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Blind Source Separation (BSS) 
General Statement of the problem

During the last two decades, many algorithms for source separation were introduced, specially for the case of 
independent sources reaching to the so called Independent Component Analysis (ICA). Generally speaking 
the purpose of BSS is to obtain the best estimates of M input signals (s) from their M observed linear mixtures
(x) .

mixtures sourcesMixing 
matrix (MxM)

Obtaining sources estimates (    ) is a linear problem, we look for a separating matrix D such that

Dxs =ˆ
Where       is composed by permuted and/or sign changed versions of s(t) entries.ŝ

As usually, it is assumed sources signals with zero-mean and unit-variance.

The Linear Mixing Model:

1−= PAD Pwhere with being a permutation matrix

Note: A more complete model should consider additive noise and non-square matrix A
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• A precise mathematical framework for ICA (noiseless case) was stated by P. Comon (1994). He has 
shown that if at most one source is Gaussian then ICA problem can be solved, has explained the 
permutation indeterminacy, etc.

• Many algorithms were developed by researches using the concept of contrast functions (objective 
functions to be minimized) mainly based on approximations to Mutual Information-MI measure is defined as 
follows through the Kullback-Leibler distance:

• ICA can be interpreted as an extension of Principal Component Analysis (PCA). In PCA we seek for the 
sources that are uncorrelated (not necessarily independent) that concentrate as much as possible the 
energy of signals in the principal components. ICA requires more than decorrelation of data, it requires the 
independence of sources.

Independent Sources case

Note that, if all source estimate yi are independent, then                                   and I(y)=0

Marginal densityJoint density
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Some famous ICA/BSS algorithms

• P. Comon algorithm (1994);
• InfoMax (1995) by Sejnowski et al;
• FastIca (1999) by Hyvärinen;
• R. Boscolo algorithm (2004); 
• and others.

• AMUSE (Algorithm for Multiple Unknown Signals Extraction) (1990) by L. Tong et al;
• JadeTD (Joint Approximate Diagonalization Eigenmatrices with Time Delay) (2002) by . Georgiev et 
al (based on the JADE algorithm – Cardoso (1993))
• SOBI (Second Order Blind Identification) (1993) by A. Belouchrani et al;
• EVD (Eigenvalue Decomposition) (2001) by P . Georgiev and A. Cichocki;
• and others.

Some ICA algorithms that minimize Mutual Information of source estimates

Some BSS algorithms that exploit the time correlation of sources
(based on second order statistics (SOS) or higher order statistics (HOS))

Note: This is not a complete list. There are a lot of algorithms in the literature
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Mutual Information and non-Gaussianity relationship
How can we approach the Dependent Sources case?

• In ICA context, many authors have shown that minimizing MI of sources is equivalent to maximize the 
Non Gaussianity of source estimates. It’s a consequence of Central Limit Theorem (P. Comon, A. 
Hyvärinen).

• But, what happen when the sources have some dependence degree and are correlated? The MI 
minimization may be not a good strategy. Cardoso has presented (2003) a meaningful decomposition of MI 
measure

In case of imposing independence of sources, then C(y)=0 and clearly, it is equivalent minimize MI to 
maximize each of G(yi). But if sources are allowed to be correlated maximizing non-Gaussianity is 
not the same as Minimizing MI.

Mutual Information Non-Gaussianity
measure for yi

constantOverall correlation
of y entries

1s
0s

1−Ms

1x
0x

1−Mx
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Linear
system

Increase Gaussianity
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Independent

sources

OUTPUT:
Mixtures
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Maximum Non-Gaussianity and
Minimum Entropy related methods

• Since the Gaussian distribution has the maximum entropy over all distributions with the same variance (C. 
Shanon-1948), to maximize Non-Gaussianity means to Minimize Entropy. 

• Some measures of Non-Gaussianity have been used in the past in the framework of Projection Pursuit 
(PP) (J. H. Friedman - 1974). In PP lower-dimensional projection are looked for in order to analyze higher-
dimensional data. A projection became more interesting as less Gaussian it is (more structured).

• Experimental results, as the ones presented here, show that Maximizing non-Gaussianity (minimize 
entropy) is useful for separate dependent sources. Other authors have mentioned the power  of Minimum 
Entropy Methods (like D. Donoho - 1981) for dependent cases in different applications (i.e. deconvolution).

• The theoretical basement for the Maximum Non-Gaussianity method (Minimum Entropy) for dependent 
sources remains as an open issue. It is not clear at this time what are the minimum conditions that 
dependent sources must satisfy in order to guarantee the separation through a minimum entropy method.
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A measure of Non Gaussianity based on the L2 euclidean distance

( )ypΓ

Considering a continuous random variable y (with zero-mean and unit-variance), we define our non-
gaussianity measure of  a probability density function (pdf) py denoted by              , as following:

with

• is the Euclidean distance in the space of probability density functions (with zero-mean and unit-
variance).

• It provides a bounded positive number: ( ) ∞<Γ≤ yp0

Integrated Squared Error
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Estimating a probability density function (pdf) by Parzen Windows
• We want to estimate a pdf from a set of N samples of the variable y: y(0), y(1),.., y(N-1). 
• Parzen windows is a non parametric estimation technique and has the following form:

Where:      is a window function (or kernel), for example a Gaussian function, and 
h   is as the parameter which affects the width and height of the windows functions

Samples: y(0), y(1), etc

Pdf estimate using 
Parzen windows

Φ



Signal & Images Laboratory of ISTI, CNR, Pisa, Italy. 2005

Analytical form of Non-Gaussianity measure

Using Parzen windows and properties of the convolution of Gaussian functions, we finally reach to the 
following formulae for our Non-Gaussianity measure.

constant Complexity : O(N) Complexity : O(N2)

Notes: 
• The advantage of having an analytical expression of the measure, is that we are able 
to analytically calculate derivatives for searching the local maxima.

• Additionally this expression has good properties, is continuous, is a linear combination 
of Gaussians, etc

• We can take advantage on these properties in order to obtain a fast calculation of local 
maxima.
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The MaxNG Algorithm
• Source estimate vector has the linear form:

• We propose to determine matrix D row by row maximizing the measure of non-Gaussianity for each yi for a fixed 
unit-variance. In other words we need to find M different local maxima of the non-Gaussianity measure (py) using 
a parameterization of the separating matrix.
• In order to enforce the unit-variance of yi we propose to do two things (Pre-processing):

1- To apply a spatial whitening (or sphering) technique using the well known Karhunen-Loeve transformation.

2- Parameterize each row of new separating matrix       as unit norm vectors using hyperspheric coordinates.

For example for M=3 a general parameterization of a row of matrix          is:

• In general, for estimating M sources from M mixtures we need to search for M local maxima in a (M-1)-
dimensional space
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Local Maxima search
• In order to maximize the Non-Gaussianity measure we implement a search based on the Gradient Ascend Algorithm. 
Fortunately an exact expression of the gradient can be directly obtained.

• In order to obtain M different local maxima we run the gradient ascend search many times from different starting points. After 
each local maximum is found, we need to remove it from the objective function in order to avoid to reach it again. This 
procedure is called Deflation or non-Gaussian structure removal.
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Computational complexity
• One of the main issues addressed in this approach is how to reach to a reasonable computational complexity
in order to allow fast algorithms.
• A common technique in Parzen windows methods is to arrange the data set in clusters.

d = Cluster size

P clusters << N samples
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• Additionally double summations (O(N2)) can be written as convolutions and calculated in the Fourier domain (FFT).
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Some experimental results
Example: High correlated data

Sources extracted from two adjacent columns in a satellite image
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Some experimental results (cont) – pdf comparison
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Some experimental results (cont)
Minimum Mutual Information (MI) estimates

Using a calculation of Mutual Information based on R. Boscolo work we obtained the following for the same 
example. Mutual Information is a function of two angles.

Real position of angles

Minima are not located in the real 
positions (Wrong estimate)

),( 21 θθI
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Some experimental results (cont)
Experiment 1: MaxNG vs Min MI comparison

A total of 300 simulations for different sources and different levels of dependence were done. Original sources where extracted 
from pixel columns of various satellite images. Selecting different column offsets between signals, we have a control of the 
level of dependence. A signal length of N=512 was chosen. Using a known mixing matrix A, mixtures were generated and 
estimation of sources using MaxNG and Min MI were performed.

Error: Signal To Interference ratio

In general, SIR levels below 10-12 dB threshold are indicative of a failure in obtaining the desired source separation. 
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Some experimental results (cont)
Experiment 2: MaxNG algorithm efficiency versus data sample size N
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Correlation of sources
We have applied the algorithm for data sample size from N=128 to N=5376, with a step size N=128. Efficiency 
was calculated averaging a total of 600 separation cases for each N.
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Some experimental results (cont)
Experiment 3: Comparison with other algorithms

We have compared the results of our MaxNG algorithm against the results obtained through the application 
of some classical BSS/ICA methods like: AMUSE, EVD2, SOBI, JADE-opt, FPICA, Pearson-opt (ICALAB 
software package).
Case 1: Speech signals. Two speakers say the same sentence. These signals were extracted from the 
ICALAB benchmark example named halo10.mat. These signals exhibit a slight level of correlation, in our 
case was: E[s0s1]=-0.049. The number of used data samples was N=6000.    
Case 2: Satellite signals. Two pixel columns were extracted from an optical satellite image. These two 
columns were 2 pixels apart one from the other in the original image, therefore they are highly correlated, 
the coefficient correlation was: E[s0s1]=0.818 which is a very high value. The number of used data samples 
was N=5960.

Example 1: speech signals AMUSE EVD2 SOBI JADE FPICA Gauss Pearson MaxNG
SIR signal 0 39.59 49.45 63.97 11.41 31.42 25.83 25.20
SIR signal 1 28.36 32.27 31.34 10.57 61.11 22.07 57.27
MeanSIR 33.97 40.86 47.66 10.99 46.27 23.95 41.24

Example 2: satellite signals AMUSE EVD2 SOBI JADE FPICA Gauss Pearson MaxNG
SIR signal 0 9.80 9.92 0.11 9.83 9.57 2.95 20.29
SIR signal 1 10.42 10.30 0.11 10.39 10.68 19.92 20.40
MeanSIR 10.11 10.11 0.11 10.11 10.12 11.43 20.34
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Visual comparison of results
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Conclusions
• Non-Gaussianity measures are useful for separating dependent sources.
• A new algorithm called MaxNG is proposed showing good performance for independent as well as for 
dependent sources.

Discussion about future directions
• The theoretical basement for Minimum Entropy (MaxNG) methods is an open issue. It seems to be a 
powerful and general approach but precise conditions on signals are not available
• An extension to a noisy model should be investigated. It is well known that in this case, the estimation of 
sources is a non-linear estimation problem.
• An extension to non-square mixing matrix should be investigated.


