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We show that each polarization state on the Poincaré sphere
(PS) can be accessed on-demand (Poincaré sphere tailoring)
by a semiconductor-based vertical-cavity surface-emitting
laser (VCSEL) with two tilted sub-wavelength gratings
(SWGs). We develop a vectorial Barkhausen criterion that
answers the question: what conditions must the cavity fulfill
to support a given desired polarization state? Addressing
this inquiry leads to a completely different strategy based on
the entangled interplay between two tilted SWGs, resulting
in an overall chiral cavity, whose features depend on the grat-
ings and their mutual rotation. This leads to the emission of a
well-controllable polarization state based on standard tech-
nologies used in polarization-stable VCSELs, which paves
the way for inspiring several new potential applications. ©
2024 Optica Publishing Group. All rights, including for text and data
mining (TDM), Artificial Intelligence (AI) training, and similar tech-
nologies, are reserved.
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Introduction. Vertical-cavity surface-emitting lasers (VCSELs)
have become technologically mature and highly sophisticated
optoelectronic emitters. They are nowadays one of the most
important semiconductor lasers, dominating the high-speed dat-
acom [1] and sensing markets [2]. Among others, quantum
optic applications, such as atomic clocks [3] and quantum gyro-
scopes [4], represent a hot topic. One key question at the advent
of VCSELs concerned the polarization of the emitted optical
field. Due to their cylindrical rotational symmetry and their
in-plane quantum well isotropic gain, an undetermined polar-
ization was first expected. However, the intrinsic semiconductor
electro- and elasto-optic anisotropies [5] lead to a linear polar-
ization operation, with many kinds of polarization switching and
instabilities [6,7], detrimental for sensing applications. For that
reason, strong efforts that lasted for two decades finally resulted

in a simple and effective technique to achieve polarization-
stable VCSEL operation: etching a surface grating oriented
along the crystalline axes, first proposed by our group in [8]
and soon after demonstrated by experimental results [9–11].
Since then, gratings have become the standard way of fixing
VCSELs’ polarization, with improved performance introduced
by sub-wavelength gratings (SWGs) [12].

Recently, circular polarization has become an enabling fea-
ture in many advanced quantum photonic applications [13–15].
The common non-monolithic approach to achieving circular
polarization uses a linearly polarized VCSEL and a quarter-
wave plate, which is a bulky solution that invalidates the small
VCSEL footprint. Many efforts have been made to achieve well-
controlled circularly polarized VCSEL emission by compact
monolithic solutions [16]. To the best of our knowledge, two
different compact solutions have been proposed so far, both
based on introducing one single chiral component in the res-
onator, namely, either a cholesteric liquid crystal [17] or a chiral
metamaterial layer [18–21]. This approach was deployed in [22],
with a novelty compared to previous implementations: the chi-
ral structure also contributes to the reflectivity of the top mirror,
achieving at most 60% of circularly polarized light. All the previ-
ous techniques present drawbacks. For instance, liquid crystals
require non-standard and non-monolithic technologies, which
resulted in successful experimental validation only in a few
cases [23].

Here we follow a different approach, by moving the focus from
the chirality of a single cavity component to the chirality of the
whole resonator. The resonator chirality, the property by which
an object or structure and its mirror image are not superimpos-
able, plays a key role [24] to depart from linear polarization
emission. We use anisotropic layers, per se achiral, if consid-
ered singularly, that make the overall cavity chiral when their
anisotropic axes are tilted against each other and interact within
the resonator round trip loop.
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Fig. 1. Top: refractive index and standing wave profile of our
VCSEL structure. The structure designed for a wavelength of 850
nm features a λ-cavity, two symmetric 20-pair λ/4 DBRs termi-
nated by sub-wavelength surface gratings (SWGs). The high and
low values of the refractive index are chosen to be nH = 3.5 and
nL = 3, respectively. Bottom: schematics of the cavity to be investi-
gated within the Barkhausen round trip cavity framework with the
orientation of the tilted gratings (right).

Modeling. We investigate our idea at the most basic level by
the VCSEL structure shown in Fig. 1. In the top part, we depict
its refractive index and standing wave profile for a specific SWG
parameter set. In the lower part, we report a schematic of the
VCSEL resonator and the definition of the coordinate reference
system. The main focus is to sketch the derivation of an agile and
effective mathematical framework (Barkhausen criterion), to be
used for on-demand polarization control in VCSELs. To that end,
we choose the simplest possible VCSEL, placing the SWGs at the
end of both DBRs, so that the two chirality enablers are the most
far away as possible. All the intrinsic anisotropies, such as the
electro-optic and elasto-optic ones, are neglected. Indeed, they
are relevant in real-world VCSELs but not needed to explain the
principle of operation of our chiral device. A realistic and tech-
nologically compliant device was simulated for comparison by
our 3D electromagnetic solver VCSEL ELectroMagnetic Suite
(VELMS-3D) [5,8,10,25], including the intrinsic anisotropies,
thereby confirming the trends of this work.

We summarize the theory describing polarization modes
supported by a 1D chiral resonator. We write the phasor
representation of the electric field in the resonator as follows:

E(t) = ℜ{(Exx̂ + Eyŷ)eiωt} = ℜ{Ey(χx̂ + ŷ)eiωt}, (1)

where Exx̂ + Eyŷ = E is the complex electric field phasor,E is its
real time-dependent counterpart (vectors and matrices are repre-
sented by bold fonts), and the polarization χ-index is defined as
χ := Ex/Ey. To understand why χ fully represents the polariza-
tion features, notice that the effect of any multiplicative complex
constant (Ey in Eq. (1)) results in an overall phase shift and a
uniform scaling factor, both irrelevant to the polarization charac-
teristics [26]. In this view, the overall field phasor is represented
by χ x̂ + ŷ without loss of generality. The polarization state of the
light is generally characterized by the Stokes parameters [27,28],
which are conveniently mapped onto the Poincaré sphere (PS)
[29,30]. This representation is isomorphic to the χ-index via a
stereographic projection (similar considerations were done for
qubit states in [31]), obtained by substituting the phasor χx̂ + ŷ

in the definition of the Stokes parameters as follows:
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2
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(2)

To derive the Barkhausen condition [32] for the cavity in Fig. 1,
one must generalize the concept of scalar reflection coefficient
to 2D reflection matrices [33], as usually done in the Jones
formalism [26,29]. The reflection and transmission matrices of
the left DBR mirror (and similarly for the right one) terminated
by a grating whose bars are aligned with the chosen reference
system can be written as follows:

ΓL =

[︃
Γx

L 0
0 Γ

y
L

]︃
, TL =

[︃
Tx

L 0
0 Ty

L

]︃
. (3)

SWGs are exactly treated with rigorous coupled-wave analy-
sis [34,35], here approximated by uniform anisotropic layers
according to the Born–Wolf formulation [36] with anisotropic
indices nx = 1.30 and ny = 2.57 (50% filling factor). The overall
reflectivities that appear in Eq. (3) are computed by combin-
ing the scattering matrices of the single gratings and the DBR
stack. Two different reflection coefficients result depending on
the orientation of the impinging electric field, either parallel or
perpendicular to the grating bars. With a single grating, it is a
natural choice to use the orthogonal reference system defined by
its bars. When a second grating is added (the right one in our
case), its reflection matrix can be written as follows:

ΓR = R−1ΓRR, where R =
[︃
cos θR − sin θR

sin θR cos θR

]︃
. (4)

The matrix R represents a change of the reference system from
the one of the left grating to the one defined by the right one.
θr is the tilting angle of the right grating with respect to the left
one (Fig. 1, bottom right).

The vectorial Barkhausen condition is derived with reference
to Fig. 1 on the backward field component at the left interface.
By choosing the depicted round trip path, we first apply the
reflection on the left mirror, and then the one on the right,
resulting in the following:[︃

PD − I
]︃
E = 0, where D = R−1ΓRRΓL, (5)

with P(k, g) = exp
(︃
(gΓz + i2k)L

)︃
. (6)

In Eq. (5), I is the identity matrix and in Eq. (6), P represents
the cavity propagator: L is the cavity length, k= 2π

λ
nH , λ is the

emission wavelength, g is the power gain of the quantum well
with thickness d = 10 nm assumed to be at the center of the
cavity, and I is the identity matrix. The overlap between the
electric field and the quantum well is described by Γz, which
in our configuration can be approximated as 2d

L . We name D as
the roto-reflection matrix. It contains all the information about
the mirrors and, in general, depends on k because of mirror
dispersion.
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A matrix can be classified as chiral or achiral depending
on whether it can be diagonalized by two complex or real
eigenvectors, respectively. An achiral matrix can be always rep-
resented by a diagonal matrix in the proper reference system; this
is the case of a grating mirror [see Eq. (3)]. This reference sys-
tem is the one defined by the eigenvector directions. To achieve
elliptical polarization in lasers, the important requirement is the
chirality of the overall resonator, namely, of the roto-reflection
matrix D.

In literature, to the best of our knowledge, this has been
achieved by introducing a chiral layer in one of the mirrors [22].
In this work, instead, we propose a novel approach that allows
breaking the symmetry of the cavity with two combined tilted
achiral mirrors. In this way, the overall roto-reflection matrix
D is chiral, and therefore supports complex eigenvectors, cor-
responding to any kind of elliptical polarization, including the
circular one. Exploiting Eq. (5), we can write the following:{︃

PD11 χ + PD12 = χ
PD21 χ + PD22 = 1. (7)

Multiplying the second line by χ and equating the left-hand
sides, we can drop P. Furthermore, ascertaining a negligible
mirror dispersion, we can evaluate the terms Dij at the design
wavelength ending up with a decoupled equation only describing
polarization, namely, the polarization equation:

D21 χ
2 + (D22 − D11)χ − D12 = 0. (8)

Its roots χ1,2 represent the polarization of the two modes sup-
ported by the cavity. Plugging back the roots χ1,2 into the first
equation of Eq. (7), it is possible to obtain the P values asso-
ciated with χ1,2, in turn yielding the modal threshold gains
and the emission wavelengths from |P | and ∠P according to
Eq. (6). The lasing polarization is the one associated with the
lowest threshold gain, described in the following section. The
χ-parameter at the output is calculated as χout =

(︁
Tx

L/T
y
L

)︁
χ. By

exploring the SWG parameter space by varying the grating thick-
nesses dL and dR and the tilting angle θR, one can investigate the
features of the emitted polarization.

Results and discussion. As a first investigation, the out-
put polarization index χout and its projection onto the Poincaré
sphere according to Eq. (2) were determined for wide ranges of
grating parameters, namely, θR ∈ [1, 179]◦, dL ∈ [20, 400] nm,
and dR ∈ [50, 130] nm. As a key result, the whole Poincaré sphere
was accessed, showing how any polarization can be obtained on-
demand in dependence on the SWG parameters as depicted in
Fig. 2. We focus now our attention to circularly polarized light,
a case of particular interest in several applications. To this aim,
we select a fixed right grating thickness dR = 70 nm and vary the
other two parameters dL and θR, resulting in the map depicted in
Fig. 3. The map on the left displays the values of S3, showing a
wide range for which it approaches the desired value of 1. For
a more quantitative visualization, Fig. 3 (right) reports cuts of
the previous map at the value of dL associated with the maxi-
mum S3. This is reported not only for dR = 70 nm but also for
two additional grating thicknesses, demonstrating that it is still
possible to reach S3 = 1 even with different dR values.

The nearly perfect agreement between our results and those
computed with our one-dimensional version of the VCSEL
ELectroMagnetic Suite, VELMS-1D [25], reported by the
squares in Fig. 3 (right), provides full validation of our vectorial
Barkhausen formalism and the soundness of the dispersionless

Fig. 2. Graphical depiction of accessing all polarization states
on the full Poincaré sphere by spanning θR ∈ [1, 179]◦ with 50
points, dL varying from 20 to 400 nm in steps of 10 nm, and dR ∈

[50, 70, 100, 130] nm, yielding 7800 points in total.

Fig. 3. Left: color density plot of S3 versus dL and θR for dR = 70
nm. The red dashed line is the cut at the dL grating thickness that
ensures S3 = 1 (S3 = 1 at the star). The black line is the θR at which
the S3 is the maximum for each dL value. Right: S3 versus θR for
three values dR = 50, 70, and 100 nm. The red curve is the cut on
the left for dL = 167 nm. Similarly, for maps computed for dR = 50
and 100 nm, we observe S3 = 1 (stars) for dL = 141 and 199 nm.
The squares represent the values obtained with VELMS-1D.

Fig. 4. Circular polarization design chart. S3 = 1 trajectory [iso-
circular-polarization (ICP) line] in the 3D parameter space and the
regions featuring S3 ≥ 0.99 within the colored lines.

approximation, not assumed in VELMS-1D. We infer interest-
ing information in the examined range of dR. S3 = 1 is obtained
for dL = 167.5 nm and θR = 49◦; S3 remains above 0.95 within a
tilting range of ±10◦ around the target value. For lower and
higher dR, S3 = 1 occurs at smaller tilting angles. For both
values, the sensitivity to the grating tilting angle is stronger.
At the same time, the threshold difference becomes smaller, but
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still sufficient to guarantee a single-mode operation. In Fig. 4,
we provide the complete parameter space investigation. The
black curve in the 3D space of grating thicknesses and relative
angle (dL, dR, and θR) shows the trajectory where S3 = 1, i.e.,
the iso-circular-polarization (ICP) line, while the colored dots
around it define the boundaries of the region for which S3 ≥

0.99. Overall, we can see that the tolerance for θR is always
at least ±5◦. Moreover, we observe a large insensitivity to dL,
maximum for dR =70 nm (the case investigated also in Fig. 3),
but pretty much the same in the whole range 60<dR<80 nm. In
summary, we can achieve S3=1 in a very broad range of grating
thicknesses: 40<dR<100 nm and 130<dL<210 nm, with tilt-
ing angles from 25 to 50◦. The better performance in terms of
parameter insensitivity is at the center of those intervals, where
the tilting angle is around 45◦, which allows the highest coupling
of the x and y polarizations. For increasing grating thicknesses,
beyond the ones investigated in Fig. 3 (left), one reaches a region
of S3 = −1 (counterclockwise circular polarization). After that,
the phenomenon shows periodic features. Of course, from a
technology perspective, it is better to operate at the minimum
grating thickness, namely, the region explored in Fig. 4, which
can be regarded as a design look-up table for circularly polar-
ized VCSELs. S3 = −1 is achieved by the same grating designs
of Fig. 4, but opposite tilting angle. In this way, one might have
on the same chip, close to each other, two VCSELs emitting
S3 = ±1.

Conclusions and outlook. We propose for the first time a
straightforward approach to realize chirality in a VCSEL by
combining two SWGs tilted against each other. This is feasi-
ble by exploiting the mature SWG technology. This tilt enables
the coupling of the two otherwise decoupled polarization chan-
nels, x and y, which results in a completely new approach for
the achievement of chirality. Here, the overall VCSEL chirality
is obtained by combing two anisotropic per se achiral layers,
whereas on the contrary, earlier proposals always suggested to
embed in the resonator a single and per se chiral layer. We
investigated this novel chiral cavity by a vectorial Barkhausen
condition, deriving analytical formulas for the supported polar-
ization modes, showing that we can access any on-demand
polarization by varying the SWG design parameters. Among
all possible polarizations, we targeted the generation of fully
circularly polarized light, suggesting affordable technological
implementations for circularly polarized nearly standard mono-
lithic VCSELs and paving the way toward a plethora of exciting
new applications.
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