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Abstract

Based on [1] we introduce and study a mathematical framework for analysis-

suitable unstructured B-spline spaces. In this setting the parameter domain has

a manifold structure which allows for the definition of function spaces that have

a tensor-product structure locally, but not globally. This includes configurations

such as B-splines over multi-patch domains with extraordinary points, analysis-

suitable unstructured T-splines, or more general constructions. Within this

framework, we generalize the concept of dual-compatible B-splines (developed

for structured T-splines in [2]). This allows us to prove the key properties that

are needed for isogeometric analysis, such as linear independence and optimal

approximation properties for h-refined meshes.

1. Introduction

In isogeometric analysis, as it was introduced in [3], the physical domain is

usually parametrized smoothly by tensor-product B-splines or NURBS, there-

fore it has to be diffeomorphic to a rectangle. When dealing with geometrically

complex domains, there is a need for a more flexible geometry representation.

Several approaches have been proposed so far. We would like to point out sev-

eral common strategies that can be studied within the framework we present

in this paper. One is to use a multi-patch representation of the domain, i.e.

to split the domain into rectangular or hexahedral boxes. Starting from the

framework presented in [4], there exist several contributions on multi-patch rep-

resentations in isogeometric analysis [5, 6, 7, 8, 9, 10]. In most constructions,

the basis functions are only C0 across patch interfaces. We want to point out

the recent paper [10], in which the authors present a construction to enhance

the smoothness across patch interfaces away from extraordinary features.

Another way to handle complex geometries is to use a specific set of non-

tensor product function spaces, such as unstructured T-splines (see [11, 12] as
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well as [13]). In both cases, the resulting function spaces are very similar to the

ones proposed in Sections 5.3 and 5.4. We however follow a slightly different

approach to represent the parameter domain and define the function spaces over

it.

Smooth constructions over general quad meshes can be introduced by means

of subdivision surfaces. They have been studied in the context of isogeometric

analysis in [14, 15, 16]. We do not go into the details of subdivision based con-

structions, but want to point out the relation to the manifold based framework.

Function spaces based on subdivision schemes that generalize tensor-product

B-splines, such as Doo-Sabin (see [17]) for biquadratics or Catmull-Clark (see

[18]) for bicubics, can be interpreted as spline manifold spaces. In both cases,

the function space is spanned by standard tensor-product B-splines as well as

certain special functions near extraordinary points. The special functions are

piecewise polynomials over infinitely many rings of quadrilateral elements.

In this paper we consider spline manifold spaces as a theoretical tool in iso-

geometric analysis. Note that it is not the purpose of this study to introduce a

new way to define or implement unstructured spline spaces. The aim is rather

to develop a framework to study the theoretical properties of a wide range of

spline representations over non-rectangular parameter domains based on mani-

folds. Concerning spline manifolds we refer to [1], where the authors propose an

abstraction of the concept of geometry parametrizations that is based on a man-

ifold structure. In the proposed framework, the underlying parameter domain

forms a manifold, thus allowing to represent more general geometric domains.

In the following we briefly review the concept of a geometric domain which

is parametrized by spline manifolds, and discuss its main features. We consider

a domain Σ ⊂ Rn which can be interpreted as a d-dimensional manifold with

d ≤ n. We mostly focus on a two-dimensional planar domain Σ ⊂ R2, a surface

Σ ⊂ R3 or a three-dimensional volumetric domain Σ ⊂ R3. In an abstract

setting, a manifold Σ is defined by an atlas, i.e., a family of charts Σi such that

Σ =
N⋃
i=1

Σi,

together with suitable transition maps between intersecting charts Σi and Σj .

To define Σ as a spline manifold, we must define a family of open parameter

subdomains Ωi, together with a spline space on each subdomain, and each

chart is the image of a spline parametrization Gi : Ωi → Σi. The union of

the subdomains Ωi forms an unstructured parameter domain Ω, and suitable

transition functions between the subdomains, together with a relation between
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the corresponding spline spaces, endow Ω with a manifold structure, which

is inherited by Σ. Notice that to cover completely the domain Ω, the open

parameter subdomains Ωi overlap. Hence, in order to cover the extraordinary

points (or edges) it is necessary that some of the subdomains Ωi also have an

unstructured configuration, and non-tensor product spline functions need to be

defined. This is in contrast to traditional multi-patch representations, where

only the patch boundaries intersect, and the (closed) domain is defined as the

union of the closure of the patches.

In Section 2 we recall and study the notion of a parameter manifold as

presented in [1]. We introduce the mesh on the parameter manifold and cor-

responding mesh constraints in Section 3. In Section 4 we introduce spline

manifold spaces based on tensor product B-splines and relate them to existing

constructions [10, 11, 12, 13]. Finally, we develop the framework of analysis

suitable spline manifold spaces in Section 5, where we extend the notion of

dual-compatibility to B-spline manifolds. In the main part of the paper we as-

sume that the manifold has no boundary. For a more detailed study of spline

manifolds with boundary see Appendix Appendix A. We conclude the paper

and present possible extensions in Section 6.

2. Parameter manifold

Before we can define unstructured spline spaces on manifolds we need to

introduce the abstract representation of the parameter domain, the so-called

parameter manifold. The following definitions are taken from [1]. The definitions

are valid for arbitrary dimension d, but we will mostly consider d = 1, 2, 3.

Definition 1 (Proto-manifold). A proto-manifold of dimension d consists of

• a finite set {ωi}i=1,...,N (named proto-atlas) of charts ωi, that are open

polytopes ωi ⊂ Rd, line segments for d = 1, polygons for d = 2 or polyhe-

dra for d = 3;

• a set of open transition domains {ωi,j}i,j=1,...,N such that ωi,j ⊂ ωi and

ωi,i = ωi;

• a set of transition functions {ψi,j}i,j=1,...,N , that are homeomorphisms

ψi,j : ωi,j → ωj,i fulfilling the cocycle condition ψj,k ◦ ψi,j = ψi,k in

ωi,j ∩ ωi,k for all i, j, k = 1, . . . , N ;

• For every i, j, with i 6= j, for every ζi ∈ ∂ωi,j ∩ ωi and ζj ∈ ∂ωj,i ∩ ωj ,
there are open balls, Vζi

and Vζj
, centered at ζi and ζj , such that no

point of Vζj
∩ ωj,i is the image of any point of Vζi

∩ ωi,j by ψj,i.
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Figure 1: Visualization of the cocycle condition

In Figure 1 we visualize the cocycle condition, depicting three domains ωi,

ωj and ωk and respective transition functions ψi,j , ψj,k and ψi,k. The hatched

regions represent corresponding transition domains.

In general, the transition domains ωi,j may be empty. It follows directly from

the cocycle condition that the transition function ψi,i is the identity function

on ωi,i = ωi and that ψ−1
i,j = ψj,i for all i, j.

Remark 1. The last condition in Definition 1 is taken from [19]. It guarantees

that the proto-manifold actually represents a manifold, i.e. that there are no

bifurcations of the domain. Note that this condition is not necessary for the

following definitions. However, if the condition is omitted, the resulting object

is not a manifold anymore.

In the next section the charts ωi will be used as (local) parameter domains

to define splines. By merging and identifying the charts of the proto-manifold

we obtain a manifold, which will serve as the parameter domain in our setting,

thus the name parameter manifold.

Definition 2 (Parameter manifold). Given a proto-manifold, the set

Ω =

 ⊔
i=1,...,N

ωi

/ ∼ (1)

is called a parameter manifold. Here
⊔

denotes the disjoint union, i.e.,⊔
i=1,...,N

ωi = {[ζi, i], ζi ∈ ωi, i = 1, . . . , N}

and the equivalence relation ∼ is defined for all ζi ∈ ωi and ζj ∈ ωj , as

[ζi, i] ∼ [ζj , j]⇔ ψi,j(ζi) = ζj .
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We denote by πi(ζi) ∈ Ω the equivalence class corresponding to ζi ∈ ωi.

To motivate the definition (and wording) above, we recall that Ω is indeed a

topological manifold, endowed with the natural structure (see [1] and [19]): πi

is a one-to-one correspondence between each ωi and πi(ωi) and plays the role

of a local representation, its inverse π−1
i is the coordinate chart in the classical

language of manifolds. In the following we use the notation Ωi = πi(ωi) and

Ωi,j = πi(ωi,j), where Ωi,Ωi,j ⊂ Ω. Hence we have Ωi,j = Ωj,i = Ωi ∩ Ωj . The

parameter manifold Ω can be interpreted as a topological manifold.

Remark 2. To be precise, a parameter manifold is a class of piecewise smooth

manifolds, which is a sub-class of topological manifolds and a super-class of

smooth manifolds. It is similar to the concept of piecewise linear manifolds (see

[20]). Depending on its local structure, the parameter manifold is either C0 or

C∞ locally. In general the parameter manifold is globally C0 and piecewise C∞.

We assume that there exists a metric on Ω, that allows us to introduce the

usual Lebesgue space L2(Ω). In Section 5 we present in more detail the function

spaces that are necessary for the analysis.

Having defined a parameter manifold Ω, we can define a mesh T on Ω in

Section 3 and a function space with a piecewise construction over the mesh in

Section 4.

3. Mesh and mesh constraints on the parameter manifold

We introduce the general concept of a mesh T on a parameter manifold Ω in

Section 3.1 and then develop the specific configurations we consider in Section

3.2. Following that, we present some example configurations and study the

meshing of complex geometries in Section 3.3.

3.1. Mesh on a parameter manifold

First we define a proto-mesh on the charts.

Definition 3. A proto-mesh

{τi}i=1,...,N with τi = {q ⊂ ωi} (2)

is a collection of sets, where

• each set τi is composed of open polytopes q, called elements; these are

intervals, quadrilaterals, hexahedra, etc., depending on the dimension d =
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1, 2, 3, . . ., respectively, and each set τi is a mesh on ωi, i.e. the elements

are disjoint and the union of the closures of the elements is the closure of

ωi;

• for every i, j, ωi,j is the interior of the union of the closure of elements of

τi; and

• the transition functions ψi,j map elements onto elements, i.e.

∀q ∈ τi, ψi,j(q) ∈ τj . (3)

Furthermore, we have the following.

Assumption 4. The transition functions are piecewise d-linear mappings with

respect to the mesh.

The proto-mesh naturally defines a mesh on Ω.

Definition 5 (Mesh on Ω). We define the mesh on the parameter manifold Ω

as

T = {Q ⊂ Ω : Q = πi(q), q ∈ τi, i = 1, . . . , N}. (4)

Remark 3. Thanks to (3), the set T in (4) is indeed a well defined mesh on

Ω. The elements of T are subsets of Ω that fulfill the standard properties of a

mesh, i.e. the elements are disjoint, the union of the closures of the elements is

the closure of Ω. Since Ω is a topological manifold the notion of the closure of

elements, boundary edges, faces, etc. is well defined and derives from the local

definition on each chart and the equivalence relation given by the transition

functions.

3.2. Structured and unstructured meshes on the parameter manifold

In the following we classify and restrict to specific but relevant charts, de-

pending on their local mesh topology.

We will say that several objects share a common object A, if A is contained

in the closure of each of the objects. Mesh objects and properties defined on

the charts can be carried over to the mesh T on Ω. We will not distinguish

between the mesh T on Ω and the proto-mesh defined on the charts, unless it is

necessary. The relations between vertices, edges, faces and elements are stated

within the global mesh. Moreover, these geometric objects are always assumed

to be open.

Definition 6 (Structured chart). A d-dimensional chart ωi is called a structured

chart if
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(A) ωi is a d-box, that is

ωi =
d∏
`=1

]ai,`, bi,`[ ,

and τi is a box mesh (see, e.g., [21]);

(B) for every j, ωi,j is a d-box or the union of d-boxes with disjoint closures;

and

(C) for every j, if ωj is a structured chart then the transition function ψi,j :

ωi,j → ωj,i is an affine mapping (a linear polynomial) in each connected

component of ωi,j .

Considering unstructured charts we need to distinguish three different types,

depending on the dimension and on the topological structure.

Definition 7 (Unstructured vertex chart, two-dimensional). A two-dimensional

chart ωi is called an unstructured vertex chart corresponding to an extraordinary

vertex ξi of valence ki 6= 4 if

(A) ωi is formed by a ring of ki conforming quadrangular segments si,`, with

` = 1, . . . , ki, around ξi, where each segment has a mesh σi,` which is

topologically equivalent to a box mesh, and the mesh τi is given as the

union of the meshes σi,` on the segments si,`;

(B) ωi, except for the extraordinary vertex ξi, is covered by the transition

domains ωi,j with structured charts, i.e.⋃
j=1,...,N

ωj structured

ωi,j = ωi \ ξi,

and the transition domains ωi,j are given by the union of segments; and

(C) if ωj is an unstructured chart with i 6= j, then ωi,j = ∅.

To give more insight into the definition of an unstructured vertex chart via

its segments, we present some example configurations, which are all constructed

from the same three conforming segments. Figure 2(a) depicts a mesh where

each segment is covered by a single element. Figure 2(b) depicts a conforming

mesh and Figure 2(c) contains two hanging vertices, hence it is a non-conforming

mesh. This figure also tells that the non-conformity of the mesh over the un-

structured vertex chart may have two reasons, either the meshes on two neigh-

bouring segments do not match (upper right hanging vertex) or the T-node is

already present within the mesh σi,` on the segment (lower left hanging vertex).
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(a) (b) (c)

Figure 2: Examples of meshes on a ring of 3 conforming segments around a two-dimensional

extraordinary vertex of valence 3

Definition 8 (Unstructured edge chart). A three-dimensional chart ωi is called

an unstructured edge chart of valence ki 6= 4 if

(A) ωi =
�
ωi × ω̄i, where the two-dimensional chart

�
ωi is a two-dimensional

unstructured vertex chart, as in Definition 7, with an extraordinary point
�
ξi of valence ki, partitioned into two-dimensional segments

�
si,` for ` =

1, . . . , ki; ω̄i is an interval ω̄i = ]ai,3, bi,3[; each three-dimensional segment

si,` =
�
si,` × ω̄i has a mesh σi,` which is equivalent to a three-dimensional

box mesh, and the mesh τi is again given as the union of all meshes σi,`

on the segments;

(B) ωi, except for the extraordinary line
�
ξi × ω̄i, is covered by transition do-

mains ωi,j with structured charts, i.e.⋃
j=1,...,N

ωj structured

ωi,j = ωi \
�
ξi × ω̄i,

and the transition domains ωi,j are given as the tensor-product of the

union of two-dimensional segments with an interval in the third direction;

(C) for structured charts ωj the transition function ψi,j is linear in the third

coordinate ζ3; and

(D) if ωj is an unstructured edge chart with i 6= j and ωi,j 6= ∅, then there

exists a structured chart ωk such that ωi,j ⊆ ωi,k.

Definition 9 (Unstructured vertex chart, three-dimensional). A three-dim-

ensional chart ωi is called an unstructured vertex chart corresponding to an

extraordinary vertex ξi of valence ki if
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(A) ωi is formed by a ring of ki conforming hexahedral segments si,`, with

` = 1, . . . , ki, around ξi, where each segment has a mesh σi,` which is

topologically equivalent to a box mesh, and the mesh τi is given as the

union of the meshes σi,` on the segments si,`;

(B) ωi, except for the extraordinary vertex ξi, is covered by the transition

domains ωi,j with unstructured edge charts, i.e.,⋃
j=1,...,N

ωjunstructured edge chart

ωi,j = ωi \ ξi,

and the transition domains ωi,j are given by the union of segments; and

(C) if ωj is an unstructured vertex chart with i 6= j, then ωi,j = ∅.

Note that from Definition 8 (B) and Definition 9 (B) it follows that for every

unstructured vertex chart in 3D the transition domains with structured charts

cover everything, except for the extraordinary features (union of extraordinary

vertex and extraordinary edges). In particular, the interior ef every element is

covered.

We would like to point out that Definitions 7 (C), 8 (D) and 9 (C) are not

strictly necessary, but technicalities to simplify the definition of spline manifold

spaces in Section 4. They guarantee that unstructured vertex charts do not

overlap and that unstructured edge charts only overlap in the vicinity of an

unstructured vertex. Notice that it is not possible that one element of the mesh

T is adjacent to two unstructured vertices. In the context of meshing, this

is not a severe restriction as we point out in the following section. Moreover,

each unstructured vertex and each unstructured edge corresponds to exactly

one unstructured vertex chart or unstructured edge chart, respectively.

Assumption 10. We assume that each chart ωi can be either structured as in

Definition 6 or unstructured as in Definitions 7, 8 and 9.

In the following section we give some example configurations and study in

more detail the meshing of complex geometries.

3.3. Example configurations and meshing of complex geometries

For simplicity, in the classification above we have restricted ourselves to a

limited number of types of charts, which nevertheless contain most mesh con-

figurations of practical interest. We first give a summary of the different types

of vertices that can occur (depending on the dimension), which motivates our
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chart classification. Each unstructured chart is formally defined in such a way,

that it can be used to cover a certain type of unstructured vertex. Following

the discussion of the types of vertices, we present some simple example con-

figurations and discuss the issues of meshing with manifolds. Without beeing

thorough, we present configurations that can be covered and such that cannot.

Since we do not want to go into the details of meshing we refer to the following

literature for quad-meshing [22] and hex-meshing [22, 9, 23].

For 1D domains (intervals, planar or spatial curves) there are only regular

vertices, which are equivalent to the knots in the classical B-spline language.

Hence no unstructured charts are needed.

For 2D domains we consider three types of vertices. A 2D vertex can be a

regular vertex, a hanging vertex (a T-node), or an extraordinary vertex (see Ta-

ble 1 and Figure 3). Both regular and hanging vertices are covered by structured

charts, although they may also belong to an unstructured chart. Unstructured

vertex charts cover a neighborhood of an extraordinary vertex.

structured vertex regular vertex (Figure 3(a))

hanging vertex (Figure 3(b))

unstructured vertex extraordinary vertex (Figures 3(c) and 3(d))

Table 1: Classification of vertices in 2D

(a) (b) (c) (d)

Figure 3: Different types of vertices in 2D ((a) regular, (b) hanging, (c) extraordinary valence

3, (d) extraordinary valence 5)

For 3D domains we have three types of edges and four types of vertices.

A 3D edge can be a regular edge, a hanging edge, or an extraordinary edge of

valence k 6= 4. A 3D vertex is called a regular vertex, if it is shared by regular

edges only; or a hanging vertex, if it is shared by regular and hanging edges.

Otherwise, the vertex is called an unstructured vertex. The notion of unstruc-

tured vertices contains both vertices of extraordinary edges, so called partially

unstructured vertices, as well as fully unstructured vertices. To be precise, a

partially unstructured vertex is a vertex that is shared by exactly two extraor-
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dinary edges that can be covered by a single unstructured edge chart. If this

is not possible, the vertex is a fully unstructured vertex. For a complete list of

types of vertices and edges in 3D see Table 2. Regular and hanging edges as

well as regular and hanging vertices are covered by structured charts. Hence,

we have considered two classes of three-dimensional unstructured charts: un-

structured vertex charts (covering fully unstructured vertices) and unstructured

edge charts (covering partially unstructured vertices and extraordinary edges).

Unstructured edge charts are tensor products of an unstructured vertex chart

in two dimensions and an interval in the third dimension: there is an inner

sequence of extraordinary edges and all other interior edges are regular or hang-

ing. Similar to the two-dimensional case, an unstructured vertex chart in 3D

covers a neighborhood of the fully unstructured vertex.

structured edge regular edge

hanging edge

unstructured edge extraordinary edge

structured vertex regular vertex

hanging vertex

unstructured vertex partially unstructured vertex

fully unstructured vertex

Table 2: Classification of edges and vertices in 3D

Let us consider an unstructured vertex chart ωi composed of ki segments,

where each segment is meshed with only one element. From Definition 6 it

follows that for any structured chart ωj with ωi,j 6= ∅ the transition domain

ψi,j(ωi,j) = ωj,i is a box-mesh. The same holds for ωi,j , which is then formed

by one or at most two quadrilateral elements. There must be (at least) ki subsets

ωi,j , each one formed by two adjacent elements, in order to cover ωi \ ξi.
Figure 4(a) depicts a two-dimensional unstrctured vertex chart ωi of valence

3 and a structured chart, as well as the corresponding transition domains. Since

the transition domains are open, it can be observed easily, that in this case 3

structured charts are needed to cover ωi. Figure 4(b) depicts a three-dimensional

unstructured vertex chart ωi of valence 4 as well as an unstructured edge chart of

valence 3 and corresponding transition domains. Again, we may observe that ωi

(except for the extraordinary vertex) can be covered by the transition domains of

4 unstructured edge charts. Moreover, ωi (except for the extraordinary vertex

and edges) can be covered with 6 structured charts. Figure 4(c) depicts an
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(a) (b) (c)

Figure 4: Different types of unstructured charts

unstructured edge chart of valence 5 and two possible transition domains. Note

that all the transition domains are mapped box-meshes, due to the assumptions

above. In all the examples presented here we assume that for each unstructured

vertex chart each segment is meshed with exactly one element. This is not

necessarily the case, as we presented in Figure 2. Note that, by definition, the

transition domains with structured charts can cover no more than 2 segments

of an unstructured chart.

Note that the types of charts we consider are sufficient to represent most

meshes of practical interest. Given an arbitrary quad- or hex-mesh without

hanging vertices or edges, a global bisection of the mesh can be covered by

structured charts, as in Definition 6, and unstructured charts, as in Definitions

7, 8 and 9.

This statement becomes clear, when looking at the types of vertices and

edges that can occur in the bisected mesh. We consider only 3D meshes in the

following. We show that every vertex of the bisected mesh can be covered by a

valid chart of one of the three categories. Every vertex of the initial hex-mesh is

one of the three: a structured vertex, a partially unstructured vertex or a fully

unstructured vertex. The bisection of the initial mesh introduces new vertices

from midpoints of edges, faces and hex-elements (one point for each edge, face

and element). The midpoints of structured edges, faces and elements become

structured vertices. The midpoints of unstructured edges become partially un-

structured vertices. Hence no new fully unstructured vertices are introduced.

All structured vertices can be covered by structured charts, all partially un-

structured vertices can be covered by unstructured edge charts and all fully

unstructured vertices can be covered by unstructured vertex charts. It is easy

to see that, due to the bisection, the closure of any element can contain at most
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one extraordinary vertex. All other assumptions are trivially fulfilled.

4. Spline manifold space on the parameter manifold

In this section we introduce spline spaces over the mesh T on Ω, in short

spline manifold spaces.

4.1. General spline manifold spaces

Again based on [1], we define a spline space on a parameter manifold using

the charts. This is achieved by defining proto-basis functions on the proto-mesh

(Definition 11) and transfering them onto the parameter manifold using the

equivalence relation induced by the transition functions (Definition 13). Each

chart ωi plays the role of a local parameter domain.

Definition 11 (Proto-basis functions). We define a proto-basis as a set

{{bAi : ωi → R}Ai∈Ai}i=1,...,N , (5)

where all proto-basis functions bAi
, with Ai ∈ Ai, are linearly independent

functions defined on ωi. We further assume that for each i = 1, . . . , N and

Ai ∈ Ai the function bAi fulfills

lim
ζ→∂ωi

bAi(ζ) = 0. (6)

Assumption 12. The proto-basis functions bAi with Ai ∈ Ai are piecewise

polynomials with respect to τi, i.e. bAi
|q is polynomial for all q ∈ τi.

Definition 13 (Spline manifold space). For each i = 1, . . . , N and Ai ∈ Ai we

define BAi
: Ω→ R such that

BAi
|Ωi

= bAi
◦ π−1

i

BAi |Ω\Ωi
= 0,

(7)

and set

Bi = {BAi
: Ω→ R,Ai ∈ Ai}. (8)

Furthermore, we introduce the global index set

A =

 ⊔
i=1,...,N

Ai

/ ≈ (9)

where the equivalence relation ≈ is defined as follows: given [Ai, i] and [Aj , j]

in
⊔
i=1,...,N Ai, then [Ai, i] ≈ [Aj , j] if and only if the two functions BAi

∈ Bi
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and BAj ∈ Bj coincide. Therefore, BA : Ω→ R is well defined for A ∈ A, and

we set

B = {BA,A ∈ A} ≡
⋃

i=1,...,N

Bi. (10)

Moreover, we set

B̃i = {BA|Ωi
, A ∈ Ãi}, (11)

where

Ãi = {A ∈ A : supp(BA) ∩ supp(BAi
) 6= ∅ for some Ai ∈ Ai}. (12)

The set B̃i is the restriction of B onto Ωi containing all the functions in Bi and

also the restriction of any function whose support intersects supp(Bi) but is not

included in Bi. The functions in B̃i can be pulled back to the chart ωi.

Finally, the span of functions in (10) is the spline manifold space, the spline

space on the parameter manifold Ω, denoted by

S = span {BA,A ∈ A} . (13)

With some abuse of notation, for the global index A ∈ A we will say that

A ∈ Ai if there exists an index Ai ∈ Ai such that its equivalence class through

≈ is equal to A.

To distinguish different types of functions, we introduce the notation

As =
⋃

ωi is structured

Ai,

Ae =

 ⋃
ωi is unstr. edge

Ai

 \ As,
Av =

( ⋃
ωi is unstr. vertex

Ai

)
\ (As ∪ Ae) ,

(14)

where As is the index set of structured functions, Ae is the index set of edge

(or partially) unstructured functions and Av is the index set of vertex (or fully)

unstructured functions. It is clear that

As ∩ Ae = As ∩ Av = Ae ∩ Av = ∅. (15)

Remark 4. Equation (6) together with (7) guarantees that the functions are

globally continuous. If discontinuous functions are allowed, the condition (6)

can be omitted.
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4.2. B-Spline manifold spaces

We assume that each function that is completely supported in one chart is

a function of that chart. Moreover, we assume that each structured chart is

completely covered by the supports of its functions.

Assumption 14. For each i = 1, . . . , N and each A ∈ A we have that if

supp(BA) ⊆ Ωi

then A ∈ Ai. If ωi is a structured chart as in Definition 6, then⋃
Ai∈Ai

supp(BAi) = Ωi.

Moreover, if the support of a function BA is structured, then there exists a

structured chart that covers the support.

Hence we conclude that the set Bi contains all functions that are completely

supported in Ωi and the set B̃i contains all functions that have a support inter-

secting with Ωi.

For simplicity we assume that the functions have the same degree p in each

direction on each structured chart.

Assumption 15. If ωi is a structured chart as in Definition 6, then each func-

tion BA in B̃i is a tensor-product B-spline of degree p when restricted to ωi,

i.e., there exist (local) knot vectors ΞA,i,1, . . . ,ΞA,i,d such that

BA ◦ πi(ζ) = b[ΞA,i,1](ζ1) . . . b[ΞA,i,d](ζd), ∀A ∈ Ãi,∀ζ ∈ ωi, (16)

where b[Ξ](ζ) is the univariate B-spline with local knot vector Ξ. In this notation

the degree p of the B-spline is given implicitly by the length of the local knot

vector.

Finally, the previous assumption is extended to unstructured edge charts,

since they behave like structured charts along the third parametric direction,

and like unstructured vertex charts along the first two parametric directions.

Assumption 16. If ωi is an unstructured edge chart as in Definition 8, then

each function BA in B̃i is a product of a bivariate function and a B-spline of

degree p in ζ3 when restricted to ωi, i.e. there exist a function βA,i and a local

knot vector ΞA,i,3 such that

BA ◦ πi(ζ) = βA,i(ζ1, ζ2)b[ΞA,i,3](ζ3), ∀A ∈ Ãi,∀ζ ∈ ωi. (17)
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Remark 5. From the definition of the unstructured charts ωj, and under As-

sumption 15, we have that the functions BA, with A ∈ Aj, are fully defined by

their restrictions to the transition domains ωj,i with structured charts. On each

ωj,i the functions in Bj ∩B̃i are equivalent to (mapped) tensor-product B-splines

according to (16).

4.3. Isogeometric function spaces using spline manifolds

We consider a domain Σ ⊂ Rn which can be interpreted as a d-dimensional

manifold with d ≤ n. The most interesting cases, and the ones we focus on,

are a two-dimensional planar domain Σ ⊂ R2, a surface Σ ⊂ R3 or a three-

dimensional volumetric domain Σ ⊂ R3.

Definition 17. The physical domain Σ is given by a spline manifold parametriza-

tion G ∈ (S)n, with

G : Ω→ Σ. (18)

In practical situations, this parametrization is defined by associating a con-

trol point to each function in B. Notice that the geometry Σ inherits the man-

ifold structure of the parameter manifold Ω. Indeed, the parametrization G

can be considered as a piecewise defined function, where Gi : Ωi → Σi is a

tensor-product B-spline parametrization for every structured chart Ωi. Then

we have

Σ =
N⋃
i=1

Σi,

where the charts Σi form an atlas of Σ.

Then, the isogeometric function space over the manifold Σ is given as follows.

Definition 18. Given a spline manifold parametrization G ∈ (S)n as in Defi-

nition 17, we define on the manifold Σ the isogeometric function space as

V = {f : Σ→ R, such that f = f̂ ◦G−1 for f̂ ∈ S}. (19)

The isogeometric space is well-defined, if the geometry parametrization is in-

vertible. We could move here the assumption on det∇GT∇G.

Similar to the spline manifold space S itself, the isogeometric space V can

be interpreted as a piecewise defined function space. Indeed, each function in

Bi can be composed with G−1 to define the corresponding function in Σ, with

its support contained in the chart Σi.
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4.4. Relation to existing constructions

We note that several constructions of unstructured spline spaces existing in

the literature fit in the framework of B-spline manifolds, in some cases with

minor modifications. For instance, the definition of unstructured T-splines as

presented in [11, 12] for quad-meshes and hex-meshes, the G1-continuous un-

structured T-splines as presented in [13], as well as multi-patch B-splines with

enhanced smoothness as developed in [10]. The development of an abstract

framework for the construction of these spaces can serve as the starting point

for a deeper mathematical analysis of their properties. In the following we detail

how these three particular examples fit into the framework of B-spline manifolds.

In all three cases, the idea is to split the set of basis functions into structured

and unstructured basis functions, and introduce a set of charts covering the

whole mesh. In this context, a function is called structured, if its support is

covered by a structured mesh (possibly with hanging nodes). Otherwise it is

called unstructured.

T-splines over unstructured meshes [11]. In this configuration the mesh T we

consider on Ω is the Bézier mesh and not the T-mesh. Then, we can define

the set of charts by taking the support of each structured function as a single

structured chart, while the support of each unstructured function is taken as

one unstructured vertex chart. In the construction of [11] it may happen that

one element contains two extraordinary vertices. In this case two unstructured

vertex charts overlap, violating Definition 7 (C). This condition is a technicality

which simplifies the mathematical framework, and could be removed. It can

also be fulfilled with one level of refinement of the T-mesh, as we explained

in Section 3.3. In a similar way, the constructions for trivariate functions as

presented in [12] fit, with some technical restrictions, into the present framework.

G1-smooth T-splines over unstructured meshes [13]. This construction is similar

to the construction in [11]. The support of each structured function can again

be interpreted as a single structured chart. For each extraordinary vertex we

can define one sufficiently large unstructured chart ωj , such that it covers the

support of all functions that are non-zero at the extraordinary vertex. In this

case, the unstructured functions do not fulfill Assumption 15, since their degree

is increased in the vicinity of the extraordinary vertex, and their restriction to a

structured chart is not a B-spline basis function as in (16), but a suitable linear

combination of B-splines of higher degree.
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Multi-patch B-splines with enhanced smoothness [10]. The authors propose a

construction based on a multi-patch representation of the domain. This can be

interpreted as a manifold structure with closed charts (patches), that intersect

only at the boundary. However, since there is a one-to-one correspondence of

parameter directions along any shared boundary between two patches, the multi-

patch representation can be transformed naturally to a parameter manifold

representation by simply enlarging the patches along the parameter direction

crossing the boundary to obtain open charts. Note that in general it is necessary

to define more than one chart to cover one patch. Again, there are unstructured

functions at the extraordinary vertices, and unstructured vertex charts have to

be introduced to cover their support.

5. Analysis-suitable spline manifold spaces

We introduce in this section the conditions for the construction of analysis-

suitable B-spline spaces on manifolds, that is, spaces that have good properties

for the solution of differential problems. The key tool for this construction is

the definition of a (stable) dual basis, which is a set of functionals {ΛA,A ∈ A}
such that

ΛA(BA′) = δAA′ , ∀A,A′ ∈ A,

where δAA′ represents the Kronecker delta. A condition for the construction

of a dual basis for structured T-splines was given in [24, 2], under the name of

dual-compatibility.

We present the construction of dual functionals on the parameter manifold Ω

in Section 5.1, starting from a proto-dual basis on each chart, and then following

the scheme of spline manifold spaces introduced in Section 4.1. To guarantee

that these dual functionals form a dual basis we need to add some conditions

to the spline manifold. In Section 5.2 we give a dual-compatibility condition

for spline manifolds, which generalizes the condition in [24, 2] to the unstruc-

tured setting. In this configuration, a global dual basis can be derived from

the proto-dual bases defined on the charts. Then, in Section 5.3 we present

an explicit configuration, with a specific construction of the proto-basis func-

tions and the proto-dual basis on unstructured vertex and edge charts. In this

configuration, which is only C0-continuous at extraordinary features, the dual

functionals in Ω can be derived from the proto-dual basis without any further

modification, which also guarantees the stability of the dual functionals. Finally,

in Section 5.4 we show the typical application of a dual basis: we prove otpimal
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approximation properties of the isogeometric space on a simple but interesting

example configuration.

5.1. The dual basis for spline manifold spaces

In the following we use this well-known result.

Proposition 1. Given a set of finitely many L2 functions {bα} that are linearly

independent, there exist functionals λα : L2 → R that are dual to the functions,

i.e., λα(bα′) = δαα′ .

As for the definition of the basis functions for spline manifold spaces intro-

duced in Section 4.1, the starting point is a set of dual-functionals on each chart,

that exist thanks to the previous proposition and Definition 11.

Definition 19 (Proto-dual basis). We define a proto-dual basis as a set

{{λ̂Ai
: L2(ωi)→ R}Ai∈Ai

}i=1,...,N ,

where the functionals λ̂Ai
form a dual basis for the proto-basis functions in the

chart, that is

λ̂Ai
(bA′i) = δAiA′i

, ∀Ai,A
′
i ∈ Ai.

Note that the existence of a proto-dual basis is guaranteed by Proposition

1, since the proto-basis functions bAi
are linearly independent. We will assume

that the proto-dual functionals satisfy the following.

Assumption 20. For any indices [Ai, i] ≈ [Aj , j] that belong to the same

equivalence class A ∈ A, defined as in (9), it holds that λ̂Ai
(φ ◦ πi) = λ̂Aj

(φ ◦
πj), ∀φ ∈ L2(Ω).

The assumption that two equivalent indices are associated to the same dual

functional is natural, since by (9) they are also associated to the same basis

function, and it allows the following global definition.

Definition 21 (Manifold functionals). For any A ∈ A we define the functional

Λ̂A(φ) = λ̂Ai(φ ◦ πi), ∀φ ∈ L2(Ω), (20)

where [Ai, i] is one instance of the equivalence class A.

From (20), the support of the dual functional Λ̂A is contained in Ωi. The

most used dual bases for splines, such as the one by Schumaker [25] and the ones

by Lee, Lyche and Mørken [26] satisfy the stronger condition that the support

of Λ̂A is the same of the corresponding function BA.
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Note that in general the dual functionals {Λ̂A,A ∈ A} do not form a dual

basis for B = {BA,A ∈ A}. In the following section we introduce a new

condition that ensures that a dual basis can be derived by a modification of the

dual functionals Λ̂A.

5.2. Dual-compatible spline manifold spaces

For the definition of the dual-compatibility condition we follow and extend

the recent review paper [27]. Two knot vectors Ξ′ = {ξ′1, . . . , ξ′p+2} and Ξ′′ =

{ξ′′1 , . . . , ξ′′p+2} overlap if there exists a knot vector Ξ = {ξ1, . . . , ξk} and two

integers k′ and k′′ such that ξ′i = ξi+k′ and ξ′′i = ξi+k′′ , for i = 1, . . . , p + 2.

We generalize the dual-compatibility condition to spline manifold spaces in the

following definition.

Definition 22 (Dual-compatible spline manifold spaces). Under the previously

stated assumptions, the set B defined in (10) is dual-compatible if the following

conditions hold

1. for all A ∈ Ai ⊂ As and ∀A′ ∈ Ãi there exists an index l ∈ {1, . . . , d},
such that the knot vectors ΞA,i,l and ΞA′,i,l as in (16) are different and

overlap;

2. for all A ∈ Ai ∩Ae, with ωi being an unstructured edge chart, and for all

A′ ∈ Ai, either the knot vectors ΞA,i,3 and ΞA′,i,3 as in (17) overlap and

are different, or βA,i 6= βA′,i;

3. for all A ∈ Ai ∩Ae, with ωi being an unstructured edge chart, and for all

A′ ∈ (Ãi \ Ai) ∩ (Ae ∪ Av) the knot vectors ΞA,i,3 and ΞA′,i,3 as in (17)

overlap and are different.

Here As, Ae and Av are defined as in (14).

[27] (as well as the previous papers [24, 2]) the authors deal only with

the structured case, and actually the dual-compatibility condition in [27] cor-

responds to point 1 in Definition 22. The new definition extends the dual-

compatibility condition to an unstructured configuration. As in [27], Definition

22 gives a sufficient condition for the existence of a dual basis. For that, we

use two technical ingredients: the first is a univariate L2-stable dual functional

λ[Ξ], such that, if Ξ and Ξ′ are overlapping,

λ[Ξ](b[Ξ′]) =

{
1 if Ξ = Ξ′,

0 if Ξ 6= Ξ′;
(21)

see, for example, [25, 26]; the second is the existence of a proto-dual basis on

each chart, guaranteed by Proposition 1. Our main result follows.
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Theorem 1. If the set B is dual-compatible, then there exists a set of functionals

B∗ =
{

ΛA : L2(Ω)→ R such that A ∈ A
}
,

that is dual to B, i.e.,

∀A,A′ ∈ A, ΛA(BA′) = δAA′ . (22)

Proof. First, we construct dual functionals for the different types of charts. Let

ωi be a structured chart. Given A ∈ Ai ⊂ As we set

λ̂A = λ[ΞA,i,1]⊗ . . .⊗ λ[ΞA,i,d], (23)

where the knot vectors ΞA,i,k are given as in (16). Let ωi be an unstructured

edge chart. Given A ∈ Ai ∩ Ae, let Ai,A ⊂ Ai ∩ Ae be the set of indices A′

such that ΞA,i,3 = ΞA′,i,3 as in (17). Since the set Bi is linearly independent,

the same holds for the set

{βA′,i : A′ ∈ Ai,A} (24)

and by Proposition 1 there exist functionals {λ̂A′,i : A′ ∈ Ai,A} that are dual

to (24). We define the proto-dual functional λ̂A : ωi → R

λ̂A = λ̂A,i ⊗ λ[ΞA,i,3],

Finally, let ωi be an unstructured vertex chart. Consider Ai ∩Av, and again by

Proposition 1 the set Bi, which is assumed to be linearly independent, admits

a proto-dual basis {λ̂A : A ∈ Ai ∩ Av}. Having defined λA for all A ∈ A, we

construct the corresponding Λ̂A as in (20).

It is easy to check that, by the construction above and Definition 22, it holds

∀A ∈ As,∀A′ ∈ (As ∪ Ae ∪ Av), Λ̂A(BA′) = δAA′ , (25)

∀A ∈ Ae,∀A′ ∈ (Ae ∪ Av), Λ̂A(BA′) = δAA′ , (26)

∀A ∈ Av,∀A′ ∈ Av, Λ̂A(BA′) = δAA′ . (27)

As already noted, from Definition 21 we also infer

∀A ∈ A,∀A′ ∈ A \ Ãi, Λ̂A(BA′) = 0. (28)

In general, the set of functionals {Λ̂A}A∈A is not dual to the set of functions

B = {BA}A∈A, but we can easily fix it by defining, for all φ ∈ L2(Ω), the
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functionals:

∀A ∈ As, ΛA(φ) = Λ̂A(φ),

∀A ∈ Ae, ΛA(φ) = Λ̂A(φ)−
∑

A′′∈(Ãi\Ai)∩As

Λ̂A(BA′′)ΛA′′(φ),

∀A ∈ Av, ΛA(φ) = Λ̂A(φ)−
∑

A′′∈Ãi\Ai

Λ̂A(BA′′)ΛA′′(φ).

(29)

By going through all combinations for A,A′ ∈ As,Ae,Av and using (25)–(27)

as well as the condition (28), it follows that the set {ΛA}A∈A as defined in (29)

fulfills (22).

5.3. Definition of a basis and corresponding dual basis for a simplified configu-

ration

The dual compatibility condition of the previous section ensures the exis-

tence of a dual basis, which implies the linear independence of the basis functions

in B. We now focus on a simplified configuration of B-spline manifold spaces,

which allows for exactly one extraordinary function in every unstructured ver-

tex chart. We explicitly construct a dual basis within the abstract framework

of Section 5.2. However, taking advantage of the specific case considered here,

we obtain dual functionals whose support is the same as the support of the

corresponding functions.

In Assumption 23 we restrict our studies to more simple unstructured vertex

charts, where each segment corresponds to an element of the mesh. Moreover,

we give an explicit representation for the extraordinary vertex functions. Note

that one may also define a collection of extraordinary vertex functions that are

discontinuous at all or some of the element boundaries within the unstructured

vertex chart. For simplicity, we consider only one C0 continuous extraordinary

vertex function for each unstructured vertex chart.

Assumption 23. For each unstructured vertex chart ωi, we assume that the

mesh τi is the union of the meshes σi,` on the segments si,`, where each σi,`

contains a single element qi,` which covers the whole segment. Moreover, we

assume that there exists exactly one index A ∈ Ai and the function BA ∈ Bi
is named unstructured vertex function. The extraordinary vertex function is

continuous, has the value 1 at the extraordinary vertex, and for each element

qi,` ∈ τi there exists a d-linear mapping ψ̂i,` : qi,` → ]0, 1[
d
, such that

BA ◦ πi(ζ) = b̂d ◦ ψ̂i,`(ζ), for all ζ ∈ qi,`, (30)
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where b̂d is defined as in

b̂d(ζ1, . . . , ζd) = (1− ζ1)p . . . (1− ζd)p,

= b[Ξ0](ζ1) . . . b[Ξ0](ζd), ∀(ζ1, . . . , ζd) ∈ ]0, 1[
d
, (31)

with Ξ0 = [0, . . . , 0, 1].

For each unstructured edge chart ωi =
�
ωi × ω̄i, the mesh of the underlying

bivariate chart
�
ωi is again given such that each segment

�
si,` of the bivariate

chart is covered by a single element
�
qi,`, the one-dimensional structured chart

ω̄i is partitioned into a mesh τ̄i = {q̄1, . . . , q̄mi
}, and the mesh τi on ωi is given

via

τi = { �qi,` × q̄k :
�
qi,` ∈

�
τi, q̄k ∈ τ̄i}.

Moreover, we assume that for all A′,A′′ ∈ Ai the unstructured edge functions

BA′ , BA′′ are given as in (17), where βA′,i = βA′′,i are equal to the same

unstructured vertex function of dimension d = 2. Hence, for each segment
�
qi,` × ]ai,3, bi,3[ there exists a bilinear mapping ψ̂i,` :

�
qi,` → ]0, 1[

2
, such that

BA ◦ πi(ζ) =
(
b̂2 ◦ ψ̂i,`(ζ1, ζ2)

)
b[ΞA,i,3](ζ3), for all ζ ∈ �qi,` × ]ai,3, bi,3[ ,

corresponding to the representation in (17).

Given an unstructured vertex chart ωi this means that, denoting by j(q) a

chart index such that ωj(q) is a structured chart and q ⊂ ωi,j(q), there exist knot

vectors ΞA,q,j(q),1, . . . ,ΞA,q,j(q),d of the kind

[ξ′, . . . , ξ′︸ ︷︷ ︸, ξ′′
p+1 times

] or [ξ′, ξ′′, . . . , ξ′′︸ ︷︷ ︸
p+1 times

] (32)

such that

BA ◦ πj(ζ) = b[ΞA,q,j(q),1](ζ1) · . . . · b[ΞA,q,j(q),d](ζd),

for all ζ such that ψj(q),i(ζ) ∈ q. We can now define a dual basis explicitly, using

this representation. A similar representation can be derived for unstructured

edge charts.

In the following we define proto-dual functionals λA and corresponding man-

ifold functionals ΛA as in Definition 21 which fulfill

ΛAi(BA′i
) = δAiA′i

, ∀Ai ∈ Ai, and ∀A′i ∈ Ãi. (33)

Hence they form a dual basis for BA, with A ∈ A. For each structured function

(a function completely supported by a structured chart), the dual functional is
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given as the tensor-product of univariate functionals (21). For an unstructured

vertex function we construct a dual functional by adding the contributions of

each segment of the unstructured vertex chart, each being a structured subdo-

main. For unstructured edge functions, we construct a dual functional anal-

ogously to the basis function in (17), that is, the tensor-product of the dual

functional of a bivariate unstructured vertex function with the dual functional

of a univariate B-spline in the third direction.

Theorem 2. Given a dual-compatible spline manifold space let

B∗ = {ΛA,A ∈ A}

be a set of functionals ΛA : L2(Ω)→ R such that:

• if ωi is a structured chart, then for all A ∈ Ai, we have

ΛA(φ) = (λ[ΞA,i,1]⊗ . . .⊗ λ[ΞA,i,d])(φ|Ωi
◦ πi), ∀φ ∈ L2(Ω), (34)

where the knot vectors ΞA,i,k are given as in (16);

• if ωi is an unstructured vertex chart and BA, for A ∈ Ai, is the corre-

sponding unstructured vertex function, then let Qi,` = πi(qi,`) and

ΛA(φ) =
1

ki

ki∑
`=1

ΛA,i,`(φ|Qi,`
), ∀φ ∈ L2(Ω), (35)

where

ΛA,i,`(φ) = (λ[Ξ0]⊗ . . .⊗ λ[Ξ0])(φ ◦ πi ◦ (ψ̂i,`)
−1),

for all φ ∈ L2(Qi,`), with Ξ0 = [0, . . . , 0, 1]; and

• if ωi is an unstructured edge chart and BA, for A ∈ Ai, is a corresponding

unstructured edge function, then let Qi,` = πi(
�
qi,` × ]ai,3, bi,3[), and

ΛA(φ) =
1

ki

ki∑
`=1

ΛA,i,`(φ|Qi,`
), ∀φ ∈ L2(Ω), (36)

where

ΛA,i,`(φ) = (λ[Ξ0]⊗ λ[Ξ0]⊗ λ[ΞA,i,3])(φ ◦ πi ◦ ((ψ̂i,`)
−1, ζ3)),

for all φ ∈ L2(Qi,`).

The set B∗ is dual to B, that is

ΛA(BA′) = δAA′ , ∀A,A′ ∈ A.
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Proof. To prove this theorem, we need to show that (33) is fulfilled. From the

dual compatibility condition, it follows that (33) is fulfilled for all A ∈ Ai and

A′ ∈ A, where ωi is a structured chart. For unstructured charts ωi, it is obvious

that

ΛAi
(BA′i

) = δAiA′i
, ∀Ai ∈ Ai, and ∀A′i ∈ Ai ∪ (A \ Ãi).

What remains to be shown is that ΛAi
(BA′i

) = 0 for all A′i ∈ Ãi\Ai. This

becomes clear, as for all unstructured functions BA the functional ΛA evaluates

to zero for all piecewise polynomials that are zero at the extraordinary features.

This concludes the proof.

In the following section we show approximation properties for a simplified

configuration. Note that the results may be extended to more general configu-

rations.

5.4. Approximation properties of spline manifolds on uniform meshes

Having a stable dual basis, one can define a projection operator and use it

to prove approximation properties of the B-spline manifold space.

Here we consider h-refinement: a spline manifold Ω is given, with an initial

mesh Th0
over it. From this we construct a family of meshes {Th} by mesh

refining each structured chart. The refinement has to be consistent with the

manifold structure, fulfilling Definition 3, in particular (3), and Definitions 7–9.

Note that during h-refinement the structured charts and transition functions

between them are unchanged, while the unstructured charts are modified in

order to fulfill the mentioned Definitions. Accordingly, we assume that a family

of nested spaces {Sh} is given. The subscript h always denotes the dependence

on the refinement level.

A physical manifold Σ is given on the initial mesh through a parametrization

G ∈ (Sh0
)3, as in (18). For simplicity, we consider a bivariate Ω, then Σ is a

closed surface in the space R3. During h-refinement G is kept unchanged. This

gives a sequence of nested isogeometric spaces Vh via (19).

To study the approximation properties of Vh we follow the approach in, e.g.,

[28, 2, 29] for structured spline spaces, which applies to the present framework

as well. To keep it simple, we focus on a simple configuration: we consider

a manifold obtained merging tensor-product patches with continuity Cp−1 but

around the extraordinary vertices, where the continuity is only C0. This con-

figuration is referred to as multi-patch B-splines with enhanced smoothness as

in [10], where it has been first introduced and studied in the context of isogeo-

metric analysis. On the coarsest mesh Th0
, the length of the C0 lines is p + 1

25



element edges, which corresponds to the condition that a function in {Sh0} is

C0 across the patch interfaces if and only if it has an extraordinary vertex in the

closure of its support. The structured charts for this configuration can be taken

as the union of each pair of patches that have a common interface. This is not

the only possibility but it simplifies the next steps. In this case each transition

function ψi,j between structured charts is the composition of a translation and

a rotation by a multiple of π
2 . To further simplify, we assume the mesh on each

structured chart is uniform with mesh-size h.

We assume by construction that each space Sh is complete. By this, we mean

that for every structured chart ωi the set B̃i spans all piecewise polynomials of

degree p and continuity stated above.

The space L2(Ω) is defined as

L2(Ω) =
{
φ : Ω→ R | φ ◦ πi ∈ L2(ωi) for all structured charts ωi

}
,

having the corresponding norm

‖φ‖2L2(Ω) =
∑
Q∈Th

‖φ ◦ πi,Q‖2L2(π−1
i,Q(Q))

, (37)

where ωi,Q is a structured chart covering Q, i.e. Q ⊆ πi,Q(ωi,Q). Due to the

isometry of the transition function, the L2-norm of a function defined on a chart

fulfills ‖ϕ‖2L2(ωi,j) = ‖ϕ ◦ ψj,i‖2L2(ωj,i)
for all structured charts ωi, ωj . Hence,

the L2-norm on Ω is well-defined. Moreover, the definition of the L2-norm is

independent of the level of refinement. We define bent Sobolev spaces Hk(Ω)

in the same fashion. Bent Sobolev spaces are piecewise Sobolev spaces with

some regularity at the element interfaces, see [28, 27]. For example, the space

Hp+1(Ω) is defined as the closure of the space of piecewise C∞ functions having

the same continuity at the mesh lines of the space S, with respect to the norm

‖φ‖2Hp+1(Ω) = ‖φ‖2L2(Ω) +

p+1∑
k=1

|φ|2Hk(Ω), (38)

where

|φ|2Hk(Ω) =
∑
Q∈Th

|φ ◦ πi,Q|2Hk(π−1
i,Q(Q))

(39)

and | · |Hk(q) is the usual k-th order Sobolev seminorm. Obviously, all the spaces

and norms can be defined accordingly on subdomains of Ω and are independent

of the level of refinement.

Using the dual basis defined in Theorem 2 we introduce a projection operator

ΠSh : L2(Ω)→ Sh onto the B-spline manifold space via

φ 7→ ΠSh(φ) =
∑

A∈Ah

ΛA(φ)BA (40)
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The projector is L2 stable, uniformly with respect to h, i.e.

‖φ−ΠSh(φ)‖L2(Ω) ≤ C‖φ‖2L2(Ω), ∀φ ∈ L2(Ω), (41)

which follows directly from the L2 stability of the dual basis as defined in The-

orem 2, see for example [27]. To prove its approximation properties we use the

following Lemma.

Lemma 3. Let SR be the space of all piecewise polynomials with respect to a

uniform Cartesian mesh of a box R ∈ R2, such that

• the mesh is formed by up to 2p + 1 elements per direction with meshsize

h;

• the polynomial degree is p in each direction; and

• the continuity is Cp−1 globally with the exception of a mesh line e where

the continuity is only C0, i.e., SR ⊂ Cp−1(R \ e) ∩ C0(R).

Let Hp+1(R) be the bent Sobolev space associated to SR. Then for all φ ∈
Hp+1(R) there exists a σ ∈ SR such that

‖φ− σ‖L2(R) ≤ Chp+1|φ|Hp+1(R) (42)

with a constant C only dependent on p.

Proof. The size of R depends on the number of elements n = (n1, n2) in each

direction and the element size h. Given φ ∈ Hp+1(R) there exists indeed σ ∈ SR
such that

‖φ− σ‖L2(R) ≤ C(p, h,n, e)|φ|Hp+1(R)

with C(p, h,n, e) independent of φ. The proof is the same as for the classical

Bramble-Hilbert lemma, see, e.g., [28]. The dependence of the constant with

respect to h, that is C(p, h,n, e) = C(p,n, e)hp+1, follows from a scaling argu-

ment. Finally, there are a finite number of different configurations for n and e,

therefore we can set C(p) = maxn,e C(p,n, e).

See Figure 5 for a possible configuration of R. Here, the line of C0 continuity

is shown in blue.

Given Q ∈ Th, we define Q̃ ⊂ Ω in the following way: for each structured

chart ωi, Q̃ ∩ Ωi is the minimal box containing all the supports of functions

in Bh whose support includes Q. We can now state the local approximation

estimate.
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Figure 5: Possible configuration of a box R and mesh line e for degree p = 2

Theorem 4. Under the assumptions of this Section, for φ ∈ Hp+1(Q̃) it holds

‖φ−ΠSh(φ)‖L2(Q) ≤ Chp+1|φ|Hp+1(Q̃), (43)

where the constant C depends only on p.

Proof. The first step of the proof is to show that, given φ ∈ Hp+1(Q̃), there is

an s ∈ Sh such that

‖φ− s‖L2(Q̃) ≤ Ch
p+1|φ|Hp+1(Q̃). (44)

We are in one of two cases, either

(a) Q̃ contains an extraordinary vertex, or

(b) Q̃ ⊂ πi(ωi) where ωi is a structured chart.

(a) (b)

Figure 6: Different types of support extensions Q̃ for p = 2

See Figure 6 for a representation of the two possible cases. In the figure the

C0-continuity lines are depicted in blue. The dark green element represents

Q and the light green region represents its support extension Q̃. Due to the

assumption on the length of the C0 lines, case 1) occurs when Q is adjacent

to an extraordinary vertex, i.e., there exists an unstructured chart ωi such that

Q ⊂ πi(ωi). In this case we can split Q̃ into Q̃1, . . . , Q̃ki such that each Q̃`
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intersects only the segment πi(si,`) (see Definition 7). Each Sh |Q̃`
is a standard

tensor-product spline space therefore we can use [27, Section 2.2.2 and Section

4.4] in order to construct splines σ` ∈ Sh |Q̃`
which approximate φ |Q̃`

and match

continuously in the whole Q̃. Since on the coarsest mesh the C0 lines at the

extraordinary vertex cover p + 1 element edges (see Figure 6), each interface

between two adjacent sets of Q̃1, . . . , Q̃ki is covered by the C0 continuity lines

of s ∈ Sh and (44) follows. In Case 2), we can use Lemma 3, then (44) follows

by (42).

Having (44) and recalling the L2 stability of the projector ΠSh , (43) is derived

in the usual way, i.e.

‖φ−ΠSh(φ)‖L2(Q) = ‖φ− σ −ΠSh(φ− σ)‖L2(Q)

≤ C‖φ− σ‖L2(Q̃)

≤ Chp+1|φ|Hp+1(Q̃).

The stability constant as well as the approximation constant only depend on p,

which concludes the proof.

By means of inverse estimates and generalising (44), (43) can be extended

to higher order Sobolev norms. For 0 ≤ q ≤ p+ 1 it holds

|φ−ΠSh(φ)|Hq(Q) ≤ Chp−q+1|φ|Hp+1(Q̃), (45)

where the constant C depends only on p and q. The details are not reported

for the sake of brevity.

We can extend the result to a mapped domain Σ, in this case a closed surface

in R3, parametrized by G ∈ (Sh0)3. We assume that G is regular, that is, there

exist constants c, c, with

c ≥ det(∇GT (x)∇G(x)) ≥ c > 0

for all x ∈ Q and for all Q ∈ Th0 . Note that, in general, we cannot define

Sobolev spaces of any order on Σ, due to the lack of smoothness of the manifold

itself. However the L2 space on Σ can be defined as

L2(Σ) = {f : f ◦G ∈ L2(Ω)}

and the corresponding norm is given via

‖f‖L2(Σ) = ‖f ◦G (det(∇GT∇G))1/4‖L2(Ω).
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The bent Sobolev spaces can be defined similarly, as in (38)–(39). See [30, 31]

for more details about Sobolev spaces on manifolds. Then, for all f ∈ L2(Σ),

we can define the isogeometric projector

ΠVh(f) = ΠSh(f ◦G) ◦G−1.

Approximation properties of ΠVh easily follow from the ones of ΠSh stated in

Theorem 4, following the same approach of [28, 32].

Theorem 5. Under the assumptions of this Section, for all f ∈ Hp+1(Σ)

‖f −ΠVh(f)‖L2(Σ) ≤ Chp+1‖f‖Hp+1(Σ). (46)

where the constant C depends only on G and p.

Note that all the results presented here extend naturally to volumetric do-

mains. In that case, the lines of C0 continuity extend to faces of C0 continuity

in a vicinity of the extraordinary vertices and edges.

6. Conclusion and possible extensions

We have introduced a new general mathematical framework, based on man-

ifolds, for the definition and the analysis of unstructured spline spaces. As it

is done in [1] the main idea is to decompose the domain into charts, which

are meshed with quadrilaterals or hexahedra. Then spline basis functions and

dual functionals can be defined locally on each chart. Unstructured charts are

necessary to cover extraordinary vertices and edges of the domain.

We have used this framework to generalize the dual-compatibility condition

of [24, 2] to unstructured spline spaces, and in particular to analyze the ap-

proximation properties of splines with high continuity everywhere except in the

vicinity of extraordinary vertices and edges, where the continuity is only C0.

Although the analysis was restricted to the low continuity case, the framework

allows for the definition of spline functions with higher smoothness, and their

analysis will be the aim of future work.

In our definitions the physical domain is necessarily a manifold. However,

since we are defining the charts in the parametric domain, and not in the physical

domain, it is possible to extend our framework to non-manifold domains using

special bifurcation charts (such as T-shaped or X-shaped charts for curves, etc.)

This could be of interest for certain beam or shell formulations, or for the proper

representation of the medial axis or medial surface of an object, for instance.

Finally, for the sake of simplicity we have restricted ourselves to B-splines

and T-splines on quadrilateral/hexahedral meshes. The framework can be easily

generalized to other spline spaces, such as NURBS or trigonometric splines.

30



Acknowledgements

The authors were partially supported by the European Research Council

through the FP7 Ideas Starting Grant HIGEOM, and by the Italian MIUR

through the PRIN “Metodologie innovative nella modellistica differenziale nu-

merica”. This support is gratefully acknowledged.

Appendix A. Spline manifolds with boundary

We can extend the definition of a spline manifold to a manifold with bound-

ary. To do so, we first need to extend Definition 1, defining a suitable proto-

manifold that takes into account the boundary.

Definition 24 (Manifolds with boundary). A proto-manifold with boundary is

a generalization of a proto-manifold, where the charts {ωi}i=1,...,N are given

as ωi = interior (ωi) ∪ γi, such that interior (ωi) are open polytopes forming

a standard proto-manifold (with transition domains interior (ωi,j) and transi-

tion functions ψi,j) and each γi ⊂ ∂ωi is a part of the boundary of the chart

interior (ωi). Moreover, the transition domains fulfill ωi,j = interior (ωi,j)∪γi,j ,
with γi,j = γi∩∂ωi,j , and the transition functions are the continuous extensions

of ψi,j and map γi,j onto γj,i and interior (ωi,j) onto interior (ωj,i).

Similar to the standard parameter manifold in Definition 2, we can define

the parameter manifold with boundary Ω via the equivalence relation induced by

the transition functions. Since the transition functions always map the interior

onto the interior and the boundary onto the boundary, the parameter manifold

Ω can be separated into interior (Ω) and the boundary denoted by Γ.

This definition of the boundary of the (open) parameter manifold is equiv-

alent to the classical definition of a manifold with boundary, as discussed in

[1]. In this case every boundary point of the manifold has a neighborhood that

is homeomorphic to the half d-ball. Note that the boundary Γ itself can be

interpreted as a topological manifold of dimension d− 1.

For the definition of the spline spaces, we assume the following.

Assumption 25. The local boundary γi is conforming with respect to the

elements, i.e. there exists a subset of faces of elements q ∈ τi that forms a mesh

for the boundary γi.

To be able to define manifolds with boundary containing non-convex fea-

tures, we need additional types of charts, so called boundary charts. To avoid

the tedious formal definition of boundary charts, we present figures that should
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explain the ideas behind. In Figure A.7 we present different types of two-

dimensional boundary vertices, regular boundary vertices (a) - (c), as well as

a non-regular boudary vertex (d). The vertices in Figures 7(a) and 7(b) can

be covered by the boundaries of structured charts (see Figure 8(a) – 8(c)). For

the vertex in Figure 7(c) we need a special boundary chart (see Figure 8(d)),

associated with the function which is non-zero at the corner. Note that the

boundary vertex in Figure 7(d) is discarded since it does not allow for functions

that are non-zero at the corner.

(a) (b) (c) (d)

Figure A.7: Different types of valid (a)–(c) and non-valid (d) boundary vertices in 2D

(a) (b) (c) (d)

Figure A.8: Structured charts with boundary (a)–(c) and boundary chart (d) in 2D

In the three-dimensional case, there are more different configurations to con-

sider, which are listed in Table A.3. Here, we need to consider two different types

of boundary charts.

structured edge regular boundary edge

structured vertex regular boundary vertex

hanging boundary vertex

unstructured vertex partially unstructured boundary vertex

Table A.3: Classification of valid boundary edges and vertices in 3D

Figures A.9 and A.10 depict several possible three-dimensional charts with

boundary. In Figures 9(a)–9(c) we show several examples of structured charts

with boundary. Figure 9(d) shows an unstructured edge chart with boundary.
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In Figure A.10 we show the two different types of boundary charts, that are

(a) (b) (c) (d)

Figure A.9: Structured charts with boundary (a)–(c) and unstructured edge chart with bound-

ary (d) in 3D

needed to represent all meshes of practical interest. The one in Figure 10(a)

is a tensor-product of a two-dimensional boundary chart with an interval in

the third direction. The chart depicted in Figure 10(b) is a boundary chart

corresponding to a non-convex vertex at the boundary. One can include more

complex boundary configurations by introducing unstructured boundary charts,

which we will not consider for the sake of simplicity.

(a) (b)

Figure A.10: Boundary charts in 3D

Concerning spline manifold spaces on parameter manifolds with boundary,

we need to adjust the condition on proto-basis functions in equation (6) to

obtain

lim
ζ→∂ωi\γi

bAi(ζ) = 0. (A.1)

With this modification, the spline manifold space can interpolate at the bound-

ary. The theory concerning dual-compatibility and approximation properties

presented in Section 5 can be generalized directly to spline manifolds with

boundary. Most importantly, both Theorems 4 and 5 extend directly to mani-

folds with boundary, using the boundary charts introduced here. Thus extending

the approximation error bounds to manifolds with boundary of general topology.
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[7] S. K. Kleiss, C. Pechstein, B. Jüttler, S. Tomar, IETI - isogeometric tearing

and interconnecting, Computer Methods in Applied Mechanics and Engi-

neering 247-248 (0) (2012) 201 – 215.

[8] G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Analysis-suitable volume

parameterization of multi-block computational domain in isogeometric ap-

plications, Computer-Aided Design 45 (2) (2013) 395 – 404, solid and Phys-

ical Modeling 2012.
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