
P. Asirelli*, D. Di Grande*,
P.Inverardi*, G. Lo Re, F.Nicodemi**

Graphedblog Reference Manual

Novembre 1990

PROGETIO FINALIZZATO
SISTEMI INFORMATICI E CALCOLO PARALLELO

SOTIOPROGETIO 6
Metodi e Strumenti per la Progettazione di Sistemi

Coordinatore Bruno Fadini

P. Asirelli *, D. Di Grande*,
P.Inverardi*, G. Lo Re, F.Nicodemi**

Graphedblog Reference Manual

N. R/6/17 Novembre 1990

*I.E.I - C.N.R.
Via S. Maria,46-56100 Pisa

Nota Tecnica

**Olivetti D.O.R. '
Ing.C. Olivetti &C. S.p.A.
Lungarno Galilei-56100 Pisa

GRAPHEDBLOG
t

eference Manual.

P .. AsireHi, D .. Di Grande, P. Inverardi
G. Lo Re, F. Nicodemi

Some basic notions on Databases

We will recall here some notions on databases that will help clarify the various parts of the system
we are presenting.

A Database is a set of data collected and stored in a computer according to some particular
criterion.

A Database Management System (DBMS) consists of the software that allows the user to:

- use ancl/or update the data in the Database,
- use and reason about the data in abstract terrns more than on implementation details.

Furtherrnore, the DBMS must posses the following features:
- Security, that is protection against uncontrolled access to the data;
-lntegrity, that is controi over certain kind of "Consistency Constraints";

- Syncronization, that is maintenance of the system consistency when the system is used by more
than one user, simultaneously.

- Crash protection and Recovery.

A Database System can be seen from different points of view, each one corresponding to a

different level of abstraction.

View

1

Conceptual Phisical

View
DataBase DataBase

2

View

n
fig·]

The P hisical Database is the only data base which reaIIy exists. It can be considered as a

collection of files andlor simple data structures.

l

The Conceptual Database is the abstract representation of the physical database.

Views are abstractions of parts of the Conceptual Database.

Furthennore, there are another two dimensions to be taken into account, apart from the levels of
abstraction we have seen:
- the instances of the data base, i.e. the current data in the database;
- the schema, i.e.the enumeration of the entity types and of relations among entity types,

according to the level of abstraction referred to by the schema. Thus, for example, we can have a

Physical Schema corresponding to the Physical Database, and, corresponding 10 the different
views.

The Data Mode! is a set of logical structures used to describe the Conceptual Schema. The model
has to be rich enough to be suitable to describe significant aspects of the real world, but, on the
other hand, it has to make it possible to detennine, almost automatically, an efficient

implementation of the Conceptual Schema (by the Physical Schema).

It is difficult, and very important too, to detennine the appropriate Data Mode!. In fact, the DM
defines the generai mechanisms to access the data, and, when such mechanisms are not suitable,
the resulting Data Base may result in being very inefficient. Research in the field of Data Models is

still active, yet the Entity/Relationship model is generally considered to be one of the most
advanced, from the point of view of its expressiveness and naturalness. The Entity/Relationship
mode! generalizes and extends the classical models, such as the Relational Model.

Traditionally, the Physical Schema and the Conceptual Schema are expressed by means of different
languages, the second one being defined in tenns of a programming languages to implement the
Conceptual Schema. DBMS's also are implemented, often , using a different programming
language and the query language for the external user often has a logic syntax to be interpreted
onto the Physical Schema. Thus, often more than one language is involved in a DBMS and

appropriate interpreters and algorithms have to be defined. As it will be c1earer later on, logic offers

a uniform language in which the Data Model can be defined and, such a language, being a
prograrnming language too, means that the implementation is immediate (the Conceptual Schema is

also the Physical Schema), the query language is the same language used everywhere else and the
DBMS too is defined using the same language, providing for definition and implementation. The
interpreter and the algorithms are based upon the same mechanism, i.e. Resolution [Robinson 65].

2

1.2 The syotax used

Let us define the syntax of the logic language we will use so that the examples can be more easily

understood. Let us stress that the language we use is exact1y the one introduced first by Kowalski

and van Enden in [Kowalski 74] and that it is compatible with all Prolog languages commercially

available.

A logic program consists of a set of clauses (Horn Clauses).

Each clause looks like:

Af-

A f- B l, ... , Bo

facts (unit clauses)

rules

where A, BI, ... , Bo are literals. A is the consequent, BI, ... , Bn are the premises and they

look like p (t 1, ... , t m) where: p is a predicate symbol and t 1, ... , t m are terms.

The informaI interpretation of a clause A f- BI, ... , Bn is that, A holds if B 1, ... ,Bn hold.

A term is either

>I< a constant symbol: an identifier beginning with a lower case letter;

>I< a variable symbol: an identifier beginning with an upper case letter;

>I< a term such as f (tI, ... , tk) where f is a data constructor symbol (functor) and

tI, ... , tk are terms.

For more details on the semantics of the above language and its interpreter (SLD-resolution

procedure) we suggest the reading of the following paper and books: [Kowalski 74] and [Lloyd

84].

1.3 Logic DataBases

In [De Santis 85] definitions on Deductive Databases and Logic Databases can be found. There can

also be found details on the assumptions that are necessary to represent a Relational Database, by

means of logico In [Giannini & al. 86] it has been shown that, not onIy the Reiationai Model, but

the Entity/Relationship Model too, can be represented by logico In particular, an eX,ampie is

presented to show how an EIR model can be mapped onto a Iogic program.

Deductive Databases (DDB's), are extention of Relational Databases (RDB's) where deduction

capabilities are introduced. While RDB's can be seen as a set of facts true in a world that has been

3

defined, DDB's are defined by a set of facts (Extensional Components) and a set of rules
(Intensional Components). Rules permit you to deduce new facts from existing explicit ones.

When rules are not recursive, they can be expanded to obtain just a set of facts.Thus an RDB can
be straightforwardly represented by a deductive database, with no recursive rules.

A DDB can be seen as a first order theory, in particular, as a Horn clause theory. Thus, given the
procedural interpretation of Horn clauses [Kowalski 74], a DDB can be regarded as a logic
program where the only facts in the database are just those that can be deduced from the logic
program by evaluating goals. This also means that, a logic programming language not only
provides for the database definition language but also for the database query language.

Thus, a RDB can be represented (and implemented) by a logic program where rules are not
recursive, Le. by a hierarchic logic program. Referring to fig. 1, by using a logic programming
language, the Conceptual Schema and the Physical Schema coincide.

Representing a database by a fulliogic program (with uncontrolled recursion) introduces problems
of non-termination of the query evaluation processo On the other hand fulliogic programming
capabilities extends Database capabilities from the point of view of the Data Model, and from the
point of view of the Schemas (Conceptual and Physical). A compromise has to be found between
the problem of termination and extention of capabilities.

When a LDB has to work as a deductive "question-answering" system for a relational database,
three main problems have to be faced:
i - knowledge representation;

ii - knowledge acquisition;
iii - use of knowledge.

A Logic DataBase Management System is thus seen as system for "knowledge management".

While knowledge in such a system is represented by means of Horn Clauses, knowledge
acquisistion has to be faced by defining updating operations which guarantee the database integrity
consistency ami/or redundancy.

The use of knowledge is instead related to the query language interface and the query evaluation
processo

4

1.3.1 Querying the LDB

The most common use ofLogic in the database field has been, until recent1y, confined to the query
language and to integrity constraints formulas. In both cases an interpreter is then necessary to
transform the formulas into the internaI language, say QBE, SQL or the relational algebra
language.

On the other hand, logic programs are used via resolution of goals, where the initial goal is
considered as the main program. It immediately follows that, when the database is represented by a
logic program, a query is nothing else than a goal to be resolved against the program. The query
evaluation process is resolution. Integrity constraints are formulas which are properties of the logic
program denoting the database and, in some cases resolution can stilI be used to verify them.

1.3.2 Basic updating operations

Updating operations in a LDB framework are related to knowledge acquisition. Operations are
necessary to introduce new facts and rules and, also, integrity constraints formulas.

Furthermore, updating operations must provide for integrity checking. This means that, when a
fact or a rule is introduced, the obtained database must be consistent with respect to integrity
formulas. The updating request must be denied when it would lead the database into an
inconsistent state.

The introduction of new integrity formulas should also cause verification of the actual database
against the new formulas.
Updating operations also have to deal with redundancy problems. Such kinds of problems are
related to implementation and installation issues. They do not affect the correctness of the system
or its logical consistency.

1.3.3 Integrity Constraints handling

As we consider a logic database to be a logic program, integrity constraints (properties which the
database must posses), can be considered as properties of logic programs, thus assimilating the
problems of integrity constraint checking to that of logic program property proving. In addition, a
deductive database system should offer much more than a logic programming system,; since its
objects are evolving first-order theories (databases), rather than a single fixed one. In particular,
the problems of consistency and redundancy must be faced.

5

Although logic programming offers a straightforward way of implementing deductive databases,
some restrictions are needed to guarantee the termination of the query evaluation process and the

evaluation of negative queries. Thus the class of logic programs has to be restricted to hierarchical
program definitions which do not allow recursive definitions [Clark 78], [Shepherdson 84]. These
restrictions can be partially relaxed, at least with respect to negation and to certain kinds of queries
[Barbuti & al. 86].

In [AsireUi & al. 85] an approach to integrity constraints handling for hierarchic databases is

proposed, in which a database is considered as consisting of a logic program plus a set of

fommlas, which must be proved to be true in the minimal model of the given program. Since a

database will be updated, two approaches are proposed for integrity constraints checking. One
approach (The Modified Program Method) considers a subset of the given logic formulas,
called IC -lntegrity Contraints, and uses them to modify the logic program automatically so that
the given formulas are true in its minimal model (with respect to the model theoretic
semantics).This means that all facts which do not satisfy IC are not provable/derivable from the
modified logic programlOB (i.e. illegal queries cannot succed). The other approach (The
Consistency Proof Method) considers a wider class of logic formulas (called Controls), and

proves that they are true or false using a metalevel proof, on request from the user. The description
of the algorithms is sketched in the next section, while a detailed description of them can be found
in [Asirelli & al. 85] and in [De Santis 85].

The integrity constraint formulas and the integrity checking algorithms can be extended to work on
database which adrnit some recursion in the spirit of Barbuti. Stratified databases can be considered

too.

1.3.4 Redundancy

Redundancy problems are related to excess of information. That is to say that, for example, when a

fact is added to the database and the same fact is already derivable, then a choice has to be made

depending on time or space considerations.

Time considerations concem time of response in the query evaluation process, while space
considerations concem the amount of storage needed for the database.

Generally it is faster to derive information which is explicitely stated than to derive it by rules.
Thus, dme considerations encourage me introduction of facts instead of rules.
On the other hand, rules denote a set of facts succinctly. That is, rules allow you to saye on the
storage space.

The above considerations must be taken into account when adding redundant information. If time

6

has to be saved then redundant facts are accepted, while if space has to be saved then they have to
be rejected.

This all means that an LDBMS should provide for two modes of behaviour, letting the user choose
between them depending on the machine being used.

1.3.5 Transactions

When a DBMS becomes something more than a toy system, the user has to be provided with

facilities to express compound updating operations. Compound updating operations, in the
framework of databases are often called transactions.

A transaction definition language is generally defined, often it is yet another language with its own
interpreter that is added to a DBMS. Transactions allow the user to define his own operations at a
more abstract level, in terrns of other transactions or a repetition of basic updating operations.

Execution of transactions involves problems of consistency and redundancy as well as basic
updating operations. The database has to remain in a consistent state, or it has to be reset into a

consistent state after system crashes or errors occur, thus abortion facilities have to be provided to
undo the effects of a transaction.

Of course, in a logic framework, the transaction definition language can still be based on logico
This does no! require the user to learn a new language and, from the implementation point of vie w ,
less effort is needed to build the interpreter using, once more, the basic resolution procedure used
throughout the system.

2. The Logic Database Management System (LDBMS) GRAPHEDBLOG

The logic database management system GRAPHEDBLOG [Di Grande 89] is a system which has
the capability to manage databases which contain graphical and non graphical inforrnation.
GRAPHEDBLOG has been defined as an extension of EDBLOG [Mauro 85] by introducing the

capability of manage graphical inforrnation. EDBLOG, in its tum, has been defined as an extention
of DBLOG [De Santis 85] by introducing transaction definitions and handling facilities. DBLOG is
the kemel of the LDBMS.

GRAPHEDBLOG considers the data base system as consisting of four parts:
a) a logic program in which:

a.l) the set of facts, "unit" Horn clauses, are considered to be the Extensional

7

component of the DB (EDB);
a.2) the set oj deductive rules, "definite" Horn clauses, are considered to be the

Intensional component of the DB (IDB);
b) a set of integrity constraint formulas with:

b.l) a se! oj lntegrity Constraints (IC), which are formulas ofthe form:

Ak -7 BI, ... , Bs
which can be interpreted informally as: whenever Ak is true then BI and ... and

Bs must also be true;

b.2) a set ojControlsjormulas which are either formulas as in b.l) or else

i) Al, ... , Am-7 BI, .•• ,Bo

ii) -7 BI, ... ,B o
iii) Al, ... , Am-7

The informaI interpretation for i) is that whenever Al and ... and Am are true

then BI and ... and Bo must also be true; analogously ii) means that BI and ...

and Bo must be true and, finally, iii) means that A l and .. , and Am must be

false.
Note that for formulas i)-iii), as weU as for the formula b.l), aH the variables are
intended to be universally quantified, apart from the local variables (Le. variabIes
occUlTing only on the right hand side) which are intended to be quantified
existentially .

c) a set of clauses which define compound updating operations (transactions), which are formulas
ofthe form:

i) trans i f- prec I trans l , .•• , trans n I post;

The language used to express this kind of transaction syntaetieally resembles
Concurrent Prolog with no annotated variabIes [Shapiro & al. 83]. The informaI
interpretation is that to execute the operation trans, the precondition (p ree)
must be first verified, and then the clause containing this preeondition must be
committed, the body executed and the eorresponding postcondition verified.
As in Concurrent Prolog, the commit operation is a way of expressing the
behaviour of the Prolog eut operator, a failure in the body of a transation
causes the failure of the transation.

ii) trans i f- prec # trans l , ... , trans n # posto

The informaI interpretation of this kind of transaction is that to execute the
operation trans, the precondition (prec) must be first verified, and then the
clause containing this precondition must be utilized, the body executed and the
corresponding postcondition verified. A failure in the body or' in the
postcondition not causes the failure of the transaction but the search of anather
definition for trans with the precondition verified. The transaction fails if all its

8

definitions fail.

Preconditions and postconditions in the definitions of transactions will operate as
particular forrns of Controls which must be checked before/after the execution of
the set of operations (body of the transaction).
Since checking for consistency in a DB can be very heavy and time consuming,
preconditions and postconditions are introduced to separate global DB controls
(Controls) from those related to particular transactions, thus reducing the
number of necessary global Controls forrnulas.

The operational interpretation of these transaction definitions is the standard
Prolog resolution of clauses where clauses are tried in the order they appear in the
program.
The successful evaluation of a transaction causes the Controls formulas to be
checked. The required transaction operation is aborted if this Controls checking
fails. The abortion of a transaction is automatically handled (by backtracking), by
ensuring that elementary updating operations are backtrackable upon failure.
Abortion is also started upon the failure of postconditions or upon the failure of
some operations of the body, thus obtaining an and-nondeterministic behaviour
of the clauses.

The system can be seen as an amalgamated theory [Bowen & al. 82], [Bowen 85] consisting of the
meta-theory (the theory which handles the evolution of the data base), and the object theory (the
logic data base).

A set of elementary updating operations is provided by the system as a meta-theory with respect to
the DB. Such operations also allow lC, Controls forrnulas and transactions to be added and
deleted.

2.1 The Logic Database Kernel

The elements described in the points a) and b) forrn the basic components of the kemel (DBLOG),
and can be depicted as in fig. 2.

According to The Modified Program Method, le are used to modify the given set of Facts
and Rules, to obtain a new set of facts and rules denoted by Factsl and M-rules in fig}, where:
Facts 1 is a subset of Facts and M-rules consists of both facts which become rules and rules which
are modified by the modified program approach algorithm.

9

For example:

Fac13

Rules

Focls ~

ate (david I 20).
ate (m.ary, 22).

employoee (dav.id).
employoee (m.ary).

IC

Controls

fig. 2

T/Je modified

Progrom l''/e t /Jod

-)
fig. 3

.IC

employoee (Y) --> ege(Y IX) I X>20
poss_dept_chief(X) --> ege(X/Y), Y <65

poss_dept_chief (X) <-- older_employoee (X).

oldecemployoee (X) <-- ate(X/Y), Y>40.

fig. 4

10

Then the resulring database to be considered, after running the algorithm for the modified program
method, is:

age (david, 20).
age (m.ary, 22) .

.J!f!C .ll1.i!s

employee (david) <-- age(david, X), X >20.
employee (m.ary) <-- age(m.ary, X) I X >20.

poss _dept_ch.ief (X) <-- olàer _employee (X), age (X, Y) J Y < 65.

olàer _employee (X) <-- age(X,Y) J Y>40.

fig. 5

The other component of the kernel system, i. e. Controls are used by The Coosisteocy Proof
Method algorithm which verifies them against the current database.

This method considers one controi formula at a rime. Let us consider a formula such as:

then the formula Al,"" Am is considered a goal and it is resolved in the database, for all

values of the variables. Let J 1, J2, ... , Jo be all the answer substitutions for that goal. For each

Ji,
Dl,···,Bo

is rewritten by substituting each variable with its corresponding assignment in Jj, the obtained

formula [B 1, ... ,B o] Ji is then resolved in the database. If [B h ... ,Bo]Jj succeeds for all

i=l, ... ,n then we say that the database is consistent with respect to that control formula.

As an example, let us consider the formula:

a(X, Y, Z)-7 bl(X), b2(X,Y), b3(X,Y,Z)

we resolve f-- a(X, Y, Z) for alI solutions. Let (X=c, Y=d, Z=f) and (X=a, Y=r, Z=s) be the
only solutions, then we look for the success of the two goals:

11

~bl(c), b2(c,d), b3(c,d,t) and ~bl(a), b2(a,r), b3(a,r,s).

Both the modified program and the proof method algorithms have to be implemented at the
metalevel, where the object theory is the database and the set of fonnuias to be proved.

2.2 The graphical model and its language

GRAPHEDBLOG supports the management of data bases which store graphical data according a
model that consÌsts of the following elements:

c. prototypes, i.e. templates of graphical objects;

CI graphical objects, Le. instances of prototypes;

• properties, i.e. properties asserted on prototypes definitions;

• mechanisms to:

.. compose prototypes;

.. create graphical objects;

.. frame, Le. the abstract pIane in which graphical objects are drown.

2.2.1 Prototypes

Sometimes, it can be useful to have different views of the same object; furthennore, the same

graphical object may be used one or more times as a sub-object in more complex objects. Thus, we
introduce the notion of prototype that can be assimilated to the notion of generic type in a
programming language. That is, hs definition does not define a new object, but it is a template that

wiU be used to create objects upon instantiation.

Deflnition 1: A prototype consists of the description of a graphical object. This description is

parametric with respect to some characteristics (attributes).

Prototypes are divided into two further classes. That is:

CI basic primitive prototypes, that are the usual graphical output primitives (e.g. point,
polygon, ..). The description of these prototypes is hidden to the user and they aie~ystem
primitives, i.e. this class of prototypes is fixed once and for all and cannot be changed by
the user.

12

• user defined prototypes, that can be:

• compound user defined prototypes. These are defined as composition of other user

defined prototypes or basi c primitive prototypes or both. These prototypes must have a
hierarchic structure (not recursive).

49 primitive user defined prototypes. These elements are defined only in terrns of basic
primitive prototypes and are obtained from user defined prototypes by compiling t
hem.

Given that the model is compositional (Le. a prototype may be defined in terrns of other

prototypes), the compilation of a compound, user defined prototype, into a primitive, user defined

prototype, eliminates its dependencies from its composing prototypes; This means that primitive

user defined prototype consists only of basic primitive prototypes. This class of primitive user

defined prototypes has been introduced because it has at least two advantages:

• encapsulation: Modifications to any component will not affect the compound
prototype;

• efficiency: The visualization of an instance of a primitive prototype will be more
efficient than the visualization of an instance of the same non-primitive prototype.

Each prototype description has several attributes for the creation of particular instances, according

to user requirements. Two classes of attributes are provided:

• contextual attributes;

• absolute attributes.

All prototypes description is parametric with respect to contextual attributes and, optionally, lO

some absolute attributes, too.

Definition 2: The set of parametric components (attributes) of a prototype definition deterrnines

its interface.

2.2.1.1 Contextual aUributes

The contextual attributes are of two kinds: The forrner consists of the geometrie attributes, Le.:

• origin;

• scale;

• rotation.
The origin fixes a point on the pIane and the coordinates of each instance of a prototype have to be

13

computed with respect to such a point. The scale and rotation give the scale and the rotation with
respect to which instances are created.

The latter consists of the state attributes, i.e.:

CI rasta function (mode): represents a logic connective (and,or, ..) to be applied to the

source destination pixels (those that are present on the visualization pIane), to obtain the
new destination pixe1s;

411 fili pattern: represent the pattem that will be used to fin the surface of the described

object;

• write pattern: represents the pattem that will be used to draw the border of the
described graphical object;

CI write style: represents the style that will be used to draw the border of the described
graphical object;

CI write width :represents the width that will be used to draw the border of the described
graphical object;

CI color table: represents the name of a color table that has to be used at
visualization time.

2.2.1.2 Absolute aUributes

In generaI, one would 1ike a prototype to denote the partial description of a graphical object where
some aspects, a part from the contextual attributes, are left unspecified. For example, someone

may wish to define prototypes such as the arch(Length, Height), that describe an arch,
parametrically with respect to its length and height. This kind of prototypes are called parametric
protorypes. Their description is parametric with respect to some aspects that intentionally are not

specified (the absolute attributes class), apart from the contextual attributes.

2.2.2 Graphical objects

A graphical object is obtained by fully instanciating a prototype i.e. providing it with all the
information required by its description, thus generating a ground instance of the prototype
definition.

The only operations that can be performed on a graphical objects are:

14

• create;

411 delete;

• retrieve;

• visualize.

Since the model will be implemented in a logic DBMS (EDBLOG), each one of the above

operations is defined in tenns of operations on the DB that contain prototypes, instances, etc ..

Thus, the create will have the effect of inserting, in the DB, a fact to give a name to a prototype
instance; delete, causes the deletion of a previously inserted object (fact); check, is a query to the

DB; visualize is defined in tenns of the check operation and, as a side effect it depicts the object on

the screen.

2.2.3 Compound prototypes

The description of a user defined prototype consists of a set of use declarations of other

prototypes. This pennits to model a graphical object as the composition of several sub-objects.

If a graphical object 01 is a structural element of a more complex object 02 then, the description of

prototype P2 of 02, must contain the use declaration of prototype Pl of 01. The use declaration

must specify the infonnation that are necessary to obtain, from the actual values of the attributes of
P2, the values of the attributes of P1. Such infonnation will be used to obtain from the instance 02

the instance 01'

Therefore, in every use declaration, the attributes of the defining prototype must be bound to the
attributes of the used prototype. The values, fixed for the geometri c attributes, must be expressed
in tenns of the attributes of the defining prototypes, the other values must be fixed in an absolute

way.

Let us introduce the concept of dependency.

Definition 3: A prototype P1 depends on a prototype P2 if the description of Pl contains an use

declaration of P2 or, if it contains an use declaration of a prototype P3 that depends on P2.

Given a prototype P, its dependencies can be represented as a graph, dependency gra~h, where
the root denotes P and, the other nodes, denote all the prototypes P depends ono An oriented arch,

from a node N 1 lO a node N2, shows that, in the description of the prototype denoted by N l, there

are one, or more, use declarations of the definition of the prototype denoted by N2.

15

If a prototype has an acyclic dependency graph then it is hierarchic, Le. it does not depend on
itself.

Definition 4: A prototype is correct if its dependency graph is acyc1ic.

With this definition we want to underline that the only prototypes that can be described in our
model are those that are hierarchies.

2.2.3.1 Conditional use declaration

The model we are describing is based on the assumption that the description of graphical objects
must to be stored in a database together with non-graphical information.
This situation aUows us to consider cases in which the use of a prototype Pl, within a prototype

P2, is subordinate to the existence of certain information in the database. In programming

languages, this corresponds to the concept of record with variants.

In practice, taking advantage of the rnixed environment we have, we want to be able to model cases
in which some information about our data is not available at definition time, while they will be at
querying time (checking and/or visualization rime).
Hence, the structure of a graphical object is no more static and fixed at definition time. This is why
we introduce the concept of conditional inclusion.

Definition 5: A prototype P2 conditionally includes a prototype Pl, if the conditions that guard

the use definition of Pl hold when checking the instances of P2. These guards may be queries to

the database or condirions on actual values of the instance of P2.

This mechanism allows us to define graphical objects that, at visualization time, show a different
structure depending on the state of the database.

2.2.4 Properties

As we have previously seen, the description of a prototype defines the graphical structure of an
object we want to represent, parametrically with respect to some attributes. Sometimes, it is useful
to limit the range over which these attributes may change; to say it in other words, it may be useful,
or even necessary, to type such attributes. Thus, we have introduced the concept of property.

Definition 6: A property is a couple <name, value>, where name is an identifier for an

16

attribute and value denotes its value. Each property is associated to the definition of a prototype.

Definition 7: Given a prototype P, parametric with respect to an attribute A, the set of properties

for A, detennines the range of values Vp A for A.

The set of values Vp A enumerate the possible options and the attribute A, of each instance of the

prototype P, must have a value in VPA' For example, if we assume thar, in the database, the

description of the prototype P has, for its attribute origin, the following properties: <origin,

[10,10]>, <origin, [20,20]> then, all instances of P must have their origin at coordinates [10,10]

or [20,20].

Definition 8: An instance of a prototype P that does not satisfy the corresponding properties, for

alI its actual attributes is inconsistent.

Definition 9: A graphical object is inconsistent if one of its sub-object is inconsistent.

The retrieval of an inconsistent object fails, Le. its structure cannot be deduced thus, the object

cannot be visualized.

If no attribute is defined for a component, then it can be assigned any value.

2.2.5 Frame

In the following, we de fine the concepts of frame and of its logical representation. As it will be

clear in the following section, these concepts are introduced in to make it possible to define

integrity constraints on the graphical object at visualization time.

Definition lO: Theframe is the abstract pIane on which the graphical objects will be drawn.

Definition The logical representation of the frame is the set of information concerning the

graphical objects currently drawn on the frame.

2.2.6 The language

In this section we present the language to represent graphical objects, according to the model

introduced in the previous section.
The syntax of the language is Horn logic, thus it is expressed by means of definite clauses. The

17

environment in which the language is used is a deductive database environment, thus the semantic

of the language is expressed in terms of operations on the database containing the representation of

graphical objects. Furthermore, the language is defined as an extension of the logic language in
which a deductive database is represented within the EDBLOG Logic Database Management
System, thus besides facts and rules, integrity constraints (expressed in clausaIlogic too) can be
defined, and are handled by the EDBLOG system.
Since we are using a 10gicaIlanguage, it has to be noted that the graphicaI representation can easi1y
be considered not only as a set of procedure definitions, but as a set of data that are to be
interpreted to obtain the visuaIization of objects as a side effect to the query to the database.
Furthermore, having for granted the possibility of expressing integrity constraints, gives the user a

chance to put integrity on the structure of graphicaI objects and on their visualization.

2.2.6.1 Basic primitive prototypes

The model provides for basic primitive prototypes that correspond to graphical primi ti ves such as
Hne, circle, etc .. whose description is not explicit in the database, but hidden to the user and the
only information provided is their interfaces.
Basic primitive prototypes are denoted by terms such as:

basic_prototype(Geometry,State,Abs_Attribute 1,.")'

where

Geometry = geometry(Origin,Scale,Rotation)
and

State = state(Mode, ... ,Color _Table).

We have grouped together, respectively, in geometry, the geometrie contextual attributes, in

state, the contextual state attributes.

Furthermore, for every absolute attribute, we consider:

The functor attr_namej has to be considered as the attribute builder that, for an absolute attribute,

helps in understanding the meaning of its associated parameter.

For example: polyline(Geometry,State,points _list(List)), denotes the polyline basic primitive

prototype, parametri c with respect to the contextual attributes (Geometry and State) and with
respect to the absolute attribute points_list, i.e. with respect to a list of points, fixed relatively to its

18

Origin (p art of the Geometry information), that contains the vertices that must be connected by
lines.

The list of all the basic primitive prototypes is given in fig. 6

point(geometry(P,S,R),STATE).
line(geometry(P,S,R),STATE,sec_point(S_P)).
path(geometry(P,S,R),STATE,points_list(POINTS_LIST)).
reetangle(geometry(P ,S ,R),ST A TE,sec _point(S _P)).
polygon(geometry(P,S,R),STATE,points_list(POINTS_LIST)).
are (geometry(P ,S,R),ST A TE,pointl (Pl),point2(P2),point3(P3)).
text(geometry(P ,S ,O),ST ,string(STRING)).

fig. 6

2.2.6.2 User defined prototypes

A prototype P that consists of (uses) N sub-prototypes, can be graphically represented by a tree

where: the root denotes the prototype itself; the nodes, directly connected to the root (level l of
depth), de note the N sub-prototypes that P uses. Every arch in the tree represents a declaration of

use (in the prototype associated to the leading node) of the prototype associated to the ending node.

The leaf nodes of the tree denote primitive prototypes (basic or user defined).

Every arch, in the trees, carries a set of information:

o a guard: a condition that has to be evaluated to true (when the arch is traversed), for

the use declaration to be effective; if no condition is required, the guard is set to true;

• the relations that bind the actual attributes of the using prototype to the attributes
of the used prototypes;

• a priority faetor that determines the ordering in which the sub-tree will be visited.

Figure 7 exemplifies a tree representation for a prototype.

The logic description of user defined prototypes, will be given according to such graphical

representation. Although it sounds more intuitive to represent a tree, in Horn logic, by a set of

rules, it turns out that a representation by rules is not suitable to be really used in an environment
where prototypes are interactively developed. In fact, an interactive development of prototypes

requires changes to the trees thus resulting in many insertions and deletions of rule~ in the

database. Furthermore, because of the priority factor, we need to evaluate sub_goals in the body of
a rule, selecting them according to various selection rules. To this respect, almost all commerciaIIy

19

~wl ~

/'.' .. jclW=i R~\~~ti"
Anothecprotl Anothecprotj Anothecprotlc AnothecprotN

AA
fig. 7

available Prologs have a fixed selection rule (leftmost) thus, we decided to represent a tree by
means of assertions (facts).

Let us consider a sub-tree that represents a prototype, consisting of two nodes linked by an arc
having associated a guard, and a set of reiations to bind the attributes of the involved prototypes. In
addition, let us suppose that such an arc has also a priority factor.

This fragment of tree is represented by the following fact:

As an example, the following assertion represent an arch that Ieaves from the prototype house and
reaches the prototype window.

link(house(Geometry ,State),
window(delta_geometry([50, 100],1 ,O),delta_state([]),second_corner([30,50])),

true,

[],

3).

That is, an use declaration is asserted whose meaning is that alI instances of the prototype house
consists of an instance of the prototype window; alI instances of window will have their Origin
coordinates at [50,100] with respect to the Origin of house; the second corner has coordinates
[30,50] with respect to the window Origin; while, they have the same Scale, Rotation and State of
the house instances

20

It can be noted that the contextual attributes are represented by the following terms:

delta -15eometry(Delta _ Origin,Delta _ Scale,Delta _ Rotation)
and

The first term fixes the geometrie contextual attributes of the used prototype relatively to the

corresponding attribute of the defining prototype.
The second term specifies me way in which the contextual state attributes have to be modified. This

term contains a list of pair <state attribute builder, value>. Each pair denotes the change to be made

to the state of the defining prototype in order to obtain the state of the instances of the used
prototype (actual state).

As an example, if in the use declaration of a prototype, there is a term such as:
delta_state([fiU_pattem(black)]),

then, the state of the instances of the used prototype is obtained from the state of the instances of

the defining prototype by setting the filCpattem attribute to black.

2.2.6.3 Representation of the graphical object

As it should be dear by now, a graphical object is an instance of a defined prototype.
Like prototypes, graphical objects can be represented by trees. In this case, the root denotes the
graphical object and there is only one leaving are that reaches one node, the prototype which the
object is an instance of. This arch carries the values that must be given to the attributes of the
prototype to instanciate it.
As an example, if we consider the prototype A_Prototype, represented in figure 7 above, its
instance, the graphical object Example, is represented by the tree of figure 8.
Clearly, we do not represent the whole tree, but only the arch connecting an object with its

prototype, Le. we represent graphical objects by facts as follows :

graph_obj(Obj_Name'prototype_Instance).

For example,

graph_obj(my_house, house(geometry([250,400],2,30),state(copy, .. ,standard»,

define the graphical object my _house as an instance of the prototype house with origin at

[250,400], scaled by 2, rotated by 30 degrees and with its own state.

21

GuardI

Component
Valucs

GuardN
Guardj Guanlk

Relationsl R" RelationsN / ... /'bti~ Rclm\ .. "
Another _pro t l Anothecprotj Another _protk Another _protN

AAA
fig8

2.2.6.4 Defining properties

As we said in section 2.4, properties have the purpose to limit the range in which the attributes of a
prototype may change .
We represent properties by a predicate property, and we define them either by rules or facts as
follows:

property(Prototype_Name,Attr _Builder(Value)).

For example, we can have the following set of properties asserted on the definition of the prototype
house:

property(house,origin([O,O]».
property(house,origin ([50,40]».

property(house,rotation(X» t- X>O, X<30.

The previous clauses force every instance of the prototype house to have their origin at the
coordinates [0,0] or [50,40] and a positive rotation less than 30 degrees.

22

3. Interaction with GRAPHEDBLOG

3.1 Starting GRAPHEDBLOG

If you want to access to the GRAPHEDBLOG system, before to do it, you must active the X­
Window system wÌth the xinit commando

Now if you are connected with a machine without Quintus Prolog, you must activate a connection
(dogin) with one that has got it.

After this, you must set the current directory to the one where there is the database that you want to
manage or to create.

Now you can start GRAPHEDBLOG with the cornrnand GEDBLOG, and when the Prolog
prompt "yes" appears, type the cornrnand "start.".
After this, the GRAPHEDBLOG system ask you the database name that you want to manage and
the display name where you want the interaction. Answer to it to initiate an interaction.

(Note that the display name of a machine named name is name:O.)

3.2 GRAPHEDBLOG operations

These are implemeted at metalevel (Le. they operate on the object theory which corresponds to the
database).

3.2.1 Query the database

The query must have the forrn:

Q(Xl,' .. 'Xn) :- Goal

where Xl , ... ,Xn are the variables unbound in Goal.

The Goal, has to be an allowed query, that is:

a) The predicates in Goal must be:

- predicates already defined by the user in the current database~

- standard predicates;
- not and ; predicates (metalevel).

b) It must be verified that in every substitution of calculated answer for Goal, there is a value for

every instance of X J, ... ,Xn.
c) The standard predicates must be used with an adequate number of bound variables (safe goal).

If the query is closed the answer will be Yes or No, otherwise the system willlist all the solutions
if they exist.

23

User Interaction:
l) If the query window is not mapped:

1.1) press the Ieft button of the mouse;
1.2) select the query option in the pannel menu.

After these operations the "query window" is mapped;
2) Write the query in the "query window";

3) Write the "full stop" and press "retum" to execute the operation;
4) If you want to unmap the "query window" clic on the white rectangle in the

upper lefthand corner ofthe same window.

3.2.2 Change mode

GRAPHEDBLOG can work in one of the following two mode:
a) Time mode;
b) Space mode.

When GRAPHEDBLOG is working in time mode, the insertion of a fact is really executed even if

it is already derivable in the database. If the system is working in space mode, the insertion is not
real1y executed. Furthemore, If a mIe is inserted, then all the facts that can be derived by the mIe
are deleted, if the mode is set to 'spacemode'.

User Interaction: To switch from a mode to another:

l) press the left button of the mouse;

2) select the change mode option in the pannel menu.

3.2.3 Fact insertion

A fact must be an expression of this form:

p(A1,···,An)
that must respect the following conditions:

a) AI , ... ,An must be ground component or bound to a function;

b) if P is already defined then its arity must be respected.

If these condition are respected, the result of the operation must be:
- the fact is inserted;
- the fact exists already;
- the fact is inserted but isn't derivable because an le isn't satisfied;

24

- the fact isn't inserted because it is already derivabie and the system is working in

space mode.

User Interaction:

1) If the fact insertion window is not mapped:

1.1) press the left button of the mouse;

1.2) select the insert fact option in the pannel menu.

After these operations the "fact insertion window" is mapped;

2) Write the fact in the "fact insertion window";

3) Write the "full stop" and press "return" to execute the operation;

4) If you want to unmap the "fact insertion window" clic on the white rectangle in

the upper lefthand corner of the same window.

3.2.4 Rule insertion

The rule must be of this form:

Af- Bt. ... ,Bn
with A, BI , ... ,Bn atoms. The ruIe must respect the following conditions:

a) if A is already defined, then its arity must be respected;

b) the body of the rule must be a correct query, but the metalevel predicates not and ; are

forbiddens;

c) the rule must respect the gerarchie constraint;

d) alI the variables in the head of the rule must be in the body of the same ruIe;

If these conditions aren't respected the operation is aborted.

If the rule is inserted when the system is working in space mode and there are facts that can be

derived by this ruIe, then these are deleted.

User Interaction:

1) If the rule insertion window is not mapped:

1.1) press the left button of the mouse;
1.2) select the insert rule option in the pannel menu.

After these operations the "rule insertion window" is mapped;

2) Write the rule in the "rule insertion window";

3) Write the "full stop" and press "return" to execute the operation; .

4) If you want to unmap the "rule insertion window" clic on the white reciangie in

the upper lefthand corner of the same window.

25

3.2.5 Integrity Constraint insertion

A Integrity Constraint is e fonnula as:

A -7 B1, ... ,Bn
The conditions that must be respected are those that could respect the corrisponding rule

Af- B}. ... ,Bn

In addition to this, before the insertion, the predicate A must be already declared with the same

ariety.

User Interaction:

1) If the integrity constraint insertion window is not mapped:

1.1) press the left button of the mouse;
1.2) select the insert integrity constraint option in the pannel menu.

After these operations the "integrity constraint insertion window" is mapped;

2) Write the integrity constraint in the "integrity constraint insertion window";
3) Write the "full stop" and press "return" to execute the operation;

4) If you want to unmap the "integrity constraint insertion window" clic on the

white rectangle in the upper lefthand corner of the same window.

3.2.6 Control insertion

A check is a fonnula of this kind:

cl) Condition -7 Conclusion

c2) always -7 Conclusion

c3) never -7 Condition

with Condition and Conclusion conjunctions of atoms.
Por cl) the condition that must be respected are:

i) the predicates in Condition must be aIready defined in the database;

ii) the predicates in Conclusion must be aIready defined in the database;
iii) Condition must be a safe goal (see query operation).

iv) The goal made by juxtaposing Condition and Conclusion must be safe.

Por c2) the condition that must be respected are: i) and iv).
Por c3) the condition that must be respected are: i) and iii).

If one of these condition isn't respected, the insertion fails.

User Interaction:

1) If the check insertion window is not mapped:

26

1.1) press the left button of the mouse;

1.2) select the insert check option in the panne! menu.

After these operations the "check insertion window" is mapped;

2) Write the check in the "check insertion window";

3) Write the "full stop" and press "return" to execute the operation;
4) you want to unmap the "check insertion window" clic on the white rectangle

in the upper lefthand corner of the same window.

3.2.7 Transaction insertion

A transaction must be of a form of one of the following clauses:

i) trans_name (- Pree I T I Postc.

ii) trans_name (- Prec I T .

iii) trans_name (- Pree # T # Postc.

iv) trans_name (- Pree # T #.

v) trans_name (- T.

Prec and Poste are equivalent to queries.

T must be a series of operations on the database, whieh form an atomic operation.

Two kind of transactions ean appear in T:

- standard transactions;

- transaetions defined by the user.
Every element in T that isn't a standard transaction is considered a user defined transaction.

User Interaetion:
1) If the transaction insertion window is not mapped:

1.1) press the left button of the mouse;

1.2) select the insert transaction option in the pannel menu.
After these operations the "transaetion insertion window" is mapped;

2) Write the transaction in the "transaetion insertion window";

3) Write the "full stop" and press "return" to execute the operation;
4) If you want to unmap the "transaction insertion window" clic on the white

reetangle in the upper lefthand corner of the same window.

3.2.8 Fact deletion

If the deleting fact isn't ground, it must be specified in a ground form, replacing every variable that

is present in the term with a eonstant. The frrst faet that matches with it, is deleted.

27

The operation fails if the specified fact doesn't match with a fact already inserted in the database.

User Interaction:
1) If the fact deletion window is not mapped:

1.1) press the left button of the mouse;
1.2) select the fact deletion option in the pannel menu.

After these operations the "fact deletion window" is mapped;
2) Write the fact in the "fact deletion window";

3) Write the "full stop" and press "retum" to execute the operation;
4) If you want to unmap the "fact deletion window" clic on the white

rectangle in the upper lefthand corner of the same window.

3.2.9 Rule deletion

To delete a rule you must specify its number, a number that you can read in the ruIe view window.
The operation fails if the specified number is wrong.

User Interaction:
1) If the ruIe deletion window is not mapped:

1.1) press the Ieft button of the mouse;

1.2) select the rule deletion option in the pannei menu.
After these operations the "rule deletion window" is mapped;

2) Write the rule number in the "rule deletion window";
3) Write the "full stop" and press "return" to execute the operation;
4) If you want to unmap the "rule deletion window" clic on the white

rectangle in the upper lefthand corner of the same window.

3.2.10 Integrity Constraint deletion

To delete an Integrity Constraint you must specify hs number, a number that you can read in the

Integrity Constraint view window.

The operation fails if the specified number is wrong.

User Interaction:
1) If the Integrity Constraint deletion window is not mapped:

1.1) press the left button of the mouse;
1.2) select the Integrity Constraint deletion option in the pannel menu.

28

After these operations me "Integrity Constraint deletion window" is mapped;

2) Write the Integrity Constraint number in the "Integrity Constraint deletion
window";

3) Write the "full stop" and press "return" to execute the operation;

4) If you want to unmap the "Integrity Constraint deletion window" clic on the
white rectangle in the upper lefthand corner of the same window.

3.2.11 Control deletion

To delete a check you must specify its number, a number that you can read in the Integrity

Constraint view window.

The operation fails if the specified numbere is wrong.

User Interaction:
1) If the check deletion window is not mapped:

1.1) press the left button of the mouse;
1.2) select the check deletion option in the pannel menu.

After these operations the "check deletion window" is mapped;

2) Write the check number in the "check deletion window";

3) Write the "full stop" and press "return" to execute the operation;
4) If you want to unmap the "check deletion window" clic on the

white rectangle in the upper lefthand corner of the same window.

3.2.12 Transaction deletion
j

To delete a transaction you must specify its number, a number that you can read in the transaction

vie w window.

The operation fails if the specified number is wrong.

User Interaction:

1) If me transaction deletion window is not mapped:
1.1) press the left button of the mouse;

1.2) select the transaction deletion option in the pannel menu.

After these operations the "transaction deletion window" is mapped;
2) Write the transaction number in the "transaction deletion window";
3) Write the "full stop" and press "return" to execute the operation;

4) If you want to unmap the "transaction deletion window" clic on the

white rectangle in the upper lefthand corner of the same window.

29

3.2.13 Fact Modify

When you modify a fact, its arguments can be specified in six ways:
- m(Value): to modify the conisponding argument, replacing it with Value.

Value can be a constant or a function;

- m_add(Number): to modify the corrisponding argument, adding the value of

the Number to the precedent. The value and the precedent component

must be a number;

- m_sub(Number): to modify the corrisponding argument, subtracting the value of

the Number to the precedent. The value and the precedent component

must be a number;

if the Value of the component must remain the sarne;

- Variable;
- constant.

When variables are present among the arguments of the fact that must be modified, the operation
involves the frrst instance for that predicate.
The ground arguments act as keys for that relation.

The operation fails if:

- the predicate that must be modified isn't defined or is defined with different arity;

- the fact that must be modified isn't derivable;

- the modified fact is aIready present (if the system is working in time mode);
- the modified fact is aIready derivable (if the system is working in space mode).

User Interaction:
l) If the fact modify window is not mapped:

1.1) press the left button of the mouse;

1.2) select the fact modify option in the panne l menu.

After these operations the "fact modify window" is mapped;

2) Write the fact with its modification in the "fact modify window";

3) Write the "full stop" and press "return" to execute the operation;

4) If you want to unmap the "fact modify window" clic on the white rectangle in

the upper lefthand corner of the same window.

3.2.14 Check the database consistency

With this operation alI the checks are tested.

For each check tested the system can answer:

30

- "check OK";
- "negative check" (if the check of "always onclusion" type or the Condition doesn't

have variables);
- "negative check" and the list of wrong values for which is true

Conditionl\-,Conclusion

User Interaction:
1) If the checking window is not mapped:

1.1) press the left button of the mouse;
1.2) select the check option in the pannel menu.

After these operations the "checking window" is mapped;
2) Write the "full stop" and press "return" to execute the operation;
3) If you want to unmap the "checking window" clic on the white rectangle in the

upper lefthand corner of the same window.

3.2.15. Disable Integrity Constaints

You can disable an Integrity Constrant without deleting it. The result of this operation has the same

effect as the deletion of the Integrity Constraint.
To disable an Integrity Constrant you must specify its number, a number that you can read in the

Integrity Constraints view window.

User Interaction:

1) the disable IC window is not mapped:
1.1) press the left button of the mouse;
1.2) select the disable IC option in the pannel menu.

After these operations the "disable IC window" is mapped;
2) Write the Integrity Constraint number in the "disable IC window";
3) Write the "full stop" and press "return" to execute the operation;

4) If you want to unmap the "disable IC window" clic on the white rectangle in the

upper lefthand corner of the same window.

3.2.16 Enable Integrity Constaints

To enable an Integrity Constaint you must specify its number, a number that you can réad in the

sleep view window.

31

User Interaction:

1) If the enable IC window is not mapped:
1.1) press me left button of the mouse;
1.2) select the enable IC option in me pannel menu.

After these operations me "enable IC window" is mapped;
2) Write me sleeping lntegrity Constraint number in the "enable IC window";

3) Write the "full stop" and press "return" to execute the operation;

4) you want to unmap the "enable IC window" clic on the white rectangle in the
upper Iefthand corner of the same window.

3.2.17 Execution of a transaction

The transactions mat you can execute are:

- user defined transactions;

- system top level executable transaction (we will see below);
- secdebug transaction (to receive more detailed system messages);
- resecdebug transaction.

User Interac\iQn:
1) me execute transaction window is not mapped:

1.1) press me left button ofthe mouse;
1.2) select the execute transaction option in the panne! menu.

After mese operations the "execute transaction window" is mapped;
2) Write the transaction goal in me "execute transaction window";
3) Write the "fun stop" and press "return" to execute the operation;
4) If you want to unmap the "execute transaction window" clic on the white

rectangle in me upper lefthand corner of the same window.

3.2.18 Graphic operations

Y ou can change the view on the graphic frame. After the change, the graphic window will be

redrawn according to the new view.

User Interacrion:
1) If the graphic operations window is not mapped:

1.1) press me left button of the mouse;
1.2) select the graphic operations option in the pannel menu.

32

After mese operations the "graphic operations window" is mapped;
2) Make me changes of the view in the "graphic operations window";

3) Clic the confirm or the annuI button;

4) If you want lO unmap the "graphic operations window" clic on the white

rectangle in the upper lefthand corner of the same window.

3.2.19 Viewing

The system maps a series of windows that allows yow to see the database state.

These windows are:
- Facts: to view me facts present in me database;
- Rules: to view me rules present in the database;

- IC: to view me enabled Integrity Constraints;
- Checks: to view me checks present in me database;

- Sleeps: to vie w me IC mat have been disabled;

- Graphic: to view me contents of me frame.

User Interaction:

l) If the involved window is iconized:
1.1) clic on it to deiconoze

2) Clic on the scroll bar (if it exists) to scroll the content of me window;
3) If you want to iconify the window clic on the left button in the title bar of the

same window.

3.2.20 Quit

With this operation, the session of interaction with GRAPHEDBLOG ends.

User Interaction: To quit:

1) press me left button of the mouse;

2) select the quit option in the pannel menu;
3) when the Prolog prompt appears, type "CTRL-c e" to exit from the

GRAPHEDBLOG environment.

33

Appendix A.

Below we list the standard predicates that can be used in GRAPHEDBLOG's queries and rules.
We al so explain the way of using them to have safe goals or rules.

Al +XJL:.Expression.

What it does:
X is Expression, evalutes Expression as an arithmetic expression and unifies the resulting number

to X. Expression may be an expression made up of numbers andjor variables bound to numbers,

but may not contain variables bound to expressions. If Expression is not an arithmetic expression,
an error message is sent to the standard error stream, and the goal fails.

GRAPHEDBLOG use:

An the variables appearing in Expression must to be used in the predicates that precede the "is"

predicate in the goal or in the body of the rule in which it appears.

A2 ?X-=...?Y.

What it does:
X = Y unifies X and Y. If "="/2 is not able to unify X and Y, it will simply fail.

GRAPHEDBLOG use:

The use of this predicate at least must to have one of the two parameters instantited with a constant.

If it doesn't happen, and the two parameters are instantited with variables, at least one of the two

variables must to be used in the predicates that precede the "=" predicate in the goal or in the body

of the rule in which it appears.

A3 +X == + Y.

What it does:

X == Y succeeds if the terms currently instantiating X and Y are literally identical..

GRAPHEDBLOG use:

The use of this predicate must to have the two parameters instantited with constants. If it doesn't

34

happen, and one or alI the parameters are instantited with variables, these variables must to be used
in the predicates that precede the H==H predicate in the goal or in the body of the rule in which it

appears.

A4 +X=:=+Y.

What it does:

X =:= Y evalutes X and Y as arithmetic expressions. The goal succeds if the results are equal. If

X and Y are not arithmetic expressions, an error message is sent to the standard error stream, and
the goal fails.

GRAPHEDBLOG use:
The use of this predicate must to have the two parameters instantited with ground expressions. If it
doesn't happen, alI the variables that appear in X and in Y must to be used in the predicates that
precede the tI=:=" predicate in the goal or in the body of the rule in which it appears.

A5 +X =\= + Y.

What it does:

X =\= Y evalutes X and Y as arithmetic expressions. The goal succeds if the results are not equal.
If X and Y are not arithmetic expressions, an error message is sent to the standard error stream,

and the goal fails.

GRAPHEDBLOG use:

The use of this predicate must to have the two parameters instantited with ground expressions. If it

doesn't happen, alI the variables that appear in X and in Y must to be used in the predicates that
precede the n=\=" predicate in the goal or in the body of the rule in which it appears.

What it does:
X \= = Y succeeds if the terrns currently instantiating X and Y are not literally identica!..

GRAPHEDBLOG use:
The use of this predicate must to have the two parameters instantited with constants. If it doesn't
happen, and one or alI the parameters are instantited with variables, these variables must to be used

35

in the predicates that precede the "==" predicate in the goal or in the body of the rule in which it
appears.

A7 +X...s...+ Y.

What it does:
X < Y evalutes X and Y as arithmetic expressions. The goal succeds if the result of evaluating X
is strictly less than the result of evaluating Y. If X and Y are not arithmetic expressions, an error
message is sent to the standard error stream, and the goal fails.

GRAPHEDBLOG use:
The use of this predicate must to have the two parameters instantited with ground expressions. If it
doesn't happen, alI the variables that appear in X and in Y must to be used in the predicates that

precede the "<" predicate in the goal or in the body of the rule in which it appears.

A8 +X2...+Y.

What it does:
X > Y evalutes X and Y as arithmetic expressions. The goal succeds if the result of evaluating X
is strictly greater than the result of evaluating Y. If X and Y are not arithmetic expressions, an error
message is sent to the standard error stream, and the goal fails.

GRAPHEDBLOG use:

The use of this predicate must to have the two parameters instantited with ground expressions. If it
doesn't happen, alI the variables that appear in X and in Y must to be used in the predicates that
precede the ">" predicate in the goal or in the body of the rule in which it appears.

A9 +X~+Y.

What it does:
X >= Y evalutes X and Y as arithmetic expressions. The goal succeds if the result of evaluating X
is greater than or equal to the result of evaluating Y. If X and Y are not arithmetic expressions, an
error message is sent to the standard error stream, and the goal faiIs.

GRAPHEDBLOG use:
The use of this predicate must to have the two parameters instantited with ground expressions. If it
doesn't happen, aU the variables that appear in X and in Y must to be used in the predicates that

36

precede the tI>=" predicate in the goal or in the body of the rule in which it appears.

AIO +X =< +Y.

What il does:

X = < Y evalutes X and Y as arithmetic expressions. The goal succeds if the result of evaluating X
is less than or equa! to the result of evaluating Y. If X and Y are not arithmetic expressions, an

error message is sent to the standard error stream, and the goal fails.

GRAPHEDBLOG use:

The use of this predicate must to have the two parameters instantited with ground expressions. If it
doesn't happen, aH the variables that appear in X and in Y must to be used in the predicates that
precede the "=<" predicate in the goal or in the body of the rule in which it appears.

AlI ?Pred = .. ?List.

What it does;
Pred = .. List unifies List with a list whose head is the atom corresponding to the principal functor
of Pred and whose tail is a Hst of the arguments of Pred. If Pred is unistantiated, the List must be

instantiated and the invers is made.
If Pred and List are both unistantiated, or if either is not what is expected, "= .. "/2 will fai!.

GRAPHEDBLOG use:

The use of this predicate at least must to have one of the two parameters instantited with a constant.

If it doesn't happen, and all the parameters are instantited with variables, at least one of the two

variables must to be used in the predicates that precede the "= .. " predicate in the goal or in the body

of the rule in which it appears.

A12 !lW.(+X,+ Y, ?Z).

What il does;
Dist(X,Y,Z) unifies X and Y with two points (a point is represented by a list of two elements in

which the first corresponds to the X coordinate and the second corresponds the Y coordinate) and

unifies Z with the distance between them. If X or Y are not bound to points, the predicatefa,ils.

37

GRAPHEDBLOG use:
The use of this predicate at least must to have the two parameters X and Y instantited with points.

If it doesn't happen, and one or the two parameters are instantited with variables, these variables
must to be used in the predicates that precede the distl3 predicate in the goal or in the body of the
ruie in which it appears.

Al3 lasLseg(+List, ?X, ?Y).

What il does:
Last _ seg(List,X, Y) unifies List with a list of points and unifies rispectly X and Y with the last
two points of the listo If List is not bound to a list of points, the predicate fails.

GRAPHEDBLOG use:
The use of this predicate at least must to have the List pararneter instantited with a list of points. If
it doesn't happen, and the List parameter instantited with to a variable, it must to be used in the
predicates that precede the lascseg/3 predicate in the goal or in the body of the rule in which it
appears.

A14 number of use(+A,+B, ?N).

What it does:
Number_oCuse(A,B,N) unifies A and B with two prototypes and unifies X with the number of

the use of B in the definition of A. If A or B are not bound to prototypes, the predicate fails.

GRAPHEDBLOG use:

The use of this predicate at least must to have the A and B pararneters instantited with prototypes.
If it doesn't happen, and the parameters are instantited with variables, these must to be used in the

predicates that precede the numbecoCuse/3 predicate in the goal or in the body of the rule in
which it appears.

A15 integer(+X).

What il does:
Integer(X) succeds if X is currently instantiated to an Integer; otherwise it fails.

GRAPHEDBLOG use:

38

The use of this predicate isn't restrict.

A15 11ill!1(+X).

What it does:
Float(X) succeds if X is currently instantiated to a Float; otherwise it fails.

GRAPHEDBLOG use:

The use of this predicate isn't restrict.

A17 base prot(?X). -
What it does:

Base yrot(X) succeds if X is instantiated to a basic prototype; if X is unbound, it unifies X with a

basic prototype; otherwise base_prot/I fails.

GRAPHEDBLOG use:

The use of this predicate isn't restrict.

A18 prototype(?X).

What il does:
Prototype(X) succeds if X is instantiated to a basic prototype or to an used defined prototype; if X
is unbound, it unifies X with a prototype; otherwise prototype/l fails.

GRAPHEDBLOG use:

The use of this predicate isn't restrict.

A19 yjsualizable_object(?X).

What ii does:

visualizablebject(X) succeds if X is instantiated to a visualizable graphic object (see [Di Grande

89]) ; if X is unbound, it unifies X with a visuazable graphic object, if there are; otherwise it fails.

GRAPHEDBLOG use:

The use of this predicate isn't restrict.

39

A20 obj OD frame(?X).
...... EIii4

What it does:

obj_onJrame(X) succeds if X is instantiated to a graphic object current1y putted on the frame; if
X is unbound, il unifies X with a graphic object current1y putted on the frame, if there are;
otherwise it fails.

GRAPHEDBLOG use:
The use of this predicate isn't restrict.

A21 ist of prot OD frame(?X) . .. == ..-

What it does:

ist_ofyrot_on.Jrame(X) succeds if X is instantiated to an istance of a prototype currently putted
on the frame; if X is unbound, it unifies X with an istance of a prototype current1y putted on the
frame, if there are; otherwise scoCproconjrame/l fails.

GRAPHEDBLOG use:
The use of this predicate isn't restrict.

A22 retrieyable iDstaDce(+X). -
What ii does:
retrievable _instance(X) succeds if X is instantiated to an istance of a prototype visualizable; ;
otherwise it fails.

GRAPHEDBLOG use:
The use of this predicate must to have the X parameter instantited with an istance of a prototype. If
it doesn't happen, and X is instantited with a variabIe, it must to be used in the predicates that
precede the retrievable_instance predicate in the goal or in the body of the rule in which it appears.

A23 compouud(?X, ?Y).

What it does:
Compound(X,Y) given X, an istance of a prototype, unifies Y with another istance of a prototype
that compounds the first. If X is not bound and Y is, the inverse is made; otherwise compound

40

fails.

GRAPHEDBLOG use:

The use of this predicate at least must to have one of the two parameters instantited with constants.

If it doesn't happen, and one or all the parameter are instantited with variables, at least one ot these

must to be used in the predicates that precede the compound/2 predicate in the goal or in the body
of the mIe in which it appears.

A24 dgpend(?X,?Y).

What it does:

Depend(X, Y) given a prototype X, unifies Y with another prototype from which X depends. If X

is not bound and Y is, the inverse is maded; otherwise compound fails.

GRAPHEDBLOG use:

The use of this predicate at least must to have one of the two parameters instantited with constants.
If it doesn't happen, and one or alI the parameter are instantited with variables, at least one ot these

must to be used in the predicates that precede the depend/2 predicate in the goal or in the body of
the mIe in which it appears.

A25 fast in list(?X, ?Y) -
What ii does:

Last _in _list(X, Y) unifies X with a list and unifies Y with the last element of the list. If List is not

bound and X is, unifies X with a list with only one eIement thay is Y; otherwise lascin_list fails.

GRAPHEDBLOG use:

The use of this predicate at least must to have one of the two parameters instantited with constants.

If it doesn't happen, and one or all the parameter are instantited with variables, at least one ot these
must to be used in the predicates that precede the lascin_list/2 predicate in the goal or in the body

of the mIe in which it appears.

41

Appendix B.

GRAPHEDBLOG offers to the users a series of predefined transactions.
With same of these you can modify the sets of facts and rules that are present in the currently
managed database. With athers you can do graphic operations on the frame.
With athers again you can perforrn other operations.
You can execute directly only a subset of the predefined transactions, but you can utilize all of
these in the body of the user defined transactions.

Below we list the predefmed transactions of GRAPHEDBLOG.
We also explain the way of using them .

BI insert_f(Mode, Fact).

What it does:
With this transaction you can specify the insertion of a fact in the database.

The Mode component can be bound to the following values:
- t (time) : the insertion is maded in time mode;
- s (space): the insertion is made in space mode.

IfFact respect the conditions supposed in 3.2.3, the result of the insertion can be:
- the fact is inserted;
- the fact is already present in the database, the Mode is t: the transaction

doesn't have effect but doesn't fail.
- the fact is already derivable in the database, the Mode is s: the transaction doesn't

have effect bm doesn't fail.

GRAPHEDBLOG use:
This transaction can not be directly executed, it can only be used in the body of the user defined
transactions.

B2 insert_r(Mode, RuBe).

What il does:
With this transaction you can specify the insertion of a rule in the database.

42

The Mode component can be bound to the following values:
- t (rime) : tbe insertion is maded in time mode;

- s (space): the insertion is made in space mode.
lf Rule respect the conditions supposed in 3.2.4, the result of the insertion can be:

- the rule is inserted;

- the rule is inserted and all the explicit facts that can be derived by the rule are
deleted, if Mode is bound to tbe constant s.

GRAPHEDBLOG use:
This transaction can not be directly executed, it can only be used in the body of the user defined
transactions.

83 delete_f(Fact, Mode).

What il does:
Witb tbis transaction you can specify the deletion of a fact in the database.
Tbe Mode component can be bound to the following values:

- 1: the deletion of the fact is phisically maded but if tbere are rules such that the
fact can still derived, nothing is maded;

- 2: the deletion of the fact is phisically maded but if there are rules such that the
faet ean stilI derived, these are de1eted;

- 3: the deletion of the fact is phisically maded but if there are rules such that the
faet can still derived, a le is inserted to impede tbe derivation of tbe fact.

If Faet respeet tbe eonditions supposed in 3.2.8, the result of tbe deletion can be:

- tbe faet is deleted;
- tbe faet not exist and tbe transaetion doesn't have effeet, but doesn't faii.

GRAPHEDBLOG use:
This transaction can not be directly executed, it can only be used in the body of the user defined
transactions.

84 delete _ r(Index).

What il does;
With tbis transacrion you can specify tbe deletion of a rule in tbe database.
If Index (e.g. the rule number) respect the conditions supposed in 3.2.9, the result of the deletion

43

can be:

- the rule is deleted.

GRAPHEDBLOG use:

This transacrion can not be directly executed, it can only be used in the body of the user defined

transactions.

BS modify(Mode,Fact).

What it does:

With this transaction you can specify the modification of a fact in the database.

The Mode component can be bound to the following values:

- t (rime) : the modification is maded in rime mode;

- s (space): the modification is made in space mode.

If Fact is specied as supposed and required in 3.2.13 , the result of the modificarion can be:

- the fact is modified;

- the fact modified is already present in the database, the Mode is t: the transaction

delete only the modified facto

- the fact modified is already derivable in the database, the Mode is s: the

transaction delete only the modified facto

GRAPHEDBLOG use:

This transaction can not be directly executed, it can only be used in the body of the user defined

transactions.

B6 foraH(Vars_list,Goal,Trans).

What il does:

This transaction drops the Goal in the theory that represent the database and collects all the finded

solutions for the variables that are present in Vars_list.

For each solution, the transaction Trans is executed.

This transaction fails if:

- there aren't solutions for Goal;

- the transaction Trans doesn't exist;

- aH the executions of Trans fai!.

GRAPHEDBLOG use:

This transaction can be directly executed, it can also be used in the body of the user defined

44

transactions.

B7 iterative(Trans).

What il does:

This transaction execute Trans for alI the instances of the free variables in the head of Trans when
this is used.
Iterative(Trans) can be compiled in

forall(Free_vars_in_Trans,(Pl;··;Pn),Trans)

where in the list Free_ vars_in_ Trans are present the free variables that are present in the use of

Trans and (Pl; .. Pn) is a goal maded of the disgiuntion of alI the preconditions that are present in

the definitions of Trans.

This transaction fails if:

- Trans not exist;

- alI the definition of Trans doesn't have preeonditions;

- alI the excution of Trans fail.

GRAPHEDBLOG use:

This transaction can be directly executed, it can also be used in the body of the user defined
transactions.

What it does:

This transaction put on the frame the graphic object Graph_object. lt fails if Graph_object isnt't a
correet graphic object.

GRAPHEDBLOG use:

This transaction can be directly executed, it can al so be used in the body of the user defined
transactions.

What it does:

This transaction put off the frame the graphic object Graph_object. lt fails if Graph+-object

currently isnt't on the frame.

45

GRAPHEDBLOG use:

This transaction can be directly executed, it can also be used in the body of the user defined

transactions.

BII dear screen.

What i t does:

This transaction put off the frame all the graphic object currently on it. It never fails.

GRAPHEDBLOG use:

This transaction can be directly executed, it can also be used in the body of the user de fin ed
transactions.

BIO rewrite screen.

What it does:

This transaction acts as a revision operation. It clear the frame and puts again on it the graphic
objects that previously were on it.

All the modifications of the description in the database of theese graphic objects are thus rendered

visible.

GRAPHEDBLOG use:

This transaction can be directly executed, it can also be used in the body of the user defined

transactions.

BII faH.

What il does:
This transaction has the same meaning as in Prologo When it is executed a failure happens.

GRAPHEDBLOG use:
This transaction can not be directly executed, it can only be used in the body of the user defined

transactions.

46

B12 true.

What it does:

This transaction has the same meaning as in Prologo When it is executed a success happens.

GRAPHEDBLOG use:
This transaction can not be directly executed, it can only be used in the body of the user defined
transactions.

Bl3 X is Expression.

What it does:

This transaction has the same meaning as in Prolog. When it is executed the value of Expression is

bound to X. This fails if Expression is not an arithmetic expression ..

GRAPHEDBLOG use:
This transaction can not be directly executed, it can only be used in the body of the user defined

transactions.

47

APPENDIX C

MANUALE DELL'INTERFACCIA DI GEDBLOG

1) Entrare in digrande con password : parolai.

2) Impartire il comando "interface".

3) Alla richiesta "enter database", digitare il nome della base di

dati che si intende manipolare.

4) Dopo che il sistema avrà caricato le informazioni necessarie,

sullo schermo compare la griglia della finestra principale.

(tale finestra viene mostrata premendo il tasto di sinistra

del mouse).

Passi necessari per la creazione del nuovo prototipo:

1) Inserire il nome che si intende dare al nuovo prototipo nello

spazio sotto stante l'etichetta NEW_PROTOTYPE (portare il

mouse dentro l'apposito spazio e digitare il nome con la

tastiera) .

2) confermare il nome scelto con il tato di ok; a questo punto il

sistema mostra una prima rappresentazione grafica

consistente del solo nodo padre.

3) specificare la lista rispetto alla quale si vuole il nuovo

prototipo parametrico nell'apposita finestra la cui apertura è

causata dalla pressione sul tasto Attributes.

i

4) scegliere uno dei prototipi già definiti che compaiono nella

lista posta sulla sinistra tramite l'evidenziamento con il

mouse;

5) a questo punto è offerta all'utente la possibilità di richiedere

informazioni sul definiens tramite il tasto di help;

6) la pressione effettuata sul tasto di help causa l'apertura di una

apposita finestra in cui compaiono tre tasti:

aUr: fornisce la lista degli attributi propri del definiens;

propr: fornisce le proprietà asserite sugli attributi;

vis: mostra sullo show_screen la rappresentazione ad albero

del definiens in uso. (per ripristinare una eventuale parziale

rappresentazione grafica del definiendum agire sul tasto RV

che si trova nello spazio del new_prototype).

7) setta re le componenti geometriche e di stato del definiens con

gli appositi browser.

8) setta re gli attributi propri del definiens, ritrovati tramite

l'help, nella finestra aperta con il tasto attrens;

9) inserire eventuali guardie e relazioni nelle apposite finestre;

10) settare un valore numerico per la priorità usando lo scrollbar

numerico con il primo tasto del mouse.

11) Si ha ora la posibilità di confermare le scelte effetuate

tramite ii CONFIRM o di cancellare tutte le scelte relative al

definiens, tramite CLEAR.

12)Ripetere i passi da 4 a 11 per ogni link che vuole aggiungere

nella definizione di un nuovo prototipo.

2

13) durante questo ciclo,dopo la creazione di un link è possibile

ripristinare sullo schermo i valori di un link precedentemente

creato evidenziando il nome del definiens corrispondente nella

lista etichettata PROT _EMPLOYMENT sulla destra

deli'interfaccia. Il link corrispondente può essere rimosso

agendo su CLEAR o lasciato, facendo un REFRESH_SCREEN prima

di passare a definire altri link.

14) definito tutto il prototipo si può inserirlo nel DB tramite il

COMMIT o rinunciare ad esso tramite il tasto di ABORT.

Passi necessari per la creazione di un oggetto grafico:

1) Agire sul tasto GRAPH_OBJ dell'ambiente principale. (Si apre

un nuovo ambiente grafico con la lista degli oggeti grafici

presenti nel DB).

2) Scegliere il prototipo di cui si vule creare un oggetto

grafico.

3) tramite il tasto di help individuare attributi e proprietà ad

esso relativi e settarle nella finestra attrens.

4) settare a dei valori diversi da equal le componenti dello stato

e i valori delle componenti geometriche.

5) Inserire l''oggeeto grafico così creato tramte il tasto di

INSERT.

6) Visualizzare gli oggetti grafici evidenziando il nome nella

lista corrispondente e agendo sul tasto ON_SCREEN.

3

7) Per cancellare un oggetto grafico dal DB evidenziarne il nome

ed agire sul CLEAR della finestra secondaria.

8) I tasti di manipolazione grafica, in basso nell'ambiente

principale, agiscono su tutto ciò che è momentaneamente

visualizzato.

Per uscire dall'interfaccia agire su QUIT.

4

BibHograpby

[Agnello 87] A. Agnello, Un Linguaggio di Interfaccia Grafico per il Sistema
di Gestione di Basi di Dati Logiche EDBLOG, Tesi di Laurea, Dip. di
Informatica, Università di Pisa, Aprile 1988.

[Assirelli & al. 85b] P. Asirelli, M. De Santis, M. Martelli, Integrity Constraints in
Logic Data Bases, Journal of Logic Programming, VoI. 2, No.3, Ottobre 1985.

[Barbuti & al. 86] R. Barbuti, M. Martelli, Completeness of the SLDNF
Resolution for a Class of Logic Programs, Proc. of the 3rd Int. Conf. on
Logic Programming, London, 1986.

[Bowen & al. 82] K. A. Bowen, R. A. Kowalski , AmaJgamating Language and
Metalanguage in Logic Programming, Logic Programming, Academic Press,
Londra 1982, pp. 159 - 172,

[Bowen 85] K. A. Bowen, Meta - Level Programming and Knowledge
Representation, Technical Report, CIS - 85 - 1, School of Computer &
Information Science, Syracuse University, Agosto 1985.

[Di Grande 89] D. Di Grande, Un modello per la rappresentazione degli oggetti
grafici basato su un DB logico, Tesi di Laurea, Dip. di Informatica, Università
di Pisa, Aprile 1989.

[De Santis 85] M. De Santis, Logic Programming e Database: un ambiente di
sviluppo adatto al trattamento dei vincoli di integrità, Tesi di Laurea,
Dip. di Informatica, Università di Pisa, Gennaio 1985.

[Gallaire & al. 78] H. GaUaire, J. Minker, J. M. Nicolas, Logic and Databases,
Plenum Publishing Co., New York, N. Y., 1978.

[Gallaire 83] H. Gallaire, Logic Databases vs. Deductive Databases, Logic
Programming Workshop, Albufeira, Portogallo 1983, pp. 608 - 622.

[GaUaire & al. 84] H. Gallaire, J. Minker, J. M. Nicolas, Logic and Databases: a
Deductive Approach, Computing Surveys, VoI.16, No.2, 1984, pp. 153 - 185.

[Giannini & al. 86] F. Giannini E. Grifoni, Programmazione Logica in Ambiente
di Sviluppo Software: Data Base Logici come Data Base di Progetto,
Tesi di Laurea, Dip. di Informatica, Università di Pisa, Ottobre 1986.

[Green 69] C. Green, Theorem proving by resolution as a basis for question­
answering systems, Machine Intelligence 4, B. Meltzer, D. Michie Edd.,
American Elsevier Pub. Co. ,New York, n. Y. , 1969.

[Helm & a1.86] R. Helm, K. Marriot, Declarative Graphics, Lecture Notes in
Computer Science No. 225, Springer - Verlag, Londra, Luglio 1986, pp. 513 - ~27.

[Hubbold & al. 88] R. J. Hubbold, W. T. Hewitt, GKS-3D and PHIGS Theory
and Pradice, EUROGRAPHICS'88, Tutorial Cours No.1, settembre 1988.

[Julien 82] S. M. P. Julien, Graphical in Micro-Prolog, Research report DOC

48

8217, ImperiaI College, London, 1982.
[Kowalsky 74] R. A. Kowalsky, Predicate Logic as Programming Language,

Proc. IFIP - 74 Congress, 1974, pp. 569 - 574.
[Kowalsky 76] R. A Kowalsky, Logic and Data Bases, Logic Programming Meeting,

ImperiaI. College, London, Maggio 1976.
[Kowalsky 79] R. A Kowalsky, Logic for Problem SOlving, Artificial Intelligence

Series, N. J. Nillson Ed., Int. Symp. on Logic Programming, Atlantic City, 1984,
pp. 118 - 125.

[KowaIsky 83] R. A Kowalsky, Logic Programing, IFIP, 1983, pp. 133 - 145.
[Lipeck 88] U. W. Lipeck, Trasformation of Dynamic Integrity Constraints

into Transaction Specifications, Lecture Notes in Computer Science No. 326,
Springer Verlag, Bruges, Settembre 1988

[Lloyd 84] J. Lloyd, Foundations of Logic Programming, Springer Verlag, New
York, 1984.

[Mauro 85] F. Mauro, Basi di Dati Logiche: un Approccio al Trattamento
delle Transazioni, Tesi di Laurea, Dip. di Informatica, Università di Pisa,
Novembre 1985.

[Nicolas 82] J. M. Nicolas, Logic for Improving Integrity Cheching in
Relational Data Base, Acta Infonnatica No. 18, 1982, pp. 227 - 253.

[Pereira 86] F. C. N. Pereira, Can Drawing Be Liberated fom Von Neumann
Style 1, Logic Programming and Its Applications, M. van Caneghem e D. H. D.
Warren Edd., AP.C., Norwood, New Jersey, 1986, pp. 175 - 187.

[Robinson 65] J. A. Robinson, A Machine-Oriented Logic Based on the
Resolution Principle, JACM, VoLI, No.12, Gennaio 1965, pp. 23 - 41.

[Scheifler & al. 86] R. W. Scheifler, J. Gettys, The X window system, ACM
Transaction on Graphics, Vo1.5, No.2, Aprile 1986, pp. 79 - 109.

[Shapiro & al. 83] E. Y. Shapiro, A Takeuchi, An Object-Oriented Programming
in Concurrent Prolog, New Generation Computing, VoLI, No.1, 1983, pp. 25 -

48.
[Sterling 85] L. Sterling, Expert System = Knowledge + Meta-Interpreter, Dept.

of Applied Mathematics, The Weizmann Institute of Science, InternaI Report CS-
84-17,1985.

[Whiederhold 83] P. Whiederhold, Database Design, Computer Science Series,
McGraw Hill Book Company, 1983.

49

