highly represented in the pathways shown in S1 Table
were T-lymphocytes and macrophages (~50% and ~6% of the pathways, respectively); B-cell,
NK-cell, and other immune cell signatures were all substantially less common. Serial sections
of FFPE tissues were thus stained with antibodies against the T-lymphocyte markers CD4,
CD8, and FOXP3 and the macrophage markers CD68 and CD163 (see Methods). Antibody
against a sixth marker, MHC-I, was used to obtain a general, nonspecific count of stromal cells,
including certain immune cells that were not covered by the other markers we used (e.g., den-
dritic cells, natural killer cells) (see Discussion). Fig 2 shows representative findings for each
marker in the stroma of polypoid and nonpolypoid colorectal adenomas.

As shown in Fig 3 and Table 1, for each marker the number of positively labelled stromal
immune cells was significantly higher in polypoid than nonpolypoid lesions. These differences
were generally independent of lesion size, i.e., the increased presence in polypoid adenomas
was still significant when analysis was confined exclusively to the subset of small or large
tumors. CD4+ cells were the exception: the higher cell counts in polypoid lesions vs. nonpoly-
poid were significant only in large lesions. As for size-related differences, CD4+ cell counts
were also significantly higher in large polypoid lesions than in small lesions with the same mor-
phology. In nonpolypoid lesions, CD4+, MHC-I+, and CD68+ cells were significantly more
common in those that were large. (CD8+ T cells were also present within the neoplastic epithe-
lium, but their numbers in this compartment showed no significant morphology- or size-
related variations, and they were thus excluded from the statistical analysis.)

One-way multivariate analysis of variance (MANOVA) was then used to compare the mul-
tivariate means of the lesion groups in the five group comparisons (Table 2). Significant p-val-
ues were found in all five group comparisons, indicating that the number of cells labelled with
the 6 immune markers we used effectively discriminated between adenomas of different shapes
and sizes. When only lesion morphology was considered, the canonical analysis by MANOVA
revealed that polypoid lesions were perfectly separated from nonpolypoid lesions along the
axis of the first canonical variable (Fig 4A). When both morphology and size were considered,
small and large lesions were clearly separated along the axis of the second canonical variable in
both morphological classes (Fig 4B). Indeed, the main intergroup differences were related to
lesion morphology and, within each morphology class, to lesion size (Fig 4C).

Because lesion size is positively correlated with the degree of epithelial cell dysplasia in both
polypoid and nonpolypoid adenomas [30], we analyzed the possible association between ade-
noma diameters and stromal immune cell counts. Because the number of samples was small,
we compared lesions with high and low degrees of dysplasia only in the following groups of
lesions: 1) all 39 lesions (one small, nonpolypoid lesion was excluded because it displayed histo-
logic features of a sessile serrated adenoma/polyp, see Methods); 2) the 19 polypoid lesions; 3)
the 20 nonpolypoid lesions; 4) the 19 small (polypoid and nonpolypoid) lesions; 5) the 20 large
(polypoid and nonpolypoid) lesions (Table 3). The degree of epithelial dysplasia was
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Fig 2. Immunohistochemical assessment of stromal immune cell infiltrates in polypoid and
nonpolypoid colorectal adenomas. CD4+, FOXP3+, CD8+, CD68+, CD163+, and MHC-I+ immune cell
densities (i.e., number of positively-stained cells per unit area; see Methods) in the stroma of polypoid
adenomas were consistently higher than those observed in nonpolypoid lesions. Intraepithelial CD8+
(cytotoxic) T cells are also seen in the epithelial compartments of both types of tumor. In calculating CD68
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significantly associated only with stromal counts of CD4+ and CD8+ cells. They were signifi-
cantly more numerous in lesions displaying high-grade dysplasia (p-values of 0.002 and 0.048,
respectively), regardless of morphology or size. In the polypoid lesion group, tumors of all sizes
with high-grade dysplasia had significantly higher CD4+ cell counts (p-value = 0.003 vs. polyp-
oid lesions with low-grade dysplasia). In the small lesion subset, tumors with high-grade dys-
plasia had significantly higher CD8+ cell counts (p-value = 0.026 vs. small lesions with low-
degree dysplasia). The difference between tumors with high- and low-grade dysplasia displayed
borderline significance in the group composed of all 39 lesions (p-value = 0.049), while the dif-
ferences observed in the remaining four groups were not statistically significant. This finding
suggests that the 6-marker panel does not discriminate well between lesions with high- and
low-grade dysplasia. Indeed, scatter plots of these data produced two overlapping clouds of
points (Fig 4D).

Discussion
Our GSEA of the transcriptomes of precancerous colorectal lesions revealed major differences
between the immune signatures of tumors with polypoid and nonpolypoid morphologies.
Within the polypoid group, significant differences also emerged between small and large
lesions. The most striking differences (S1 Table) were the focus of our stromal immunohis-
tochemistry studies in a second set of colorectal adenomas. The latter analyses confirmed that
T lymphocyte and macrophage cell counts were significantly higher in polypoid lesions (versus
nonpolypoid tumors), regardless of size. Significant size-associated differences were also
observed for certain immune markers in polypoid or nonpolypoid lesions (Table 1). Indeed,
the panel clearly discriminated between precancerous lesions of different shapes and sizes
(Table 2 and Fig 4). When the variable epithelial cell dysplasia was included in the analysis, sta-
tistics were applicable to groups with a reasonable number of lesions. The positive association
between high-grade dysplasia and immune-cell density in the stroma of adenomas (Table 3
and Fig 4) displayed only borderline significance and thus requires further analysis in a larger
series of tissues.

Ours is the first attempt to determine how the composition of immune cell infiltrates in pre-
cancerous colorectal lesions correlates with their morphology and/or size. Nonetheless, inter-
esting insights can be gained by comparing our findings with those of the few studies that have
investigated this phenomenon at a more general level. Among the stromal cell populations we
quantified, CD4+ T helper cells were the most abundant in small adenomas (Fig 3), and their
densities increased significantly with size (1.9- and 1.5-fold in large lesions from the polypoid
and nonpolypoid groups, respectively). In colorectal cancer, progression from stage T1 to T4 is
reportedly accompanied by a gradual decline in stromal counts of CD3+ cells, which include
those that are CD4+ and/or CD8+ [20]. However, stromal CD4+ cell densities in invasive ade-
nocarcinomas of the colon are significantly higher than those found in adenomas, and these
cells are even less common in the normal mucosa [25]. These findings point to a progressive
increase in the presence of CD4+ cells across the normal mucosa-adenoma-carcinoma
sequence. This is fully consistent with our data showing higher CD4+ T-cell densities in larger
and more dysplastic adenomas (Fig 3). More detailed sub-type level characterization of the

+ and CD163+macrophage densities, we counted only nuclei surrounded by CD68+ or CD163+ granulations
and excluded elongated or fragmented cells with granular cytoplasmic positivity. MHC-I labelling (granular,
compact, or membranous) was observed in a variety of stromal cells. MHC-I+ epithelial cells were also
present in both types of tumor, but their presence was not quantified in this study. Magnification for all panels:
400X.

doi:10.1371/journal.pone.0159373.g002
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Fig 3. Immunohistochemical morphometric analysis of stromal immune cells. Bars represent mean
(SE) CD4+, CD8+, FOXP3+, MHC-I+, CD68+ and CD163+ cell counts for the following groups (from left to
right): small polypoid lesions, large polypoid lesions, small nonpolypoid lesions, large nonpolypoid lesions.
Horizontal bars with P values indicate significant differences between groups (Mann-Whitney test) (see
Table 1 for details).

doi:10.1371/journal.pone.0159373.g003
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CD4+ cell infiltrates is needed to define the biological and clinical significance of this trend: the
T helper (Th) 1 and Th2 subsets have opposite effects on tumor growth, and Th1:Th2 ratios
can change radically during tumor progression [18, 26].

Regulatory CD4+ T cells (Treg) can be reliably and specifically identified and quantified on
the basis of FOXP3 expression. Tumor-infiltrating Treg cells dampen the anti-tumor immune
response and promote tumor escape by producing immune-suppressive cytokines, adenosine,
and prostaglandin E2 [40, 41]. This is consistent with reports of increasing Treg cell densities in
colorectal tumors during progression through the precancerous and early cancerous stages [26,
28]. This trend was not reflected in our data: unlike CD4+ cell densities, Treg density did not
increase significantly with lesion size. However, their abundance in the polypoid adenoma sec-
tions we examined was almost 3 times as high as that observed in the nonpolypoid lesions (Fig
3), and this feature might be expected to favor more rapid growth of polypoid tumors. It is
important to recall, however, that tissue populations of Treg cells might include phenotypic and
functional subsets, and their immunosuppressor activities might ultimately prove to be contex-
tual. In invasive tumors, for example, heavy Treg cell infiltration is associated with a poor prog-
nosis in ovarian cancer patients [42] and with better prognosis and improved overall survival
in those with colorectal cancers [10]. Bindea et al. [20] found that colorectal cancer progression
from T1 to T4 was accompanied by decreasing rather than increasing Treg cell densities. In the
cancers they studied, the immune cells believed to mediate immunosuppression did not appear
to exert any major tumor-promoting effects.

Cytotoxic (CD8+) T cells were also significantly more common in the polypoid adenomas
we examined (fold change of 2.2 relative to nonpolypoid lesions) (Fig 3), and their density did
not increase significantly with tumor size. In general, these cells were much less abundant than
CD4+ T helper cells in adenomas, with CD8+/CD4+ ratios of 0.4 (small polypoid lesions), 0.3
(large polypoid lesions), and 0.23 (nonpolypoid lesions of all sizes). McLean et al. reported a
CD8+/CD4+ ratio of 0.27 in adenomatous polyps in general (there was no differentiation

Table 1. Significant differences betweenmean labelled immune cell counts in the five group comparisons.

Group Comparisons Group with higher counts CD4+ CD8+ FOXP3+ MHC-I+ CD68+ CD163+

polypoid vs. nonpolypoid (all sizes) polypoid 10^-5 10^-7 10^-6 10^-8 10^-7

polypoid vs. nonpolypoid (small lesions only) polypoid 0.0013 0.0002 0.0001 0.0002 0.001

polypoid vs. nonpolypoid (large lesions only) polypoid 0.0003 0.0062 0.0003 0.0062 0.0002 0.0002

small vs. large (polypoid lesions only) large 0.0002

small vs. large (nonpolypoid lesions only) large 0.0031 0.0166 0.0112

P-values, (Mann-Whitney test) are shown for each difference; statistical significance was set at p-value < 0.05. The direction of mean counts difference is
shown for each marker in the five group comparisons.

doi:10.1371/journal.pone.0159373.t001

Table 2. Multivariate analysis of the immune cell counts in the five group comparisons.

Comparison p-value

polypoid vs. nonpolypoid (all sizes) 10−11

polypoid vs. nonpolypoid (small lesions only) 10−5

polypoid vs. nonpolypoid (large lesions only) 10−5

small vs. large (polypoid lesions only) 0.001

small vs. large (nonpolypoid lesions only) 10−4

P-values were computed by MANOVA test.

doi:10.1371/journal.pone.0159373.t002
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Fig 4. Multivariate analysis of polypoid and nonpolypoid lesions (small and/or large) using MANOVA test. A) Scatter plot of the first two
canonical variables for all polypoid (red squares) and all nonpolypoid lesions (black circles); B) scatter plot of the first two canonical variables for
small polypoid lesions (red squares), large polypoid lesions (red stars), small nonpolypoid lesions (black circles), large nonpolypoid lesions (gray
diamonds); C) dendogram plot of group mean clusters; D) scatter plot of the first two canonical variables for all adenomas with high-grade
dysplasia (red diamonds) and all adenomas with low-grade dysplasia (black squares), regardless of morphology and size. In the scatter plots,
each dot represents one tissue sample.

doi:10.1371/journal.pone.0159373.g004

Table 3. Significant increases in labelled immune cell counts in lesions with high- vs. low-grade dysplasia.

Comparison group CD4 CD8 FOXP3 MHC-I CD68 CD163

high- vs. low-grade dysplasia all lesions 0.002 0.048 - - - -

high- vs. low-grade dysplasia polypoid 0.003 - - - - -

high- vs. low-grade dysplasia nonpolypoid - - - - - -

high- vs. low-grade dysplasia small - 0.026 - - - -

high- vs. low-grade dysplasia large - - - - - -

p-values computed by Mann-Whitney test are shown, and the criteria for statistical significance was set at p-value < 0.05.

doi:10.1371/journal.pone.0159373.t003
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based on morphology) and noted that the CD8+ cell density in these tumors resembled that
observed in the adjacent normal mucosa [25]. Other investigators, however, maintain that the
transition from normal colorectal mucosa to adenoma to cancer is associated with a progres-
sive decline in stromal CD8+ T cell counts [10, 20, 28]. In light of our own data, we suspect
that this latter trend might be more characteristic of nonpolypoid adenomas and that stable
CD8+ cell densities across the normal mucosa-adenoma transition might be more typical of
polypoid adenomas.

Stromal macrophages are key components of the tumor microenvironment that can influ-
ence tumor immunoediting (although their roles in the normal lamina propria of the gut are
primarily phagocytic and bactericidal) [43]. In the stroma of our adenomas, macrophages
(CD68+) were slightly more numerous than CD8+ or FOXP3+ T cells, but they were far less
abundant than CD4+ T cells. Stromal macrophage densities were also significantly higher in
polypoid lesions, although within the nonpolypoid group mild increases were observed with
lesion size (Fig 3).

The functional heterogeneity and phenotypic plasticity of macrophage populations is even
greater than that of other immune cell types. The two main polarization-based subtypes have
more or less opposite functions in tumorigenesis: M1 macrophages are believed to exert anti-
tumor effect by promoting the Th1 immune response; M2 macrophages favor the Th2 immune
response, which facilitates tumor progression [44]. We used CD163 antibodies to quantita-
tively assess the latter tumor-promoting macrophage fraction in our colorectal adenomas. In
both polypoid and nonpolypoid lesions, CD163+ cell densities were similar to those of CD68+
macrophages (Fig 3).

The predominance of M2 cells in the intratumoral macrophage population in these benign
tumors was an unexpected finding, and it may not accurately reflect the characteristics of this
early stage of tumorigenesis (i.e., presumably before the phase of tumor escape). CD163 is
widely considered an M2-specific marker (reviewed in [15]), but Barros et al. [45] maintain
that the macrophage polarization status can be more accurately classified on the basis of CD68
or CD163 expression plus transcription factor markers. Nevertheless, tumor infiltration by
CD68+ macrophages tends to increase progressively as colorectal adenomas arise, grow, and
become increasingly dysplastic ([23–25] and in our nonpolypoid lesions—Fig 3), and this
trend seems to continue in the T1 and T2 stages of colorectal cancer [20]. However, immuno-
histochemistry studies by Edin et al. [19] indicate that colorectal cancer stage is inversely corre-
lated with the densities of both M1 and M2 macrophages (identified by positivity for nitric
oxide synthase 2 and CD163, respectively). Discordant findings have also emerged on the cor-
relation between tumor-infiltrating macrophage densities and colorectal cancer prognosis or
survival (reviewed in [15]).

MHC class I molecules are expressed by most nucleated cells. We used this marker only to
obtain an overall count of stromal cells, a large proportion of which can reasonably be expected
to be immune cells, including those not covered by other markers in our panel. Its nonspecifi-
city for immune cells obviously precludes any speculations on the significance of our MHC-I+
cell counts in the process of immunoediting. Nonetheless, these counts provide complementary
information on the picture that emerges based on expression patterns of the other 5 markers,
i.e., that polypoid adenomas are characterized by more intense immune-cell stromal infiltra-
tion than their nonpolypoid counterparts. This difference might be related to the axial growth
pattern of polypoid lesions, which protrude into the gut lumen. Compared with the lateral
spread typical of nonpolypoid lesions, axial growth involves greater ramification and lengthen-
ing of the crypts. This type of growth is likely to require a more structured stromal support sys-
tem, more replete with fibroblasts and vascular endothelial cells that would be reflected in
higher MHC-I+ stromal cell counts.
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The volume of a polypoid lesion is approximately twice that of a nonpolypoid with the same
diameter, and the interstitial space available for immune / epithelial cell interaction is thus much
larger. Early-stage polypoid colorectal cancers have more extensive microvascular networks than
their nonpolypoid counterparts [46]. A similar difference might exist in precancerous lesions,
and this facilitate the immune cells’ infiltration of the stroma of polypoid adenomas. The epithe-
lial surface area might also play a role. Grivennikov et al. have suggested that the barrier function
of adenomatous epithelium is compromised relative to that of the normal mucosa) [47]. If so, the
larger surface area of a polypoid lesion (roughly twice that of a nonpolypoid adenoma with the
same diameter) might result in a higher density of intralesional microbial antigens, which would
trigger a more intense immune response. In our series and others, large nonpolypoid lesions
(>10mm diameter) were more common in the proximal colon (Table 4), and tumor infiltration
by immune cells might also be influenced by luminal factors peculiar to this colon segment. Ser-
rated histology is also a common feature of nonpolypoid lesions, particularly those located in the
proximal colon [48], but this factor had no effect on our findings since all but one of the lesions
we studied were conventional adenomas (Table 4).

Conclusions
An obvious limitation of our study is the restricted panel of immune cell markers we used and
the fact that each was investigated individually (i.e. one antibody per histologic section). The
complexity of the immune landscape in these lesions would undoubtedly be captured more
efficiently by less reductionist methods (e.g., recently developed high-throughput techniques,
such as multicolor immunohistochemistry and immunofluorescence, multiparameter flow
cytometry, and transcriptomic and proteomic analyses).

The differences we have documented between the immune infiltrates of precancerous colo-
rectal tumors with different morphologies may have implications for tumor immuno-chemo-
prevention. For example, the ability of aspirin and other nonsteroidal anti-inflammatory
agents to reduce the recurrence of colorectal adenomas (reviewed in [5]) has been attributed by
some to these drugs’ lowering of prostaglandin E2 levels, whose production in colorectal
tumors is governed by interactions between epithelial and stromal cells [41, 49]. Therefore, sig-
nificant differences in the immune cell infiltrates found in the stroma of polypoid and nonpoly-
poid adenomas might cause these lesions to respond differently to this type of intervention.

Materials and Methods
Colorectal tissue samples
The first series of human colorectal tissues analyzed in this study has been extensively
described in a previous report [50], which includes an overview of the transcriptomic changes
occurring during the course of tumor development. It consisted of 42 precancerous lesions,
each with a sample of normal mucosa removed from the same colon segment at a distance of
>2 cm from the tumor. The tissues were prospectively collected during diagnostic colonoscopy
and their transcriptomes analyzed with the GeneChip Human Exon 1.0 ST array (Affymetrix,
Santa Clara, CA, USA). Raw microarray data are available in the Gene Expression Omnibus
repository (Series GSE21962). Transcript levels were expressed as log2 lesion and normal
mucosa ratios. For our analyses, the 42 lesions were classified according to endoscopic mor-
phology (polypoid [type Ip] vs. nonpolypoid [type IIa]) and size (small [11–20 mm] vs. large
[>20 mm]) [29].

The second series of samples was used for immunohistochemistry studies. It included FFPE
blocks of 40 precancerous colorectal lesions from the Cremona Hospital Pathology Depart-
ment archives (Table 4). One of the nonpolypoid lesions displayed the histologic features of a
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Table 4. Characteristics of the 40 colorectal adenomas included in the immunohistochemistry study.

Patienta Age Sex Colorectal segment involvedb Maximum lesion diameter [mm] Macroscopic appearancec Dysplasiad

Small polypoid lesions
1 37 M S 16 Ip low

2 74 M D 15 Ip low

3 74 M S 16 Ip high

4 58 M T 15 Ip low

5 63 F S 15 Ip low

6 60 F S 15 Is low

7 68 M S 16 Ip low

8 59 M S 15 Ip low

9 79 F S 15 Ip low

10 63 F S 15 Ip high

Large polypoid lesions
11 * 68 F S 30 Ip low

12 * 83 M S 40 Ip low

13 72 F S 30 Ip high

14 * 64 M T 50 Ip low

15 57 F S 35 Ip high

16 84 M S 35 Is high

17 78 F S 45 Is high

18 88 M S 30 Is high

19 78 F R 30 Ip high

Small nonpolypoid lesions
20 58 F D 18 IIa low

21 52 F S 15 IIa low

22 83 M A 15 IIa high

23 62 F A 15 IIa low

24 66 M A 18 IIa low

25 63 M T 18 IIa low

26 56 F S 15 IIa low

27 62 F A 15 IIa low

28 73 F R 15 IIa low

29 69 F A 15 IIa SSA

Large nonpolypoid lesions
30 86 M D 30 IIa low

31 51 F C 30 IIa low

32 59 M A 40 IIa high

33 82 F D 30 IIa high

34 83 F A 40 IIa high

35 59 F D 30 IIa high

36 65 F D 30 IIa low

37 58 M D 35 IIa high

38 66 F R 35 IIa high

39 67 F T 45 IIa low

40 79 M A 30 IIa high

a * CD4 staining was not available these lesions
b Abbreviations: C, cecum; A, ascending colon; T, transverse; D, descending colon; S, sigmoid; R, rectum
c Classified according to the Paris Endoscopic Classification of Superficial Neoplastic Lesions [29]
d Highest degree of dysplasia in the lesion based on the WHO classification of tumors of the digestive system (Editorial and consensus conference in Lyon,
France, November 6–9, 1999 [IARC]). SSA: sessile serrated adenoma.

doi:10.1371/journal.pone.0159373.t004
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sessile serrated adenoma/polyp; the other 39 were adenomas with some degree of dysplasia. As
expected, most of the nonpolypoid lesions came from the proximal colon (see Introduction).
The marginal normal mucosa of each FFPE block was not suitable for cell counting due to cau-
terization artifacts. The tumors in this archival series were deliberately selected to produce two
distinct, non-overlapping size classes: small (diameters measuring from 15 to<20 mm) and
large (diameters of!30 mm). Intermediate size (20–29 mm) lesions were excluded to increase
the chance of identifying biological differences between early (small) and more advanced
(large) adenomas. Therefore, our size classes in these experiments are not based on the 10-mm
cutoff commonly used to distinguish small polyps from advanced lesions requiring closer
endoscopic follow-up [30]. Indeed, lesions measuring< 10 mm have been excluded from all of
the studies we have conducted thus far to ensure that our sampling procedure had no negative
effects on the histologic diagnosis.

Colorectal tumors with defective DNAmismatch repair are usually characterized by more
abundant lymphocyte infiltrates than their mismatch repair-proficient counterparts. None of
the patients whose tissues were examined in this study had family histories indicative of a pre-
disposition to this type of tumor. In addition, none had ever been diagnosed with sporadic mis-
match repair defective tumors, which are associated with transcriptional silencing ofMLH1.
DNA from the lesions we studied was not analyzed for colon cancer gene mutations.

Recruitment and analyses of both sample series were approved by the Ethics Committees of
the Hospital of Cremona (Italy). Each donor provided written informed consent to collection
and analysis of data and publication of the findings.

Immunity-related transcriptomic (“immunome”) analysis (first series of 42
precancerous lesions)
Our analysis of transcriptomic data focused on the C7 immunologic signatures collection in
the MSigDB, which is part of the Human Immunology Project Consortium (HIPC; http://
www.immuneprofiling.org). GSEA was used to quantify immune-pathway upregulation or
downregulation related to the morphology and size of the precancerous lesions. GSEA uses a
variation of a Kolmogorov-Smirnov statistic to provide an enrichment score for each gene set.
We use the signal-to-noise metric in the standard GSEA setting for measuring the correlation
of a gene with the phenotype. The enrichment scores were then normalized to take into
account the size of the gene sets resulting in a normalized enrichment score. This normaliza-
tion was done using phenotypic permutations followed by standardization [39]. P-values and
false discovery rates were computed using standard setting in the software. A p-value cut-off of
0.05 was used to define significant pathway enrichment.

Tissue staining for immunologic markers (2nd series of 40 precancerous
lesions)
Shortly after removal, tissues were fixed in neutral buffered formalin (pH 7.0), dehydrated, and
embedded in paraffin using standard histological techniques. Sections from FFPE blocks were
stained with hematoxylin-eosin and periodic acid-Schiff stain for routine histologic analysis.
Serial sections (5-micron) were processed for immunohistochemistry on Leica BondMax
instruments using Refine HRP-kits (Leica DS9800), including all buffer solutions from Leica
Microsystems Newcastle. Antibody characteristics and immunostaining procedures are sum-
marized in Table 5. A Reichert microscope with a digital camera (JTV Polyvar 2) and Sony Tri-
nitron monitor were used for quantitative analysis of immunostained cells. Labelled cells were
counted in 10 microscopic fields (each measuring 140 x 110 microns, total amplitude: 15,400
square microns) at 400X magnification.
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MATLAB software (MathWorks, Natick, MA) was used for statistical analysis of the immu-
nohistochemistry data. Non-parametric Wilcoxon Mann-Whitney tests were used to assess dif-
ferences between mean values of immune cells in colorectal lesions according to their
morphology, size, and degree of dysplasia. The significance level was set at p-value less than
0.05. MANOVA was used for testing the hypothesis that, given the sets of adenomatous lesions
clustered in accordance to their morphology, size and degree of dysplasia, the means of the
multiple response variable are or not distinct among the clusters of lesions, and the test is used
to assess the statistical significance of the separation obtained among the lesions groups [51].
The null hypothesis H0 was that the two lesions groups came from the same population. MAN-
OVA is accomplished by creating new variables (termed canonical) that maximize the differ-
ences among lesions of different morphology and/or size or degree of dysplasia. The first
canonical variable is the linear combination of the original variables that best summarizes the
differences among the lesion groups. The second canonical variable is the next best linear com-
bination orthogonal to the first one, and so on. The grouped scatter plot of the first two canoni-
cal variables were used for displaying group structure in our data. Another graphical output of
this analysis was the dendogram plot of the group mean clusters following MANOVA, where
the clusters were computed by applying the single linkage method to the matrix of Mahalano-
bis distances between group means.

Supporting Information
S1 Table. Immune pathways displaying significant dysregulation in GSEA analysis of the
five group comparisons. A total of 429 pathways (graphically represented in Fig 1) displayed
significant up- or downregulation (p-value< 0.05) in GSEA of one or more of the five group
comparisons: 1) polypoid vs. nonpolypoid (all sizes); 2) polypoid vs. nonpolypoid (small
lesions only); 3) polypoid vs. nonpolypoid (large lesions only); 4) small vs. large (polypoid
lesions only); 5) small vs. large (nonpolypoid lesions only). The column degree shows the num-
ber of group comparisons in which significant differential regulation of the pathway was
found.
(XLSX)

Table 5. Antibodies used in the immunohistochemistry study.

Cell type Cell
Marker

Type Antigen
retrieval
method *

Positive
tissue
control

Dilution IHC detection
protocol **

Supplier Code Isotype / Clone

T helper cells CD4 Rabbit
monoclonal

H2 20/95°C Tonsil 1:100 rabbit HRP Cell Marque
Lifescreen

CMC10431021 IgG / SP35

cytotoxic T
cells

CD8 Rabbit
monoclonal

H2(40) Tonsil 1:500 rabbit HRP Cell Marque
Lifescreen

CMC1083100 IgG / SP16

T regulatory FOXP3 Rabbit
monoclonal

H2(60) Tonsil 1:200 rabbit HRP Acris
Antibodies

AM21067PU-M IgG / SP97

macrophages CD68 Mouse
monoclonal

H2(30) Tonsil 1:200 refine HRP Novocastra
Laboratories

NCL-L-CD68 IgG2a_Kappa /
514H12

macrophages CD163 Mouse
monoclonal

H2(30) Tonsil 1:750 refine HRP Serotec MCA1853 IgG1 / EDHu-1

nucleolated
cells

MHC-I Rabbit
monoclonal

H1(30) Tonsil 1:500 rabbit HRP Epitomics 2307–1 IgG / EPR1394Y

* Leica Bond Retrieval Buffer ER1 (30 min. at 100°C); Retrieval Buffer ER2 (for 30, 40 or 60 min at 100°C); Retrieval-Buffer ER2 for 20 min at 95°C.
** Rabbit HRP = Bond Polymer Refine HRP Kit from Leica (DS9800) without Postprimary Antibody (Rabbit anti-Mouse); Refine HRP: same Leica kit with
Postprimary Antibody (Rabbit anti-Mouse)

doi:10.1371/journal.pone.0159373.t005
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