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IEEE 802.15.4 Air-Ground UAV Communications
in Smart Farming Scenarios

Manlio Bacco, Andrea Berton, Alberto Gotta, Luca Caviglione

Abstract—Smart farming is one of the most promising appli-
cations showing the benefits of using unmanned aerial vehicles
(UAVs). Thus, precision agriculture in rural areas may largely
benefit from low-cost and easy-to-deploy vehicles able to exchange
data with ground sensors for monitoring and controlling auto-
mated cultivations. In this letter, we describe, both analytically
and empirically, a real testbed implementing IEEE 802.15.4-
based communications between an UAV and fixed ground sensors.
In our scenario, we found that aerial mobility limits the actual
IEEE 802.15.4 transmission range among the UAV and the
ground nodes to approximately 1/3 of the nominal one. We also
provide considerations to design the deployment of sensors in
precision agriculture scenarios.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly used
in several scenarios, including goods delivery, environmental
monitoring, public protection, and disaster relief [1]. Smart
agriculture and smart farming are ones of the most promising
scenarios where UAVs can leverage their power. As possible
examples, they can undertake remote sensing campaigns, spray
chemicals, apply variable rate treatments, create vegetation
indexes, and gather data from a variety of sensors deployed in
the field [2][3]. To this aim, an UAV should be able to com-
municate with a ground station, IoT nodes, or wireless sensors
[3]. Owing to its cost-effectiveness, a large availability on the
market, and a low-power footprint, IEEE 802.15.4 should be
preferred over IEEE 802.11 in terms of power efficiency [4]
and over 3G/4G mobile networks, which may provide sporadic
coverage in rural areas [5]. Moreover, precision agriculture
applications often require short-range communications, thus
making IEEE 802.15.4-based systems a convenient choice.

To effectively exploit UAVs for smart farming, the perfor-
mances of the short-range wireless link must be carefully ad-
dressed and this letter focuses on its characterization at packet
level. This allows to engineer the protocol stack, optimize
mission parameters, or pursue energy efficiency. The IEEE
802.15.4 standard has been widely investigated in both outdoor
and indoor scenarios. However, only few works explicitly
consider the impact of aerial mobility, e.g., in terms of speed
of the UAV, orientation of antennas, or signal strength [6], [7].
An important contribution on the behavior of IEEE 802.15.4
can be found in reference [8], where the authors investigate
several metrics, including the packet loss. Unfortunately, the
study is limited to links used by road vehicles to exchange
data peer-to-peer or with a road infrastructure. The framework
presented in [9] addresses the design of a winged vehicle,
using IEEE 802.15.4 to retrieve information from sensors in
an agricultural setting. However, the authors concentrate on

the size, weight, and power requirements of an UAV. To the
best of our knowledge, there are not any previous works that
investigate the performances of IEEE 802.15.4, when used
by an UAV to communicate with ground sensors in a smart
farming context. A partially overlapping work can be found in
[10], but it focuses on near-urban and sub-urban environments
that differ from rural ones.

Therefore, along the lines of the preliminary works [11]
and [12], this letter attempts to fill such a research gap.
Specifically, to characterize the packet loss of IEEE 802.15.4
in rural deployments, we propose a cross-layer framework
using a two-ray path loss (TRPL) model at the physical layer
and a Gilbert-Elliott Markov chain to derive the packet loss
experienced at the MAC layer. We conducted a very extensive
measurement campaign in rural environments, in order to
evaluate the effectiveness of the proposed approach. To sum
up, the main contributions of this letter are: a refinement of
generic models used for IEEE 802.15.4-based applications and
an example on how a grid deployment of ground sensors
impacts on the packet delivery rate experienced by a mobile
UAV, which acts as a data mule.

The rest of this letter is organized as follows. Section II
introduces the channel model. Section III discusses the testbed
and the obtained measurements, while Section IV provides
the characterization of the IEEE 802.15.4 link. Section V
concludes the letter.

II. CHANNEL MODEL

In general, the signal path loss (PL) at 2.4 GHz between
two endpoints acting in open space, like a rural field, can
be modeled by explicitly taking into account the line of sight
component and the reflected one due to the ground effect [13].
The TRPL model allows to calculate the PL, defined as:

PL = 10 log10

(4πd

λ

)2

− 20 log10

[
2 sin

(2πhthr
λd

)]
, (1)

where λ is the wavelength of the considered radio signal,
ht and hr are the heights of the transmitting and receiving
antennas, respectively, and d is the distance between the
transmitter and the receiver. All the considered values are
in meters. Equation (1) can be used to compute the received
signal strength (RSS) in dBm, which is defined as:

RSS = PT +Gt +Gr − PL, (2)

where PT is the transmitted power in dBm, Gt and Gr the
transmitting and receiving antenna gains in dBi, respectively.

Equation (2) allows evaluating whether the received in-
formation can be successfully decoded or not. To this aim,
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(a) The transmission module
deployed on the UAV.

(b) The drone in use in our
testbed.

Fig. 1: The IEEE 802.15.4 mobile endpoint implemented on
the UAV and the vehicle used in our testbed.

the minimum receiver sensitivity (MRS) in dBm defines
the threshold above which the receiver can correctly decode
the received data, i.e., when RSS ≥ MRS. Otherwise, the
information is lost.

According to the movements of the UAV, two states can be
identified for the link: i) a bad state B with RSS < MRS on
the average that leads to a packet error rate PB ; ii) a good state
G with RSS ≥ MRS on the average that provides a packet
error rate PG. Let πG and πB be the stationary probabilities of
being in G and B, respectively. A general approach exploits
the Gilbert-Elliott model (see [14], [15]), which is governed by
a discrete Markov chain using the information given by RSS
to define the behavior of the link with a per-packet granularity.
For the sake of completeness, we point out that, if PG = 0,
the Gilbert-Elliott model reduces to the Gilbert model. An
ON-OFF model refers to the condition PB = 1 and PG = 0.
Furthermore, PG, PB , πG, and πB can be used to compute
the average packet loss probability Ploss, as defined in [14]:

Ploss = πGPG + πBPB . (3)

To recap, the Gilbert-Elliott model can be used to evaluate
the performance of a link in terms of packet error rate,
while considering two states both characterized by an error
probability, as in this work. We point out that, in our testbed,
being in the state G (or B) was mainly influenced by the
distance d between the IEEE 802.15.4 transceiver on the UAV
and the one on the ground. In fact, other impacting parameters,
such as ht, and hr, are here assumed as constant because
they have an almost negligible influence, if compared with
the distance.

III. TESTBED AND MEASUREMENTS

In this section, we introduce the testbed and the methodo-
logy used for the measurement campaign, then we analyze the
collected dataset.

A. Testbed and Methodology

To evaluate the performances of the IEEE 802.15.4 link,
we performed several tests in a rural field close to Pisa, Italy.
Specifically, we considered a line of sight scenario, which per-
fectly captures many rural-agricultural settings [9], [11], [12].
As extensively done for similar investigations (for instance,
see [16] and the references therein), the IEEE 802.15.4 stack
has been implemented by using the Waveshare Open2530
board relying on the TI CC253x radio module operating

in the 2.4 GHz non-licensed ISM band. Network endpoints
have been implemented by using two boards connected to
laptops collecting a variety of diagnostic information and
usage statistics. According to the standard, a maximum gross
rate of 250 kbit/s is expected, along with a transmission range
of approximately 150 m. Figure 1a depicts a detail of the
payload of the flying vehicle, while Figure 1b showcases the
UAV. The UAV in use is an octocopter of about 5 kg, equipped
with brushless engines and able to fly at a maximum speed of
130 km/h for about 15-20 minutes, depending on the payload
(up to 2.5 kg). If the UAV autonomously follows a path
planned offline, the maximum speed is limited to 40 km/h.
In this case, the Doppler effect can be neglected [17].

Concerning the methodology used to collect data, the UAV
encircled a given area, by automatically tracking some prede-
fined GPS waypoints, as to mimic the inspection of a zone
for evaluating the vegetation index or the humidity of the
soil. To collect a consistent dataset, repeated flights have been
performed at an average flying quota of ht = 3 m. The
distance d between the ground transceiver, placed at hr = 3.9
m and the UAV was continuously logged1. The values for ht
and hr were chosen as to have the minimum heights avoiding
any obstacles in the flying area. A sensitivity analysis on the
heights is out of the scope of this work based on a real testbed.

To have a good tradeoff between the accuracy of the GPS
and feasible communication ranges, we considered distances
in the 10 − 50 m range, which can be found in a variety of
smart farming applications, including variable rate treatments
in precision agriculture [11], [12]. In our testbed, the ground
transceiver acts as a IEEE 802.15.4 PAN coordinator.

To guarantee statistical reliability, we conducted more than
20 repeated trials. The two transceivers exchange data by using
packets of 50 bits at a rate of ∼4 kbit/s. For each packet, we
logged the sequence number and a received flag, i.e., a boolean
value set to 1 if the packet has been received, or 0 if lost. The
quality of the wireless link is evaluated by collecting RSS
samples, which are computed by the Open 2530 module by
averaging the power received over a eight symbol timeframe.
Timestamps are used for synchronizing and correlating data
with GPS measurements during the offline processing. The
latitude, longitude, and speed of the UAV are provided by the
on-board LEA-6 GPS chipset. For all variables, the tracking
interval has been set to 0.5 s, as to have a proper tradeoff
among accuracy and size of the dataset. The used transmission
power Pt is 4.5 dBm, which is the maximum allowed value.
For both the receiving and transmitting antennas, the gains Gt

and Gr are set to 2 dBi. As it will be shown in Section IV,
we did not consider lower values for Pt as this would severely
hamper the throughput. The MRS of the IEEE 802.15.4 radio
in use is −107 dBm, as reported in the datasheet of the TI
CC2530F256 module.

B. Analysis of the Dataset
The dataset collected during the flights is composed of more

than 80,000 samples. Figure 2 showcases a partial snapshot.

1The ground antenna has been placed on top of a pole to enhance line of
sight properties, while sensors and actuators can remain at the ground level
near the soil or the vegetation.
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(a) Empiric PDF and best fit.
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(b) 8,000 samples for the RSS.

Fig. 2: Relevant values of the dataset collected in the mea-
surement campaign.
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Fig. 3: Different values of RSS in our testbed: the solid grey
line is the plot of the model in Equation (2), while black points
are measurements. The dashed line is the decoding threshold.

In more detail, Figure 2a depicts the empiric distribution of
d during all the flights and the best fitting obtained through
a normal distribution with mean 32.6, variance 9.80, and
standard deviation 3.13. Figure 2b portraits a subset of 8,000
RSS samples, which has been taken from the whole dataset
to estimate the empirical mean. The average condition that
RSS < MRS leads to an empirical packet loss rate equal to
P̃loss = 0.308.

Figure 3 depicts in black the median values (along with
the standard deviation) of the empirical RSS obtained from
measurements. The solid grey line represents the model
in Equation (2). The horizontal dashed line is the MRS
threshold, under which packets cannot be correctly decoded,
i.e., MRS = −107 dBm. Deviations from median values
have been already investigated in [12] and mostly depend
on the variability of the flight altitude. In fact, external
disturbances, such as the wind or fluctuations in the rotation
speed of propellers, may temporarily vary the flight altitude or
the alignment of antennas, thus causing misalignment losses.
Despite this, the proposed framework applied to our dataset
provides a very good fit with the resulting model in Equation
(2).

IV. PACKET-LEVEL CHANNEL CHARACTERIZATION

In this section, we characterize the link performance at the
packet level, especially in terms of packet loss rate. To this
aim, we identify a spatial threshold that defines if a packet
has been correctly delivered when the channel is in the G or
in the B state. According to our investigations, the distance d
is the main trigger for a state transition, whereas the effect of
other variables is very limited.

Let us denote with D the distribution of the distance d
and with d̄ the threshold distance that causes a change in the
behavior of the link, i.e., the switching from state B to G and
vice versa. The conditional error probability when in state G
can be calculated as:

PG(d̄) =

∫ d̄

0

RSS(x)D(x) dx. (4)

Similarly, πG can be obtained by calculating the probability
that d ≤ d̄:

πG(d̄) =

∫ d̄

0

D(x) dx. (5)

The values in the B state, i.e., PB and πB , can be obtained
with analogous calculations, by considering d̄ < d ≤ 50 m, the
maximum useful distance in our setup. Therefore, combining
Equations (3), (4), and (5), the packet loss rate is as follows:

Ploss(d̄) = πG(d̄)PG(d̄) + πB(d̄)PB(d̄). (6)

The distance d̄∗, for which Equation (6) approximates
Equation (3), can be computed via the following minimization:

d̄∗ = argmin
d̄

||Ploss(d̄)− P̃loss||2,

0 ≤ d̄ ≤ 50. (7)

To perform the minimization in (7), we consider for D a
normal distribution (see Figure 2a). We obtained Ploss(d̄

∗) =
0.304, which closely matches the empirical packet loss
P̃loss = 0.308 computed in Section III-B.

A. Example Application

In the following, we showcase how the model can be used
to design the deployment of ground devices interacting with an
UAV in agricultural applications and smart farming scenarios.
To this aim, we compute PG(d̄∗), PB(d̄∗), πG(d̄∗), πB(d̄∗),
and the corresponding Ploss(d̄

∗), by assuming a different
distribution D of the distance d. For example, let us consider a
grid of sensors deployed on a rural field with varying densities,
i.e., a distance of S m between ground nodes arranged on a
regular grid. We impose a minimum distance between the UAV
and a ground transceiver of at least at M = 5 m to minimize
the probability of having a collision. Therefore, we drawn d
from an uniform distribution D in the range

[
M, S

2

]
.

Table I showcases the numerical results computed by using
Equations (4), (5), and (6) for different uniform distributions,
and providing decreasing coverages. This allows to evaluate
the impact of different densities of ground transceivers in terms
of packet loss rate, i.e., it provides how many transceivers
should be deployed to achieve an average packet loss rate
below a desired threshold. For instance, a dense grid would
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TABLE I: Probabilities describing the Gilbert-Elliott model.

D PG PB πG πB Ploss

[5, 15] 0.084 0 1.000 0.000 0.084
[5, 25] 0.124 0.193 0.750 0.250 0.141
[5, 35] 0.124 0.236 0.500 0.500 0.180
[5, 45] 0.124 0.365 0.375 0.625 0.275
[5, 55] 0.124 0.443 0.300 0.700 0.347

require deploying a large number of antennas, thus leading
to high operational and maintenance costs. Conversely, more
sparse deployments could reduce both consumptions and costs,
but at the price of higher cross-interferences, or limited possi-
bility of frequency reuse. As an example, referring to Table I,
if S/2 ≤ 15 m, πB = 0 and PB = 0, thus resulting in a low
Ploss. If more distance among the transceivers is expected,
e.g., between 15 and 25 m, then an higher Ploss should be
taken into account. Agricultural applications, which require
UAVs with a larger transmission range, should consider that
IEEE 802.15.4 links exhibit a not negligible error probability,
when the link operates in the state G (Ploss ≥8%, as shown
in Table I). This may impose either the use of error recovery
techniques, power allocation schemes, or the exploitation of an
optimal trajectory [18], as well as hybrid solutions including
switching to a different radio link technology. In fact, moving
from precision agriculture or smart farming scenarios to differ-
ent ones (e.g., surveillance), short-range radio systems might
be abandoned in favor of long-range technologies, which are
characterized by a different tradeoff between the transmission
rate, energy consumption, and coverage range.

V. CONCLUSION AND FUTURE WORKS

In this letter, we discussed the use of IEEE 802.15.4 in
smart farming and precision agriculture applications charac-
terized by mobile UAVs communicating with ground sensors.
Results indicate that a Gilbert-Elliott model can be suitable
to approximate the packet loss rate of the link when the UAV
moves in a rural area at low speeds. Since the distance between
the communicating endpoints plays a major role, this can be
a limit for the use of the IEEE 802.15.4 standard: in fact, the
feasible transmission range in our testbed is reduced to approx-
imately 1/3 with respect to the nominal value. When moving to
very large rural fields or frameworks requiring beyond-line-of-
sight properties, other communication mechanisms may be of
interest, as for instance the emerging LoRa / SigFox standards.

Future works aim at refining the model by also considering
the impact of different quotas, as well as to understand whether
the proposed approach can be used to model the behavior of
IEEE 802.15.4 in more general scenarios, e.g., those mixing
IoT and industrial applications along with autonomous vehi-
cles.
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