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In a previous work, we predicted that a thermally biased tunnel junction between two different
superconductors can display a thermoelectric effect of nonlinear nature in the temperature gradient,
under proper conditions. In this work we give a more extended discussion, and we focus on the
two main features of the nonlinear contributions: i) the linear-in-bias thermoelectricity, that can
be associated to a spontaneous breaking of electron-hole symmetry, ii) the strong contribution at
the matching peak singularity, which is typically associated to the maximum output power and
efficiency. We discuss the nonlinear origin of the thermoelectricity and its relationship with the
non-linear cooling mechanism in superconducting junctions previously discussed in the literature.
Finally, we design and characterize the performance of the system as a heat engine, for a realistic
design and experimental parameter values. We discuss possible non-idealities demonstrating that
the system is amenable to current experimental realization.

I. INTRODUCTION

The degree of control of nano-fabrication techniques
reached over the last few decades has stimulated
the investigation of thermal transport at the micro-
nanoscale [1–10]. On the theoretical side, the interest
range from the investigation of exotic nonequilibrium
phenomena, and quantum effects on the thermodynam-
ical laws [1]. From the experimental side, there has
been a strong effort in the development of on-chip cool-
ers [3, 4, 11–15], and the possibility of making use of
unwanted waste energy [16–21]. In this direction, ther-
moelectric elements may play a crucial role, thanks to the
direct heat-to-current conversion [22]. There is currently
an extensive literature concerning the theoretical model-
ing of thermoelectric devices [1], with first investigation
in the nonlinear regime [23], and few experimental im-
plementations [19, 20, 24–26]. In this context, supercon-
ducting junctions plays an important role, due to their
consolidated fabrication process and their massive use
in quantum technologies [27] and qubits [28–30]. They
have been successfully used for cooling purposes [3, 4]
and for the coherent control of heat currents [31, 32].
Very recently, they have been also used, in combination
with ferromagnetic elements, to generate strong [33–36]
or nonlocal thermoelectric effects [37–40]. They can be
used as local thermometers [41], for wireless delivery of
power [42], for autonomous refrigeration [43], and for sen-
sitive radiation detection [44]. This technology seems
really promising but it is also challenging from the ex-
perimental side [45, 46], due to the excellent quality re-
quested in the ferromagnetic-superconducting contacts.
In a previous work, we have demonstrated that, even in
the absence of spin-dependent mechanism, superconduct-
ing junctions can displays strong thermoelectric effects
in the nonlinear regime [47]. This is a striking result,
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since the nearly perfect electron-hole symmetry of super-
conductors makes linear thermoelectric effects negligible.
The purpose of this work is to give a more extended dis-
cussion of thermoelectricity in superconducting tunnel
junctions, and its main features. Moreover, we present a
design study for a possible proof of principle demonstra-
tion of this nonlinear thermoelectricity and the actual
implementation of a heat engine based on the supercon-
ducting technology using realistic parameters.

II. TWO TERMINAL THERMOELECTRICITY

We consider a tunnel junction between two Bardeen-
Cooper-Schrieffer (BCS [48]) superconductors (L,R) and
assume each electrode in internal thermal equilibrium,
namely the quasiparticle distributions read fα(E−µα) =
{1 + exp[(E − µα)/(kBTα)]}−1, where kB is the Boltz-
mann constant and Tα, µα (with α = L,R) are the
temperatures and the chemical potentials of the quasi-
particle systems, respectively. We focus on the quasi-
particle transport across the junction and we completely
disregard the contributions due to the Josephson ef-
fect [48, 49]. This latter condition can be achieved exper-
imentally in different ways. For instance, the Josephson
current is suppressed by applying a strong in-plane mag-
netic field or by applying a small out-of-plane magnetic
field in a direct-current superconducting quantum inter-
ference device (dc-SQUID) [3, 48, 49]. Another possi-
bility involves the use of strongly oxidized tunnel bar-
riers, where the Josephson coupling energy EJ is de-
stroyed by thermal fluctuations since EJ � kBT (here
T = (TL + TR)/2) [49].

Hence, the transport is completely associated to quasi-
particles, and the charge and the heat current flowing
out of the α-electrode (with ᾱ = R when α = L and vice
versa) read [3](

Iα
Q̇α

)
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FIG. 1. (a) Quasiparticle current-voltage characteristic of a
tunnel junction between two different superconductors (L,R),
with r = ∆0,R/∆0,L < 1, for different temperature bi-
ases. Parameters are r = 0.5, Γα/∆0,α = 10−4 and TL =
TR = 0.1Tc,L (green), TL = 0.7Tc,L, TR = 0.1Tc,L (red),
TL = 0.1Tc,L, TR = 0.4Tc,L (blue). A negative current
I(V > 0) < 0 characterizes a thermoelectric behavior (pink
area). (b) Magnification of the I(V ) curve at small values of
the bias. The red curve is the same of panel a). The black
curve is obtained from the red by decreasing the hot temper-
ature to TL = 0.6Tc,L and the orange by setting r = 0.6. In
the orange curve, the values of the matching peak bias Vp
and the stopping voltage Vs are explicitly drawn with orange
points. c)-d) Description of the thermoelectricity in the en-
ergy band diagram. (c) The linear-in-bias thermoelectricity
arises since the hole current (hollow circles) overcomes the
particle current (filled circles) due to the local monotonically
decreasing density of states of the cold electrode (R). (d) En-
hancement of the thermoelectric current due to the match-
ing of the singularity peaks of the superconducting density of
states (nonlinear-in-bias contribution).

where −e is the electron charge, Nα(E) = |Re[(E +

iΓα)/
√

(E + iΓα)2 −∆2
α]| is the smeared (by the Dynes

parameter Γα � ∆α [50, 51]) quasiparticle density of
states (DOS), Fα(Eα) = fα(Eα)−fᾱ(Eᾱ), Eα = E−µα,
and GT is the normal-state conductance of the junc-
tion. In the BCS model, the energy gap ∆α(Tα) is
a monotonically decreasing function, and it is zero for
temperatures larger than the critical temperature Tc,i =
∆0,i/(1.764kB) [48], where ∆0,i is the zero-temperature
value (with i =L,R). For our purposes, we define the
ratio between the two zero-temperature values as r =
∆0,R/∆0,L, which is associated to the asymmetry of the
two superconductors. With no loss of generality, we con-
sider r ≤ 1 in this work. Since Nα(Eα) = Nα(−Eα),

the system displays electron-hole (EH) symmetry and
it results I(V, TL, TR) = −I(−V, TL, TR) where I = IL
and V = (µL − µR)/(−e) is the voltage bias across the
junction. In the linear response regime, i.e., for a small
voltage bias and a small temperature bias, thermoelectric
effects vanish due to this symmetry [1, 47]. The situa-
tion change in the presence of a nonlinear temperature
bias, as we firstly discussed in Ref. [47]. In particular,
we demonstrated that an asymmetric junction between
two superconductors (S’IS junction), i.e., for r 6= 1, can

display a finite thermoelectric power Ẇ = −IV > 0, un-
der proper conditions. This nonlinear thermoelectricity
corresponds to the esistence of an absolute negative con-
ductance G(V, TL, TR) = I(V, TL, TR)/V < 0, which can
occur when a temperature difference TL 6= TR is applied
to the junction. Note that the absolute negative conduc-
tance in tunnel junctions between two superconductors
has been already predicted [52] and demonstrated in non-
equilibrium experiments with particle injection [53–55]
and microwave irradiation [56]. However, the thermo-
electric effect here discussed has not been investigated,
yet.

Figure 1a displays the shape of the current-voltage
characteristic for r = 0.5 and different values of the
temperatures of the two electrodes. Thanks to the EH
symmetry, we can discuss only the case V > 0. A
positive current (I > 0) denotes a dissipative behavior

(Ẇ < 0), whereas a negative current (I < 0) corre-
sponds to a thermoelectric generation (pink area). For
equal temperatures TL = TR = T , the junction is al-
ways dissipative since a positive value of Ẇ would im-
ply a negative entropy rate production Ṡ < 0, and a
violation of the second law of thermodynamics [1, 47].
In particular, for kBT � ∆0,L,∆0,R (green curve), the
transport is strongly suppressed at subgap voltages, i.e.,
I ∼ ΓLΓRGTV/(∆0,L∆0,R) for eV < ∆0,L + ∆0,R, and
it is almost linear at larger values eV � ∆0,L + ∆0,R,
where it asymptotically reads I ∼ GTV . In the pres-
ence of a strong temperature difference between the elec-
trodes, the evolution is more complex. In particular,
I(V ) is non-monotonic and shows a characteristic peak
at Vp = ±|∆L(TL) − ∆R(TR)|/e, due to the match-
ing of the BCS singularities. While for TL < TR the
junction is dissipative (blue curve), when TL > TR (red
curve), i.e., when the larger gap superconductor is heated
up, the curve may display a region of absolute neg-
ative conductance and thermoelectricity provided that
∆L(TL) > ∆R(TR) [47].

The typical subgap voltage evolution in the presence of
thermoelectricity is displayed in Fig. 1b. The red curve
is a magnification of the TL > TR curve of Fig. 1a. The
other curves differs from the red due to a single parame-
ter modification. In particular, in the black curve the
temperature of the hot electrode is slightly decreased
(TL → T ′L < TL) while in the orange curve the sym-
metry parameter is slightly increased r → r′ > r. We
firstly note that the curves display an almost linear be-
haviour with a negative slope at a small voltage bias, i.e.,
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I(V, TL, TR) ∼ g0(TL, TR)V , where the zero-bias differ-
ential conductance g0(TL, TR) = ∂I(V, TL, TR)/∂V |V=0

is negative (see dashed lines in Fig. 1b). This nega-
tive slope shows that the system presents a linear-in-bias
thermoelectric contribution in the presence of a nonlin-
ear temperature difference. Since the junction recovers
a dissipative behaviour characterized by a positive con-
ductance at sufficiently high voltage bias (in particular
I(V )/V ∼ GT for V � (∆L+∆R)/e), this linear-in-bias
contribution implies the existence of, at least, a point
(Vs 6= 0), where the current is zero, i.e., I(Vs) = 0 (see
Fig. 1b, showing only the positive bias side). This finite
value Vs (note that a similar behavior occurs at −Vs, due
to the EH symmetry) is also called Seebeck voltage, and
represents the value where the intrinsic thermoelectricity
of the junction is no longer able to counteract the electric
transport due to the voltage bias. Note that the two val-
ues of the Seebeck voltage are both possible for the same
temperature gradient. In addition, this negative differen-
tial conductance (g0 < 0) implies an electrical instability
at the zero current state with V = 0 [47]. Namely, any
spurious fluctuation of the voltage around V = 0 drives
the junction in the zero-current state with a finite ther-
moelectric voltage (either ±Vs). In other words, the EH
symmetry is spontaneously broken due to the presence of
the nonlinear temperature difference.

In Fig. 1b the matching peak value Vp appears at in-
termediate values of the applied bias, i.e., for V . Vs
and represents the condition where the absolute value of
the thermoelectric current and the thermoelectric power
reach their maximum value, i.e., Ẇmax = maxV (−IV ) ∼
−I(Vp)Vp. This condition represents the main nonlinear-
in-bias contribution on thermoelectricity. In Fig. 1b, the
position of the matching peak changes by modifying ei-
ther TL or r. In particular, by decreasing TL (black
curve), Vp shifts towards higher voltages (since at the
same time ∆α(TL) increases). Intriguingly, this shows
the peculiar nonlinear nature of the thermoelectricity,
where the absolute value of the Seebeck voltage increases
by slightly decreasing the temperature gradient. Simi-
larly, upon increasing r (orange curve), Vp shifts towards
lower voltages. Note that the linear-in-bias contribution,
which is characterized by g0 (slope of the dashed line), is
modified as well. More precisely, |g0| increases when Vp
decreases (for r′ > r, orange curve) and vice versa (for
T ′L < TL, black curve).

In summary, the nonlinear thermoelectricity in the
S’IS junction is characterized by two main contributions,
namely the linear-in-bias and the nonlinear-in-bias. The
origin of the thermoelectric effect for TL > TR can be
intuitively understood in the semiconductor model, as
displayed in Fig. 1c-d. For simplicity, we discuss the be-
haviour of the particle current I/(−e) and we consider
the case TR → 0+. The current from L to R is the dif-
ference between the particle current above the chemical
potential µL (filled circles) and the hole current below
the chemical potential µR (empty circles). First, we fo-
cus on the linear-in-bias contribution. For V = 0, the

two chemical potentials are aligned µL = µR (see dashed
lines in Fig. 1c) and the particle and the hole contri-
butions cancel out due to the EH symmetry. In the
presence of a voltage bias, the chemical potential are
shifted with respect to each other. In particular, let’s
focus on µL > µR, where the particle current naturally
flows from L to R in the standard (dissipative) regime.
Note that, due to the monotonically decreasing DOS of
the right electrode above gap, i.e., for E > µR+∆R (and
hence monotonically increasing for E < µR −∆R due to
EH symmetry), the particle current contribution is de-
creased due to the shift, whereas the hole contribution is
increased. As a consequence, the system displays a nega-
tive particle current. The unbalance is maximized when
µL − µR = ∆L − ∆R, due to the matching of the BCS
singularities (see Fig. 1d). This scheme also explains why
the thermoelectric effect is absent for TL < TR. In this
case, the right electrode is the hotter one, and therefore
the arrows in Fig. 1c)-d) must be drawn necessarily in the
opposite direction. However, it is still true that the hole
contribution is larger than the particle contribution for
subgap biases. Hence, the particle current flows in the di-
rection of the chemical potential gradient (from L to R),
the system becomes dissipative and no thermoelectricity
is possible. In summary, the semiconductor model clearly
shows that the nonlinear thermoelectricity is obtained in
the presence of two conditions: i) the larger gap electrode
should be heated up, ii) the colder electrode must have a
local monotonically decreasing DOS. In a S’IS junction,
these two conditions clearly show that, for r ≤ 1 (as
assumed in this work), themoelectricity arises only for
TL > TR provided that the hot electrode has the largest
gap, namely ∆L(TL) > ∆R(TR). In the next section
we give a more quantitative discussion of the nonlinear
thermoelectricity, and we discuss the role of the various
parameters.

III. NONLINEAR THERMOELECTRICITY

In the previous section, we have qualitatively discussed
the origin of the thermoelectric effect, which relies on the
competition between the particle and the hole current.
Here, we give a quantitative discussion and we neglect
any effect associated with the Dynes parameter, for sim-
plicity. At subgap voltages eV < ∆L + ∆R, the latter is
described by the formula (with E± = E ± eV )

I ∼ GT
e

∫ ∞
∆L(TL)

dENL(E)fL(E)[NR(E+)−NR(E−)],

(2)
which yields a good approximation in the limit kBTR �
∆R(TR),∆L(TL) [47], neglecting corrections of order
∼ exp(−∆0,R/kBTR) and becomes exact in the limit
TR → 0. This expression is derived from the first of
Eq. 1 through a series of transformations based on the
EH symmetry of the density of states Nα and on the
identity fL(E) = 1 − fL(−E) [47]. From Eq. 2, one
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FIG. 2. Zero-bias differential conductance of the junction as
a function of the temperature of the hot electrode TL. (a)
Zero-bias differential conductance obtained through numeri-
cal differentiation of the charge current for r = 0.5 and differ-
ent values of the cold electrode temperature TR (solid). The
dashed curve gives the approximate expression for TR → 0
of Eq. 3. (b) Zero-temperature limit for the cold electrode
TR → 0 and different values of r (grayscale). Solid lines are
expressed by Eq. 3 and the dashed lines gives the low-r ap-
proximation of Eq. 4. Inset: temperature dependence of the
superconducting gap in the BCS weak coupling limit. In the
numerics, Γα/∆0,α = 10−4.

can obtain the two conditions for the nonlinear thermo-
electricity presented in the previous section [47]. Fur-
thermore, one can compute the behavior at V ∼ 0 and
hence g0, which characterizes the linear-in-bias thermo-
electricity. In particular, in the presence of a nonlinear
temperature gradient, i.e., for a finite value of TL, the
zero-bias differential conductance is negative and reads

g0 = −2GT∆2
0,R

∫ ∞
∆L(TL)

dE
NL(E)fL(E)

(E2 −∆2
0,R)3/2

, (3)

valid for TR = 0 and Γ → 0, provided that ∆L(TL) >
∆0,R. The goodness of the low-TR expression of Eq. 3 is
investigated in Fig. 2a, where the temperature evolution
of g0 (computed through numerical differentiation of the
charge current in Eq. 1) is displayed for r = 0.5 and dif-
ferent values of TR (solid curves). As discussed above,
the approximate expression of Eq. 3 (dashed curve),
which does not depend explicitly on TR, gives a good
approximation for TR . 0.2Tc,L, but it is inaccurate
at large values of TR, where the approximations which
lead to Eqs. 2,3 don’t apply anymore. Note that, for
TR ≥ 0.2Tc,L, the zero-bias conductance is positive if the
temperature of the hot electrode TL is smaller than a
threshold value. This is related to the unavoidable non-
linear nature of the thermoelectric effect.

In the limit r � 1, the zero-bias differential conduc-
tance of Eq. 3 is well described by the interpolation for-
mula

gapprox
0 (TL) ∼ −0.89

r2[1−∆L(TL)/∆0,L]

[∆L(TL)/∆0,L]2 − r2
GT . (4)

The degree of validity of this expression is displayed in
Fig. 2b, where the temperature evolution of g0 of Eq. 3
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FIG. 3. (a) Contour plot of g0 vs TL and r for TR = 0.001Tc,L.
The linear-in-bias thermoelectric contribution is represented
by the red area. (b) Contour plot of g0 vs TL and TR for
TR = 0.001Tc,L. The red area and the blue area denote the
linear-in-bias thermoelectric region and the nonlinear-in-bias
thermoelectric region, respectively. The dashed lines give the
zero temperature difference contour TL = TR (black) and the
contour TL = TR/r (blue). (c)-(d) On-set of the thermo-
electricity by raising the temperature of the left electrode
for r = 0.5 and (c) TR = 0.2Tc,L (first linear-in-bias then
nonlinear-in-bias) or (d) TR = 0.35Tc,L (first nonlinear-in-
bias then linear-in-bias).

(solid curves) is compared with the simplified expres-
sion of Eq. 4 for some values of r. Note that the ap-
proximation becomes exact for TR, r → 0 but still well
represents the overall behavior of the function and it is
reasonably accurate also for relatively large values of r,
i.e., r = 0.7. Moreover, it explains the qualitative be-
haviour of the curves in Fig 2b. In particular, for a
given r, g0 is negative, monotonically decreasing with
TL and it quite small if TL � Tc,L. This behavior is re-
lated to the term 1 −∆L(TL)/∆0,L in the numerator of
Fig 2b, where ∆L(TL) is displayed in the inset of Fig 2b.
Note that g0 diverges for the temperature value where
∆L(TL) = ∆0,R, which annihilates the denominator of
Eq. 4.

We wish now to give a more complete discussion on
the conditions where the linear-in-bias thermoelectricity
appears for TR → 0. In this respect, Fig. 3a displays
the contour plot of g0 as a function of TL and r for a
very low temperature of the right lead TR = 0.001Tc,L.
As discussed above, the thermoelectric region is char-
acterized by g0 < 0 (red area). For a given value of
r ≤ 1, thermoelectricity arises only if the temperature
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of the hot electrode TL is larger than a threshold value,
which is represented by the g0 = 0 contour in Fig. 3a (red
curve) and smaller than an upper threshold value, where
∆L(TL) = ∆0,R (blue curve). In the latter, the differen-
tial conductance switches very rapidly from large nega-
tive values to large positive values, due to the matching
of the BCS singularities. On the other hand, the lower
threshold value is due to the finite subgap conductance
and cannot be captured by the expression of Eq. 3, which
is derived for Γ→ 0+. Additional considerations can be
made in the complementary description given in Fig. 3b,
where the contour plot of g0 is displayed as a function
of the temperature of the two electrodes for r = 0.5.
In the figure we also compare the linear-in-bias and the
nonlinear-in-bias contributions to the nonlinear thermo-
electricity. In particular, the red area denotes the region
of linear-in-bias thermoelectricity g0 < 0, whereas the
blue region gives the nonlinear-in-bias thermoelectricity
Gp = G(Vp, TL, TR) = I(Vp, TL, TR)/Vp < 0. On the
dashed line the temperature difference is zero (TL = TR).
Several features can be easily captured from the plot.
First, there is no thermoelectric effect (white regions):
i) for TR > TL, i.e., heating the larger gap supercon-
ductor is a necessary condition for thermoelectricity, ii)
for TL . 0.2Tc,L, due to the subgap contribution to the
current related to the finite Dynes parameter, iii) for val-
ues of TL, where ∆L(TL) < ∆R(TR) (above the blue
solid curve), iv) for TR > Tc,R = 0.5Tc,L (irrespectively
of TL), since the right electrode is in the normal state.
The last point is associated to the fact that the ther-
moelectric effect cannot be observed in a hybrid normal-
superconducting tunnel junction. Indeed, in the thermo-
electric effect we discuss it is crucial the monotonically
decreasing DOS of the right electrode above gap, which
is guaranteed by the superconducting state, as previously
discussed in Ref. [47]. In a normal metal, the DOS is en-
ergy independent on the relevant energy scale, i.e., ∆0,L,
which is much smaller than the Fermi energy. This can
be intuitively understood also in the representation of
Fig. 1c-d by replacing the BCS DOS in the right electrode
with a flat distribution. In summary, with respect to the
thermoelectric effect discussed in this work, there is noth-
ing special about the superconducting state of the cold
electrode rather then the locally monotonically decreas-
ing DOS. In other words, any system which presents a
monotonically decreasing DOS in the cold lead, a gapped
DOS in the hot lead and has an EH symmetry around
the chemical potential would support a nonlinear ther-
moelectricity similar to the one discussed here.

Secondly, a nonlinear temperature gradient is re-
quested for thermoelectricity. In fact, in Fig. 3b the
thermoelectricity is typically present only away from the
equal temperature condition TL = TR (black dashed
line). The numerical calculations show that the critical
value of TL for the onset of the nonlinear-in-bias ther-
moelectricity is roughly given by TR/r (see blue dashed
line in Fig. 3). Finally, the plots show that it is possi-
ble to have linear-in-bias thermoelectricity even in the
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FIG. 4. Competition between the nonlinear thermoelectric
effect (red area) and evaporative cooling (blue area) in a volt-
age bias superconducting tunnel junction (with V = Vp) for
(a) r = 0.3 and (b) r = 0.75. The dashed lines give the
zero temperature difference contour TL = TR (black) and the
contour TL = TR/r (red).

absence of nonlinear-in-bias thermoelectricity (red curve
in Fig.3c), i.e., when the junction at the matching peak
value is still dissipative, and vice-versa (red curve in
Fig.3d). The on-set of the thermoelectric effect upon
increasing the temperature difference in these two par-
ticular cases (obtained for two different values of TR) are
shown in Fig. 3c and Fig. 3d, respectively. In Fig. 3c,
TR = 0.2Tc,L and the linear-in-bias thermoelectricity
arises when TL & 0.3Tc,L (see Fig. 3b). Note that, in the
transition which leads to the on-set of nonlinear thermo-
electricity (for TL & 0.43Tc,L, see Fig. 3b), the match-
ing peak changes the direction of the cuspid by passing
through a flex. In Fig. 3d, TR = 0.35Tc,L, the nonlinear-
in-bias contribution appears even in the absence of linear-
in-bias thermoelectricity. In this case, there is no electri-
cal instability of the zero current state with V = 0 since
g0 > 0. As a consequence, a finite bias is requested to
drive the system in the thermoelectric state where the
instability would bring the system to the zero-current
solution with Vs 6= 0.

A. Thermoelectricy and cooling

To conclude this section, we discuss the relationship
between the nonlinear-in-bias thermoelectric effect in our
structure and the evaporative cooling in superconducting
tunnel junctions. In fact, it is well known [3, 4] that it
is possible to achieve cooling of the electronic tempera-
ture of a normal conductor in a tunnel junction between
a normal metal and a superconductor (NIS junction). In
particular, for a NIS junction this mechanism is known
as NIS cooling, and it is based on the energy filtering
provided by the superconducting gap. A similar mech-
anism is also discussed for S’IS junctions, which we are
discussing, with r 6= 1, where one can achieve refrigera-
tion of the lower gap superconductor [3, 4]. Namely, in
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our notation, it is possible to have cooling power Q̇R > 0
for TL ≥ TR, provided r < 1. Hence, the thermoelec-
tric effect discussed in this work and the evaporative
cooling share some similarities: i) they require the con-
dition ∆L > ∆R, ii) they require a finite voltage bias
V , iii) the maximum performance in terms of cooling
power/thermoelectric power are achieved for V = Vp.
Indeed, these two effects are somewhat complementary
since they cannot coexist due to the thermodynamical
laws. In fact, the cooling power reads Q̇R = Ẇ − Q̇L
due to the energy conservation. In a thermoelectric gen-
erator, we have Ẇ , Q̇L > 0, and hence the condition for
refrigeration, i.e., Q̇R > 0, would imply Ẇ > Q̇L > 0
and a violation of the second law of thermodynamics.
In fact, a thermodynamic generator cannot produce a
power (Ẇ ) greater than the heat current taken from the

hot reservoir (Q̇L). Hence, a thermodynamical machine
can operate either as an engine or as a cooler.

Thus, a voltage biased asymmetric junction between
two superconductors (r 6= 1) can behave either as a re-
frigerator or as a thermoelectric generator, depending
on the temperature of the two electrodes TL, TR. The
competition of these two effects in a S’IS junction for a
voltage bias V = Vp is displayed in Fig. 4, for r = 0.3
(panel a) and for r = 0.75 (panel b). The red ar-
eas denote the nonlinear-in-bias thermoelectric regions
Ẇ (Vp) > 0, whereas the blue areas give the cooling re-

gions Q̇R(Vp) > 0. The dashed lines set the equal tem-
perature contours TL = TR, and the vertical solid lines
give the thresholds TR = Tc,R = rTc,L (we recall that
r = Tc,R/Tc,L = ∆0,R/∆0,L for BCS superconductors).

Let’s focus first on TL < TR. Note that it is possible
to remove the heat from the lower gap superconductor
(Q̇R > 0), but necessarily there is no thermoelectricity,
in agreement with the previous discussion. Note that this
mechanism cannot be properly defined as cooling, since
the heat is removed by the hotter electrode (sometimes
called heat pump). However, this mechanism still relies
on the existence of the larger superconducting gap.

Consider now TL ≥ TR. In this case, for a given value
of TR < Tc,R, the junction behaves as a refrigerator
as long as the temperature difference is smaller than a
threshold value. For larger values of TL the junction is
first dissipative and then it shows a thermoelectric gener-
ation for sufficiently high temperature gradients (roughly
given by TL > TR/r, see red dashed lines). This pro-
gression from thermoelectricity towards cooling passing
by a dissipative behaviour may remind the standard be-
haviour of the linear thermoelectricity [1]. Anyway here
there is a crucial difference. Namely, the parameter that
control the transition from the cooling to the thermoelec-
tricity is the temperature difference rather than the volt-
age bias. Furthermore, the thermoelectricity eventually
disappears at large values of TL where ∆L(TL) < ∆R(TR)
(solid red curves in Figs. 5a-b). The plots also show that
the correspondence between the thermoelectric effect and
the evaporative cooling have some limitations. In fact,
for TR ≥ Tc,R, i.e., when the smallest gap supercondutor

is in the normal state, the evaporative cooling may be
still achievable (see TR > 0.3TL in Fig. 4a), whereas the
thermoelectric effect requires a monotonically decreasing
DOS. This is guaranteed in our system only when the
right electrode is in the superconducting state.

IV. HEAT ENGINE

In the previous section, we discussed the theoretical
features of the thermoelectric effect in a S’IS junction.
In this section, we discuss the design of a heat engine
based on this effect, for materials and a geometry which
are experimentally feasible with standard nanofabrica-
tion techniques. Since we are interested in phenom-
ena which require a temperature difference for nanoscale
tunnel junctions, it is convenient to work with super-
conductors whose critical temperature is of order 1 K,
such as aluminum (Al), with a bulk critical tempera-
ture T bulk

c,Al = 1.2 K. In fact, at sub-Kelvin tempera-
tures, the electron-phonon coupling is quite weak and
hence it is possible to raise the quasiparticle temperature
well above the bath temperature Tbath, which typically
represents the temperature of the phonons in the elec-
trodes [3, 4]. This condition is known in the literature
as quasi-equilibrium regime [3, 4], since both the quasi-
particles temperature and the phonons temperature are
well-defined, but they can be different. The validity of
this regime has been demonstrated and investigated in
several experiments which involves the electronic tem-
perature cooling or the coherent control of the heat cur-
rents in superconducting tunnel junctions [4, 31, 32]. In
particular, Al is an optimal choice for our purposes, due
to the excellent control of the quality in aluminum-oxide
based tunnel junctions [57]. The latter is an important
requirement in order to suppress any unwanted Joseph-
son contribution. The condition r 6= 1 can be achieved
in thin bi-layers where aluminum is used in combination
with other materials, such as a superconductor with lower
gap as titanium (Ti) [58] or a normal metal as copper
(Cu) [59]. More precisely, the gap is reduced with respect
to a fully aluminum based structure due to inverse prox-
imity effect [60]. In this section (unless explicitly stated),
we consider a thin aluminum film for S’ with T film

c,Al ∼ 1.32
K and gap ∆0,S′ = 200µeV and an Al-Cu bilayer with
∆0,S = 0.3∆0,S′ ∼ 67µeV and Tc,by = 0.3T film

c,Al ∼ 0.44 K.
The scheme of the heat engine is pictured in Fig. 5a.

The system consists of the series of two S’IS junction con-
nected back to back, in a SIS’IS configuration, in paral-
lel with a load of conductance G. The central element
(red) is the larger gap superconductor (Al), whereas the
lateral superconductors have a smaller gap (Al-Cu bilay-
ers). The lateral superconductors are strongly coupled
to the phonon bath thanks to their large volume, thus
the quasiparticle temperature in the S layers nominally
resides at Tbath. We assume that the electronic temper-
ature of the S’ island Thot is instead raised above Tbath,
typically using other superconducting or normal metal
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tunnel junctions as heaters [31, 59]. In this configuration,
the thermoelectric contributions of the two S’IS junctions
add. Indeed, in the presence of a thermal gradient be-
tween the central superconductor (hot) and the lateral
superconductors (cold), a thermoelectric voltage devel-
ops across the whole structure (see the discussion below).
As a consequence of thermoelectricity, a voltage Vload de-
velops across the load, and a current Iload = GVload flows
through the structure. Thus, a power Ẇ = IloadVload is
delivered to the load. For convenience, we consider a
symmetric structure SIS’IS junction (see Fig. 5a). Note
that the crucial constraint in this configuration is repre-
sented by the current conservation in the circuit, which
guarantees that the voltage drops of the two junctions
add. Due to symmetry, the voltage drop across the load
is Vload = 2V , where V is the voltage drop across each
S’IS junction. Hence, the use of a SIS’IS structure pro-
duces a doubled thermoelectric voltage with respect to
the single junction. Moreover, this symmetric configu-
ration is also convenient in terms of the shadow mask
evaporation, which is the common fabrication technique
for high quality tunnel junctions based on Al, and has
been exploited in several experiments [3, 4]. Finally, we
note that in a fully symmetric structure, in the presence
only of a standard linear thermoelectric effect, this con-
figuration would not produce a finite difference between
the two lateral leads, since the charge diffusion in the
left and the right lead would cancel out due to the oppo-
site temperature gradients. This fact demonstrates the
unique features of the nonlinear thermoelectricity in the
system here described.

In order to compute the thermovoltage and Ẇload, one
has to impose the current conservation in the circuit,
namely

Iload = GVload = 2GV = −I(V, Thot, Tbath) (5)

and to solve it self-consistently in V . Due to the EH sym-
metry, this equation admits always the trivial solution
V = 0, where the current Iload (and hence the delivered

power Ẇload) is zero. In the presence of thermoelectricity,
the junction displays an absolute negative conductance
for biases below VS , and hence additional solutions with
finite voltage Ṽ 6= 0 are possible (see Fig. 5b for an ex-
ample). Due to EH symmetry, for each finite solution

V = Ṽ there is a correspondent solution V = −Ṽ , i.e.,
finite values solutions always come in pairs ±Ṽ . Since
the conductance GT and hence relevant quantities such
as the current I and the thermoelectric power Ẇ are
proportional to the surface A of the tunnel junction, we
discuss their value for unit surface. In particular, we con-
sider realistic tunnel junctions with specific barrier con-
ductance of σT = 10 mS/µm2. Hence, it is convenient to
introduce in the discussion a load conductance for unit
area (defining σG = G/A), in order to express the figures
of merit of the heat engine in a scale-invariant fashion.
The absolute values are easily obtained by multiplying
for a specific surface, such as 1µm2.

From a geometric view, the solutions of Eq. 5 are the

5
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V
˜
1 V

˜
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V
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J
[μ
A
/μ
m
2
]
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FIG. 5. a) Scheme of the heat engine based on the thermo-
electric effect in a superconducting junction. The system is
composed of two superconducting junctions connected back
to back (SIS’IS). A temperature gradient is applied between
the central superconductor (red) and the two lateral super-
conductors (blue), i.e, TS′ = Thot > Tbath = TS. Under proper
conditions, the system spontaneously develops a voltage bias
2V across the resistor (V is the voltage drop across each S’IS
junction), and hence a thermoelectric current, which releases
power to the load. b) Graphical solution of Eq. 5 for differ-
ent values of unit surface conductance σG. The thermoelectric
voltage V is given by the crossing points of the I(V ) character-
istic (blue curve) and the load lines (grayscale). Parameters:
Thot = 1 K, Tcold = 0.1 K.

crossings of the current density characteristic J(V ) =
I(V )/A with a load line of negative slope −2σG, as
displayed in Fig. 5b for different values of σG. In the
plot, we set Thot = 1K and Tbath = 0.1 K, so that
both the linear-in-bias and the nonlinear-in-bias contri-
butions to the thermoelectricity are present. This rep-
resents the typicality of the effect, as already discussed
in the previous section. In this case, there are mainly
three situations, related to the values σp = |Gp|/A ∼ 5
mS/µm2 and σ0 = |G0|/A ∼ 0.37 mS/µm2: i) for
σG > |σp|/2, there is no solution with V 6= 0, ii) for
|σp|/2 > σG > |σ0|/2 ∼ 0.18 mS/µm2, there are two pos-

itive solutions Ṽ1 < Vp and Ṽ2 > Vp (and hence a total
of 5 solutions, due to EH symmetry), iii) σG < |σ0|/2
there are three solutions V = 0,±Ṽ (see Fig. 5b). In
this work, we will only focus on the solutions character-
ized by a positive slope of the J(V ) characteristic [ei-

ther Ṽ or Ṽ2], which are stable independently by the
details of the load circuit, such as the parasite capaci-
tance and the self-inductance. In particular, the insta-
bility of the V = 0 solution for σG > |σpeak|/2 can lead to
an oscillatory behavior, which goes beyond the purpose
of this work [47]. Since we discuss only the stationary
and time independent solutions and we completely ne-
glect those cases. In summary, for σG < 2|σp|/2, a ther-
moelectric voltage V develops across each S’IS junction
and the system provides a thermoelectric power density
Ẇ/A = IloadVload/A = 4σGV

2.
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FIG. 6. Density plot of the thermoelectric power density (a)
and the thermodynamical efficiency (b) as a function of the
temperature of the S’ island and the specific conductance of
the load. The white regions correspond to a zero value. The
contours σG = σp(TL)/2 are drawn with red dashed curves.

A. Load dependence of power and efficiency

Here, we discuss the thermoelectric power density and
the corresponding thermodynamical efficiency as a func-
tion of the load conductivity σG. Note that, for a given
thermoelectric configuration, characterized by the pa-
rameters Thot, Tbath, r, the power and the efficiency are
zero either for σG = 0 since Iload = 0 and for σG > |σp|/2,
where Vload = 0.

Figure 6a displays the density plot of the thermo-
electric power density Ẇ/A as a function of the spe-
cific conductance of the load σG and the temperature
of the hot electrode Thot for Tcold = 100 mK (and so
∆S(Tcold) ' ∆0,S ∼ 67µeV). The corresponding ther-

moelectric efficiency η = Ẇ/(2Q̇hot) [61] is displayed in
Fig. 6b. In both the plots, there are two white regions
where the thermoelectric power is absent (Fig. 6a) and
the efficiency is consequently zero (Fig. 6b). These areas
correspond to: i) Thot ≥ 1.27 K, where ∆S′ < ∆S ; ii)
large values of σG, where Eq. 5 has only the zero-voltage
solution. For a given value of Thot, both Ẇ/A and η are
maximum for σG . |σp(Thot)|/S (red dashed curves),
and they worsen by reducing σG. At low values of σG,
the systems works as a heat engine over a large range in
Thot, but the power and, for large temperature gradients,
the efficiency are typically reduced. At higher values of
σG one finds increased performance but a reduced oper-
ative range in terms of Thot. Thus, there is a trade off
between the thermoelectric performance and the oper-
ative temperature range. The maximum power density
reads Ẇmax/S ∼ 2× 0.11σT∆2

0,S′/e2 ∼ 88 pW/µm2 and
the maximum efficiency is roughly ηmax = 0.36.

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
ho
t
[K
]

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Tc,by [K]

0

25

50

75

100

125

150

175

Vs [μV]

(a)
0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
ho
t
[K
]

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Tc,by [K]

0

100

200

300

400

500

600

S [μV/K]

(b)

FIG. 7. Contour plot of the Seebeck voltage (a) and the ther-
modynamical efficiency (b) as a function of the temperature
of the S’ island and the critical temperature of the bilayer S.
The white regions correspond to a zero value. The red lines
gives the constraint ∆S′(Thot) = ∆S = 1.764kBTc,by.

B. Seebeck voltage and nonlinear Seebeck
coefficient

In a open circuit configuration, i.e., in the limit σG →
0, the current Iload = 0 and hence the thermoelec-
tric power is zero. In this case, the thermoelectric ef-
fect purely manifests as a voltage signal across the load
Vload = 2Vs, where Vs is the Seebeck voltage introduced
in Sec. II. Figure 7a displays the contour plot of the See-
beck voltage Vs as a function of the critical temperature
of the bilayer Tc,by and the temperature of the hot elec-
trode Thot for Tbath � Tc,by, assuming to keep fixed the
critical temperature of the hot terminal Tc,S′ ∼ 1.32K.
For a given Thot, Vs is monotonically decreasing with
Tc,by and it is zero (white) when Tc,by is larger than a
threshold value, i.e., Tc,by ≥ ∆S′(Thot)/(1.764kB). The
white region at low values of Thot is related to the finite
value of the Dynes parameters (see the discussion in the
next subsection). Note that the maximum Seebeck volt-
age is roughly given by ∆0,S′/e ∼ 200µV. A similar be-
havior apply to the corresponding nonlinear Seebeck co-
efficient, defined as S = Vs/∆T , with ∆T = Thot − Tbath

and displayed in Fig. 7b. Notably, S has a value of hun-
dreds of µV/K over large temperature ranges and can
reach a value as large as 650 µV/K for Tc,by ∼ 0.2K and
Thot ∼ 0.3K.

C. Effect of nonidealities

Here, we want to characterize the impact of the main
source of non-ideality in our model, namely the Dynes
parameters Γα. In fact, these parameters characterize
either the finite number of states at subgap energies of
the BCS superconducting DOS and the smoothing of the
peaks in superconducting DOS. As a consequence, the
current at Vp and hence relevant quantities such as the
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FIG. 8. Impact of the rescaled Dynes parameter γ =
Γ′S/∆0,S′ . γ-evolution of the matching peak value of the
power density (a) and the thermodynamical efficiency (c)
for different values of Thot. (b) Power density vs γ for
Thot = and different values of σG. (d) Maximum load sup-
ported by the heat engine vs γ for the same values of Thot

as in panels (a) and (c). Parameters: Tc,S′ ∼ 1.32K and
Tc,by = 0.3Tc,S′ ∼ 0.44 K.

thermoelectric power are reduced. Differently from the
rest of this work, here we introduce a dimensionless pa-
rameter γ and we consider equal values for the Dynes
parameters ΓS′ = ΓS = γ∆0,S′ = max(ΓS/ΓS′) in or-
der to overestimate the worsening effect. In the plots,
we set Tbath = 100 mK. First, we consider the quantities
where the variation of the Dynes parameter is expected
to impact in a stronger way, namely the thermoelectric
power and the efficiency at the matching peak singularity
Vp = [∆S′ − ∆S ]/e. These quantities are displayed for
different values of Thot in Fig. 8a and Fig. 8c, respectively.
Note that both Ẇ/A and η decreases monotonically by
increasing γ, as expected. Interestingly they are typically
reduced only by a factor 3-4 under orders of magnitude in
γ from 10−5 to 10−2, showing that the thermoelectric ef-
fect is quite robust against γ. However, a large value of γ
may suppress completely the thermoelectric effect when
the thermoelectric power is quite low, as shown by the
curves corresponding to the lowest temperature (blue),
for γ ≥ 7× 10−3.

The impact of the Dynes parameter is even less rele-
vant if the system is not biased with a voltage equal to
the matching singularity peak. This feature is shown in
Fig. 8b, where the thermoelectric power density, obtain
through the self-consistent solution of Eq. 5, is displayed
for Thot = 1K and different values of σG. In particular,

the power is roughly constant up to a threshold value,
depending on σG, where the thermoelectric effect goes
to zero. This feature can be understood by inquiring
the graphical solution of Eq. 5 displayed in Fig. 5b. In
particular, we recall that Eq. 5 have no finite solution
for σG > σp/2. Upon increasing γ, the current at the
matching peak singularity decreases while Vp is fixed but
again a big variation of γ affect with a small multiplica-
tive factor. As a consequence, the absolute value of σp is
reduced as well and a large value of γ may produce a sit-
uation where there are no crossing for V 6= 0. In this con-
text, Fig. 8d displays the maximum value of the specific
conductance of the load supported by the thermoelectric
generator for different values of Thot. As discussed above,
this value monotonically decreases with γ.

V. CONCLUSIONS

In summary, we have given an extended discussion of
the nonlinear thermoelectric effect recently predicted in
tunnel junctions between two different BCS superconduc-
tors [47]. The thermoelectric generation occurs when the
temperature difference is larger than a threshold value
and the hot electrode has the largest gap. We focused on
two region: the linear-in-bias contribution, characterized
by a negative differential conductance at V = 0 and the
nonlinear-in-bias contribution, where the thermoelectric
performance is optimal. We argued that this effect is
somewhat complementary to the evaporative cooling in
superconducting junctions due to the presence of the
gap. However, the thermoelectric generation has tighter
requirements, since it requires also a locally monotoni-
cally decreasing DOS in the cold electrode. Finally, we
presented a design study for an experiment involving a
heat engine based on the thermoelectric effect for an Al-
based structure. We characterized the main thermoelec-
tric figures of merit, predicting a power density up to 88
pW/µm2 and efficiencies up to 40%. Correspondingly,
we show that one can observe a Seebeck potential of the
order of 200µV and a nonlinear Seebeck coefficient up
to 650µV/K for realistic parameter values. Finally, we
discussed how the performance is weakly affected by non-
idealities such as the Dynes parameter. The engine can
be experimentally realised with current state of the art
nanotechnology. The successful confirmation of the dis-
cussed phenomenology would potentially trigger further
research on the same thermoelectric mechanism in other
physical systems.
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