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Abstract 11 
Digital technologies are often seen as an opportunity to enable sustainable futures in agriculture and rural 12 
areas. However, this digital transformation process is not inherently good as it impacts on many aspects  (e.g. 13 
economic, environmental, social, technological, institutional) and their relations. The Responsible Research 14 
and Innovation approach calls for a better understanding and anticipation of the often unknown impacts. To 15 
meet this aim we have developed a framework that allows to gain insight on the relations between the social, 16 
the cyber and the physical, i.e. a Socio-Cyber-Physical System and have described conditions for a successful 17 
digital transformation of such a system. These are design of, and creating access to digital technologies, and 18 
navigating system complexity. This framework allows for a better problematisation of digital transformation 19 
and has been illustrated through an example of digital dairy farming. It supports an enhanced understanding 20 
of moral responsibilities regarding digital transformation, fitting within the Responsible Research and 21 
Innovation approach, as well as the succinct step of understanding who is responsible or accountable for the 22 
identified (positive or negative) impacts, i.e. responsibilisation.  23 
 24 
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1. Introduction 28 

Digital transformation in agriculture and rural areas is a policy priority at global level (Trendov et al., 2019; 29 
World Bank, 2017, 2019). In Europe, the European Commission set out as one of its objectives “fully 30 
connecting farmers and the countryside to the digital economy” in order to achieve a smarter, modern and 31 
sustainable future of food and farming (European Commission, 2017, p. 7). This was followed by the Green 32 
Deal in which digital technologies are considered “a critical enabler for attaining the sustainability goals of 33 
the Green deal in many different sectors”(European Commission, 2019, p. 7), and in 2020 the Farm to Fork 34 
strategy indicates that “the CAP [Common Agricultural Policy] must also increasingly facilitate investment 35 
support to improve the resilience and accelerate the green and digital transformation of farms“ (European 36 
Commission, 2020, p. 16).  37 

Digital transformation comprises a spectrum of activities, encompassing both digitisation and digitalisation. 38 
Digitisation can be described as the “technical conversion of analogue information into digital form” (Autio, 39 
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2017, p. 1) p. 1), while digitalisation is the term often used to describe the socio-technical processes 40 
surrounding the use of (a large variety of) digital technologies that have an impact on social and institutional 41 
contexts (Tilson et al., 2010). Digitalisation goes beyond the level of a single business or entity, linking on- 42 
and off farm data and managements tasks, which are enhanced by context- and situation awareness and 43 
triggered by real-time events (Rose & Chilvers, 2018; Wolfert et al., 2014). Digital transformation is thus a 44 
process whereby over time the options of digital technology use, the associated complexity (i.e. interactions 45 
between the various aspects of a system, such as (digital) technologies; institutions; organisations; people; 46 
and the environment) and their related impacts on society, either positive or negative, increase.  47 

Many consider digital transformation as the solution to the challenges that agriculture and rural areas face 48 
(Trendov et al., 2019; World Bank, 2019). However, lessons learned from past technological revolutions 49 
suggest caution (Bronson, 2019b; Eastwood et al., 2019a), as (agricultural and rural) innovation is not an 50 
inherently good and value free process, but normatively laden and driven by different worldviews and visions. 51 
Correspondingly, different development directions exist, each with its own winners and losers (Brooks & 52 
Loevinsohn, 2011; Klerkx et al., 2012; Thompson & Scoones, 2009; Vanloqueren & Baret, 2009), also in 53 
relation to digital transformation (Cowie et al., 2020; Klerkx & Rose, 2020; Lajoie-O'Malley et al., 2020). 54 
Current digital technologies may have several undesirable, unseen and unknown impacts, e.g. emergent 55 
effects that only become clear once these technologies are brought into practice (Klerkx & Rose, 2020; 56 
Pansera et al., 2019; Scholz et al., 2018). It has for example been argued that instead of transforming 57 
agriculture and rural areas, digital technologies reinforce current systems which are deemed unsustainable 58 
economically, socially and ecologically and favour incumbent large players (Clapp & Ruder, 2020; Cowie et 59 
al., 2020; Miles, 2019; Prause et al., 2020). Given the game-changing potential of digital technologies, 60 
strategies for digital transformation of agriculture and rural areas will therefore need to take the socio-61 
economic conditions, that influence and are influenced by processes of digitisation and digitalisation, into 62 
account (Klerkx & Rose, 2020). Bearing in mind that different technological configurations may lead to a 63 
different distribution of impacts on stakeholders (Klerkx & Rose, 2020; Rotz et al., 2019a).  64 
 65 
Hence, digital transformation in agriculture and rural areas comes with a range of (ethical) concerns, and 66 
therefore a growing number of authors has argued for a Responsible Research and Innovation approach to 67 
digital transformation in agriculture (Barrett & Rose, 2020; Bronson, 2018, 2019b; Eastwood et al., 2019b; 68 
Klerkx & Begemann, 2020; Lajoie-O'Malley et al., 2020; Rose & Chilvers, 2018; Rose et al., 2021; van der Burg 69 
et al., 2019) and rural areas, where Cowie et al. (2020) propose “Responsible Rural Research and Innovation” 70 
(RRRI) as a sub-field of RRI. RRI anticipates the impacts of innovation, reflects on and is responsive to its 71 
unintended, consequences (Bronson, 2018; Klerkx & Rose, 2020; Owen et al., 2012). Stilgoe et al. (2013) 72 
capture the RRI approach in four main principles: anticipation, inclusion, responsiveness and reflexivity.  73 
 74 
While the RRI approach has often been suggested, application has however been limited, and is at best 75 
patchy. For example, Eastwood et al. (2019a) found that innovations around smart farming have focused on 76 
technological development and on-farm use without taking socio-ethical implications into account. Several 77 
other authors indicated that the RRI approach also fails to engage certain food system actors (e.g. citizens, 78 
consumers, other rights holders) in the innovation process (Bronson, 2015, 2018, 2019b; Eastwood et al., 79 
2019a). It has also been argued that digital transformation processes are sometimes hard to ’grasp’ for 80 
stakeholders (Dufva & Dufva, 2018; Rijswijk et al., 2019), which may lead to a limited ‘readiness’ to innovate 81 
responsibly (Eastwood et al., 2019a). Blok and Lemmens (2015) indicate that practical applicability of RRI is 82 
problematic and requires a more thorough examination of RRI, because of a mismatch between the ideal of 83 
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responsibility and the realities of existing innovation processes. To deal with these issues that affect 84 
satisfactory enactment of RRI, a comprehensive framework is needed that guides the (upfront) assessment 85 
of the impact of digital transformation processes in agriculture and rural areas, thus supporting the ability to 86 
undertake digital transformation in a responsible manner. Rose and Chilvers (2018) therefore call for: 1) a 87 
more systemic approach to map innovations associated with digitalisation of agriculture; 2) broadening of 88 
notions of inclusion in RRI in order to include a diversity of participants; and 3) testing responsible innovation 89 
frameworks in practice to estimate if innovation processes can be made more socially responsible, in order 90 
to make RRI more relevant and robust for upcoming agri-technology. In this article, we focus mainly on the 91 
first element of Rose and Chilvers’ (2018) proposal, informing a more systemic approach to map innovations 92 
associated with the digital transformation of agriculture and rural areas, in connection with the second 93 
element, informing who is responsible for what and should be included in RRI.  94 
 95 
We aim to support an RRI approach in building strategies for digital transformation in agriculture and rural 96 
areas, by instilling what Maye et al. (2019) have dubbed as responsibilisation, a concept which has close links 97 
with the notion of responsibility which is central in RRI. Responsibility has a double meaning, on one hand 98 
there is ex-ante, or normative, responsibility, which is about behavioural standards that on the basis of 99 
current knowledge allow for minimization of risks. This has mainly to do with moral duties and moral 100 
sanctions. On the other hand there is ex-post responsibility, i.e. the duty of actors to respond to undesired 101 
or unintended consequences of technologies or behaviour. This second meaning is much nearer to the 102 
concept of accountability, and can even be subject to sanctions. This also implies a cognitive link between 103 
information, decisions, practices, and their outcomes. However, if it is impossible to know, even with 104 
uncertainty, what the effects of one’s choices are, it is impossible to allocate responsibilities. 105 
Responsibilisation (see Figure 1) then is a process whereby, in relation to the improvement of shared 106 
knowledge on the links between action and its consequences, behavioural standards for involved actors are 107 
developed and enforced through accounting mechanisms and sanctions. The process of responsibilisation is 108 
fed by problematisation, through which the community reflects on the ethical (or even the legal) standards 109 
related to a given innovation in relation to new or disclosed information and improved knowledge. 110 
Problematisation calls into question actors’ behaviour and provides the grounds for the community to 111 
distribute ex-ante and, when a greater degree of information is available, ex-post responsibilities. In complex 112 
systems, responsibilities are distributed (Barnett et al., 2010), hence everybody bears a fraction of 113 
responsibility for the outcomes of the system. I.e. the greater the information one can get about the link 114 
between action and its consequences, the greater the possibility to distribute responsibilities and to move 115 
from ex-ante to ex-post responsibility. In other words, responsibility is inherently linked to knowledge 116 
production, use and communication, but this requires a through and holistic understanding of the issues at 117 
hand. We therefore link responsibilisation is to the problematisation of effects of digital transformation of 118 
agriculture and more broadly rural areas.  119 
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 120 

FFIGURE 1. THE PROCESS OF RESPONSIBILISATION AND ITS IMPLICATIONS (MAYE ET AL., 2019) 121 

 122 
In this article, we articulate a framework that supports the processes of problematisation and eventually 123 
responsibilisation, enhancing an understanding of systemic change linked to digital transformation, 124 
unravelling the multiple interactions created and affected by digital transformation in the context of 125 
agriculture and rural areas. Through the concept of ‘cyber-physical’ systems, which has been forwarded as a 126 
way to understand the relationships between digital technologies and the environments they are embedded 127 
in (Klerkx et al., 2019a; Lioutas et al., 2019; Wolfert et al., 2017), we aim to offer a way to sharper define 128 
problems and reflect on potential consequences of digitalisation. Processes of problematisation, as a part of 129 
RRI principles such as anticipation and reflexivity, can open new areas of responsibility and inform 130 
governance activities to shape future agriculture and food systems and other activities in rural areas.   131 
 132 
The framework, developed within a project that aims to support the assessment and planning of digitalisation 133 
processes of agriculture and rural areas1, aims at building a base for supporting participatory assessment, 134 
planning and design of digital transformation processes by offering a number of concepts to sharpen 135 
reflection on digital transformation and its potential impacts. This paper proceeds as follows: In the next 136 
section we will sketch a systems approach to digital transformation, introducing the concept of ‘Socio-Cyber-137 
Physical System’, also highlighting the conditions that create opportunities and threats to actors when 138 
exposed to digital transformation processes. Section three will illustrate the framework in the context of 139 
digital dairy farming, also showing the implications for responsibilsation. The fourth section will discuss 140 
research and policy issues and draw conclusions. 141 

                                                           

1 For more information see www.desira2020.eu 
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2. Unravelling socio-cyber-physical systems  142 
Digital transformation can be considered systemic change, as it affects the way people, things and institutions 143 
coordinate themselves in order to perform their activities (Cowie et al., 2020; Klerkx & Rose, 2020; Nambisan 144 
et al., 2019). Digital transformation entangles digital, physical and social worlds through a multiplicity of 145 
technologies. We propose to study these entanglements using a systems approach. The nature of the systems 146 
referred to are hybrid, that is, relations among entities belong to both social and technical domains also 147 
encompassing biological and physical  entities (and in this sense also connecting to concepts such as socio-148 
ecological systems), which connects to recent discussions in rural sociology regarding a move to a ‘more-149 
than-human' approach (Legun & Henry, 2017) and a ‘relational approach’ (Darnhofer, 2020; Kok et al., 2021; 150 
West et al., 2020)  to transformative processes,  and similar calls in agricultural innovation studies to better 151 
take into account materiality and biology (Berthet et al., 2018; Pigford et al., 2018). 152 

As illustrated in Figure 2, there is a range of concepts building on the idea of a system. Social scientists have 153 
developed the concept of socio-technical system to highlight that technology is embedded in social relations 154 
(Bijker, 1995; Hughes, 1987), and that there is a co-evolution between these domains. Scholars in 155 
technological disciplines have developed the concept of cyber-physical system to highlight the links between 156 
digital and physical entities in systems (such as agricultural systems, rural areas) wherein physical objects and 157 
processes are replaced, or complemented, by digital ones (Griffor et al., 2017). In this section we will briefly 158 
review the socio-technical system concepts that already connect social systems to technical systems (which 159 
may comprise physical and biological systems in our case), and will then propose the concept of Socio-Cyber-160 
Physical System as a heuristic tool to study the processes of digital transformation.  161 

 162 

FIGURE 2. HIERARCHY OF SYSTEM CONCEPTS 163 

2.1 Socio-technical systems 164 
A socio-technical system (Bijker, 1995; Hughes, 1987) refers both to the interrelatedness of social and 165 
technical aspects of an organisation or the society as a whole (Ropohl, 1999), whereby technology, besides 166 
material things, also includes organisational structures and processes (Botla & Kondur, 2018). Social actors 167 
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that are part of the socio-technical system have different aims and interests among them, and are also 168 
endowed with varying levels of resources (knowledge, social capital, etc.). Furthermore, they hold different 169 
positions in society or in a specific organisation, and act according to varying routines, norms and social 170 
values. Additionally, some actors may hold a power position over others in which they, for example, can 171 
control the system’s performance, influence other actors' activities, and restrict access to technology. At the 172 
same time, the use of new technologies or new regulations can also reset existing social asymmetries, 173 
depending on how socio-technical relations change the connections among technologies and social actors. 174 
Verbeek (2012), considers technologies as mediators between entities of a system, which play a constituting 175 
role on shaping the identities of the entities involved in the relation: they “help to constitute what means to 176 
be a human being” (Verbeek, 2012, p. 393). 177 

2.2  Socio-Cyber-Physical Systems 178 
Digitalisation of socio-technical systems opens a new field of enquiry, given the nature and the characteristics 179 
of informational entities (Lioutas et al., 2019; Wolfert et al., 2017). In information science, Cyber-Physical 180 
Systems (CPS) describe the mutual interaction between a cyber domain and the physical domain (Griffor et 181 
al., 2017). This implies the understanding of how digital information interacts with and transforms the 182 
physical world (which comprises both natural and manmade materialities). Digital technologies expand the 183 
world of artefacts as they disconnect reality from materiality (many of the practices we carry out have only 184 
informational content), location from presence (we can meet at distance, activate devices remotely, monitor 185 
behaviour at a distance), multiply the possible realities we can experience, and expand the time experience, 186 
expanding the multitasking possibilities (Floridi, 2014). Through for example digital twins, virtual replications 187 
of physical systems continuously updated by their twins’ data (El Saddik, 2018; Verdouw et al., 2017), it is 188 
possible to predict harmful events in a physical system and intervene before the events occur. Furthermore, 189 
there is a continuous exchange and integration of physical and informational objects (Floridi, 2014). Each 190 
time a digitisation event occurs, for example taking a photo with a digital camera, a part of the physical reality 191 
is replicated into the digital sphere. When a robot, a cyber-physical entity, acts upon the physical world, for 192 
example, a drone spraying a pesticide, it does it on the basis of the digital representation of the world it has. 193 
The efficacy of new generation robots, depends on the accuracy of the digital representation of the system 194 
upon which it acts. Given their storability, reproducibility and transmittability, data can be pooled with other 195 
data and used for very different purposes than the original one. This makes the digital component of CPS 196 
extremely dynamic, as it is only partially constrained by physical entities. This has important sociological 197 
implications that the concept of CPS cannot capture, as CPS do not consider social agency hence there is a 198 
need to introduce a social domain to the concept of cyber-physical systems.  199 

In the social sciences field, Haraway (1990), with the concept of ‘cyborg’ that overcomes the human/machine 200 
dualism, opened the way to the development of the concept of Socio-Cyber-Physical Systems (SCPS)(Lioutas 201 
et al., 2019) (Frazzon et al., 2013; Sheth et al., 2013; Zavyalova et al., 2017) as “systems constituted by the 202 
social world (people), the digital world (data), and the physical world (things)” (Rijswijk et al., 2020). If we 203 
consider that socio-technical systems are composed of actors, rules, and artefacts (Bijker, 1995; Geels, 2004), 204 
SCPS can be seen as socio-technical systems in which digital artefacts are an additional key factor in the 205 
system’s existence and functioning (see Figure 3). The cyber domain of SCPS therefore has the power to 206 
change radically social practices: as they replace or augment material objects, they reshape the meanings of 207 
both material and immaterial entities, generate new skills and make others obsolete. Thus, with the concept 208 
of SCPS, digital transformation is framed as a socially constructed process, allowing for the identification of 209 
key entities and their interactions across the three domains of which  SCPS are composed.  210 
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These three domains each consist of a variety of entities (see Table 1 for definitions). Intradomain relations 211 
and interactions (Figure 3) are often governed by a particular type of entity within that domain, which is a 212 
set of rules. The domains also interact with each other leading to certain (wanted and unwanted, known and 213 
unknown) outcomes and adaptations to the system which they form together. In the process of digital 214 
transformation, special emphasis is put on the cyber domain, as the physical and social entities become 215 
encoded into digital entities and expand the possibilities for action in the other domains.  216 

TABLE 1. THE CONFIGURATION OF DOMAINS OF THE SCPS 217 

Domain Entities Interactions 

Social Social actors, groups and communities, 

and institutions 

Relations between entities in the social domain are 
regulated by social rules, such as routines, social 
norms, ethical norms, informal behaviour, policy, 
laws 

Cyber  Cyber entities are composed of a) digital 
reproductions of the physical sphere 
created by digitisation processes, e.g. 
from a paper-based map to a digital 
model of a farm which can be used by a 
drone, as well as b) original digital 
constructs, such as software, big data, 
cloud computing, Internet of Things, etc.  

The relations between entities in the cyber domain 
are regulated by cyber-rules. For example, 
communication between devices is regulated by 
specific protocols (such as WiFi, Bluetooth, 5G); 
another example is the data format (PDF, DOC, 
…), a specific arrangement of data so that they 
can be stored, exchanged, and correctly 
interpreted. Digital technologies can communicate 
with other technologies, digital entities interact 
with other digital entities, performing operations 
and making choices potentially independently of 
humans, while initially being designed by humans. 

Physical These entities can be natural or artificial, 
according to the degree of manipulation 
they have undergone as a result of 
human activities. This includes living 
organisms and natural resources (plants, 
animals, etc.) and physical things to 
support living and working in the 
(natural) environment (e.g. analogue 
technology, infrastructure, finances) 

Relations between entities in the physical domain 
are regulated by natural rules and by technical 
rules. For example, wild animals select in the 
environment the entities – plants or animals – 
that suit their nutrition, avoiding harmful entities. 
Water cycles are regulated by natural processes, 
such as evaporation and precipitation, but also by 
technical processes, such as water extraction from 
wells or circulation into pipes. 

 218 

As can be read in Table 1 and alluded to in section 2.1, in the context of agriculture and rural areas, the 219 
physical world can also be understood to comprise the ecological world, so a socio-cyber-physical system 220 
may even be seen as a socio-cyber-physical-ecological system as has been tentatively argued (Klerkx et al., 221 
2019). This already shows that it is difficult, in the real world, to isolate interactions between entities 222 
belonging to a single domain. Our social interaction is profoundly influenced by our physical world, and even 223 
when machines interact only amongst themselves, they have been designed by actors that can switch them 224 
off at any time. However, for analytical purposes, it is useful to make distinctions. Firstly, the interactions 225 
between cyber and physical domains occur through automation, data collection, management, monitoring 226 
and controlling, e.g. Internet of Things. This also includes feedback loops from cyber to physical, e.g. milking 227 
robots causing the cows to adjust their milking patterns (Bear & Holloway, 2019b; Driessen & Heutinck, 228 
2014), and connections between digitalisation and genome editing (Clapp & Ruder, 2020). Secondly, there is 229 
the interaction between the social and physical domains, which could include the governance of natural 230 
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resources, e.g. irrigation systems or the legal requirements for buildings in a natural environment (Fischer et 231 
al., 2007; Lund, 2015). Other examples are ecotourism, the connection between farmers and their livestock, 232 
or the links between the quality of road infrastructure and rural entrepreneurship (Cowie et al., 2020). Finally, 233 
there are interactions between the cyber and social domains that for example influences jobs (see Rotz et 234 
al., 2019b), enhances sensing capabilities of people which may impact for example advisory systems and 235 
advisor-farmer interactions (Eastwood et al., 2019a; Ingram & Maye, 2020), creates new “proximities” 236 
affecting rural-urban and spatial inequalities (Haefner & Sternberg, 2020), and develops social media 237 
networks – i.e. the cyber entities function as a multiplier of the social entities (see Klerkx et al., 2019 for an 238 
overview of multiple additional examples of effects). The social entities, such as values, in turn create the 239 
basis for, for example, programming and algorithm development.  240 

  241 

 242 

FIGURE 3. THE SOCIO-CYBER-PHYSICAL SYSTEM WITH RELATED INTERACTIONS BASED ON THE THREE DOMAINS 243 
(SOCIAL, CYBER AND PHYSICAL). 244 

2.3 Conditions for impact of digital transformation 245 
As argued in section 1, having a better understanding of the SCPS undergoing digital transformation, can 246 
enhance problematisation which in turn informs RRI. However, we argue that in order to enhance social 247 
responsibility and reflexivity it also should be made clearer how SCPS relate to three conditions for successful 248 
digital transformation which can have (positive or negative) impacts (Rijswijk et al., 2020): the design of 249 
digital technologies (Cooper, 2005; Whiteley, 1993), creating access to digital technologies (Klerkx et al., 250 
2019b; Shepherd et al., 2020), and navigating system complexity (Mocker et al., 2014). They co-determine 251 
different interactions between social, cyber and physical domains (see Table 1 and Figure 2), or emerge from 252 
them, and hence are related to impact of digital transformation. Table 2 provides a non-exhaustive overview 253 
of known (negative) issues of digital transformation linked to these conditions for each of the domains.   254 
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With regards to design, digital technologies are designed to realise a given (desired) outcome and impact, 255 
such as improved productivity, profitability and sustainability (Global e-Sustainability Initiative & Deloitte, 256 
2019), i.e. to have intended consequences. However, digital technologies often also come with (known and 257 
unknown) unintended consequences, which can either be positive or negative (Klerkx & Rose, 2020; Scholz 258 
et al., 2018) In some cases, outcomes can be harmful to people, animals or to the environment. Design-259 
related impacts can induce modifications of existing dynamics, both in the social and in the business context, 260 
causing a redistribution of risks, benefits, and burdens among actors (Yeung, 2018). The design of 261 
technologies may be value laden, e.g. programmers views of the world are (unknowingly) reflected in the 262 
software they design which may exclude certain (groups of) people, hence raising ethical concerns (Johnson, 263 
2019; Leavy, 2018). At the same time technologies may also be vulnerable to environmental conditions, such 264 
as heat, wind, and humidity, or to espionage or cyber-attacks (Nikander et al., 2020). Furthermore, conditions 265 
not considered during design, e.g. temporary lack of Internet connectivity, may cause serious issues, not in 266 
the least the inability to use services when needed (Shepherd et al., 2020; Steinke et al., 2020). Taking into 267 
account indirect and long-term effects leads to design approaches that anticipate problems, such as ‘user 268 
centred design’ (Steinke et al., 2020) ‘secure by design’, ‘safe by design’ or ‘sustainable by design’ (Patrignani 269 
& Whitehouse, 2013; van de Poel & Robaey, 2017). More in general, responsible design involves users and 270 
stakeholders in the design process, aiming to reduce the above mentioned risks, by putting users’ need at 271 
the center through a human-centered design approach (stepping into users’ shoes) to address the large and 272 
diverse community of stakeholders. Novel strategies, such as design thinking, advocate for a deeper, more 273 
personalized, understanding of users, instead of identifying aspects equally common to most users. (Carell 274 
et al., 2018). 275 

Impact is also related to access to technologies, i.e. the distribution of physical, social, human and legal 276 
resources necessary to get access to digital opportunities. A well-known problem is that as a result of lack of 277 
economic, physical, or educational access to the internet, (groups of) people suffer from social and economic 278 
marginalisation and uneven socio-economic development. I.e. different levels of access to information or 279 
capacity to operate will create inequalities in the distribution of the costs and benefits of digital technology 280 
use. This is known as the (rural) digital divide, and addressing the problem goes much beyond the coverage 281 
of broadband infrastructures, because the availability of digital resources in an area also involves the 282 
possibility to readily buy, configure, and use digital devices that can easily operate jointly with existing digital 283 
devices (interoperability) (Rotz et al., 2019b; Salemink et al., 2017; Wolfert et al., 2017). Assessment of access 284 
conditions should consider potential users of the technology and consider the costs and the benefits that 285 
could be created. A recent document of the European Network for Rural Development (2020) suggests 286 
assessing rural areas in relation to their readiness for digital transformation, as different readiness levels may 287 
imply different priorities. Consideration of access conditions would also frame digital transformation 288 
strategies as socio-technical strategies, addressing both the technical and the social conditions for generating 289 
value and implementing integrated policy mixes.  290 

A third condition for (positive or negative) impact of digital transformation is system complexity. The more 291 
digitisation and digitalisation proceeds, the stronger the need to connect system entities to each other, and 292 
the greater the influence of the cyber domain. Increasing connectivity adds to complexity because of the 293 
multiplicity of ways in which each entity interacts with others (see section 2.2). A too fast technological pace, 294 
enabled by the malleability of digital technologies (Nylén & Holmström, 2015), may be challenging for final 295 
users, who perceive technology as a black box on which they may depend for e.g. business operations. This 296 
causes a dependence on (technical) experts, adding to the economic costs. Assessment of system complexity 297 
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should consider changes to entities and activities of a system in relation to the connections with other entities 298 
and other domains.  According to Perrow (1984) complexity of a system combined with too tight coupling 299 
(strong cause/effect links between entities) leads to vulnerability of systems and to domino effects. 300 

 A combined consideration of all 3 conditions is often required in order to have a successfully operating SCPS 301 
which creates positive impacts and counteracts negative effects of digital transformation. E.g. social exclusion 302 
related to digitalisation can be caused by lack of access to the Internet and the cost of an application (access 303 
conditions), or the design of technologies with bias or intrusive forms of conditionality (Kaye, 2018) (design 304 
conditions), or to the difficulty to make all parts of a system work (complexity conditions). For example, social 305 
networks and lack of connectivity can amplify the stigma of farmers not complying with environmental 306 
regulation, extending the stigma to the whole category.  307 

TABLE 2. NON-EXHAUSTIVE OVERVIEW OF KNOWN ISSUES OF DIGITAL TRANSFORMATION 308 

 Design Access System complexity 

Social Poor usability leading to use-
related difficulties (Human 
Machine Interaction)(Aleixo 
et al., 2012; Haapala et al., 
2006) 

Biased technology (Johnson, 
2019; Leavy, 2018) 

Partial or total exclusion 
because of lack of digital 
skills or education (Van 
Deursen & Van Dijk, 2014) 

High costs (Higgins et al., 
2017)  

Lack of skills to reconfigure 
systems after upgrades / 
changes (dependence) 
(Nylén & Holmström, 2015) 

 

Too fast technological pace 
sometimes challenging for 
final users (Nylen and 
Holmstrom, 2015) 

Unintended consequences of 
algorithmic regulation (Lodge 
& Mennicken, 2017) 

Redistribution of risks, 
benefits, and burdens among 
actors (Mönnig et al., 2019; 
Piasna & Drahokoupil, 2017; 
Shepherd et al., 2020; Yeung, 
2018)  

Difficult policy context not 
easing digital transformation 
(Hinings et al., 2018)  

Cyber Loss of data due to improper 
use or external causes (e.g. 
attacks) (Duc & 
Chirumamilla, 2019) 

Inability to work in some 
conditions, e.g. temporary 
absence of Internet 
connectivity (Shepherd et al., 
2020; Steinke et al., 2020) 

Personalization and profiling 
(Zuboff, 2019) 

Poor access to Internet 
connectivity (Townsend et 
al., 2013) 

Lack of digital infrastructure 
and resources readily 
available (Townsend et al., 
2013) 

Lack of interoperability 
features in hardware and 
software components 
(Fulton & Port, 2018) 

Opacity (black box) (Meske & 
Bunde, 2020) 

Operational complexity – 
dependence on experts 
(Tantalaki et al., 2019; Zhang 
& Kovacs, 2012) 

Difficulty in developing 
diversified development 
trajectories (Clapp & Ruder, 
2020) 
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Bias in algorithms causing 
e.g. exclusions or difficulties 
to access services (Kaye, 
2018) 

Technological lock-in (Kaye, 
2018)  

Dependence on previous 
innovation; exclusion due to 
technological lag (Fulton & 
Port, 2018) 

Physical Digital solutions not resistant 
to e.g. atmospheric 
conditions, work in the field, 
etc. (Von Känel & Vecchiola, 
2013) 

E-waste and disposal 
(Pickren, 2014) 

Availability of digital devices 
(computer, smartphone, etc.) 
and adoption rate (Andriole 
et al., 2017) 

Location dependence (Cowie 
et al., 2020; Salemink et al., 
2017; Townsend et al., 2013) 

Need for up-to-date 
hardware (computer, 
smartphone, …) (Andriole et 
al., 2017) 

3. Illustration of the framework: A dairy system as Socio-Cyber-Physical 309 

System 310 
As indicated in the introduction, the process of digital transformation encompasses both digitisation and 311 
digitalisation, whereby digitisation is more often seen at the early stages of the digital transformation 312 
process, and tends to focus on the micro level, e.g. a single business or organisation. Digitalisation often 313 
encompasses more actors in for example a value chain (e.g. meso or macro level) and implies a more mature 314 
level of digital technology use (Eastwood et al., 2017; Fielke et al., 2019; Higgins & Bryant, 2020). The concept 315 
of SCPS, however, suits both stages of digital transformation. In order to illustrate the SCPS concept, we apply 316 
it to the context of dairy farming and how it has engaged with digitisation feeding into more comprehensive 317 
digitalisation. We do not aim to display a full analysis of all SCP relationships across the three conditions 318 
(design, access, system complexity), as this would fall outside the scope of this article, but zoom in on some 319 
elements (see also Table 3.). This illustration is based on insights coming from several articles on digitalisation 320 
in dairy farming. Dairy farming, the second biggest agricultural sector in the EU, is dealing with ongoing 321 
intensification resulting in increased farms size, mainly in terms of herd size (Clay et al., 2020; Thorsøe et al., 322 
2020; Vellinga et al., 2011). Therefore farm management, considering aspects such as animal health and 323 
welfare; milk production and quality; and feed production and quality, is increasingly undertaken with the 324 
support of various digital technologies.   325 

3.1 Digitisation at the farm level  326 
To describe the application of the SCPS concept at the farm level we focus on one aspect of farm 327 
management, namely milk production and quality. A large number of dairy farms in the EU make use of 328 
automatic milking systems (Jacobs & Siegford, 2012), of which the next step is robotic milking, as milking 329 
robotics can perform the whole milking process in an accurate manner, with minimal human intervention 330 
(Kiselev et al., 2019). Thus, it creates more flexibility for a farmer, reduces physical labour (e.g. effort) and 331 
may also cause a decrease in (external) labour costs on farm (Rodenburg & House, 2007). The increased 332 
flexibility in labour requirement affects farmers’ wellbeing through a better job satisfaction, mental health 333 
and family-work balance (Hansen et al., 2020). In Figure 4 the process of digitisation of the milking process is 334 
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illustrated. It shows the replacement of the social-physical activity of milking done by the farmer and an 335 
automatic milking system, with a cyber-physical activity of a robotic milking system.  336 

  

FIGURE 4. DIGITISATION OF A MILKING SYSTEM 337 

While at first glance the replacement of the farmer’s involvement in the milking process seems simple, it 338 
entails numerous social, cyber and physical changes (Hansen et al., 2020). In the basis, the robotic arm 339 
replaces the task of the human in applying the cluster to the udder of the cow (socio-physical becomes cyber-340 
physical). In the cyber domain this implies however, a) digitisation of the information necessary to apply the 341 
cluster (position of the udder, state of health of the udder) and Artificial Intelligence (AI) to command the 342 
robot (Simões Filho et al., 2020); b) digitisation of the information necessary for AI to check if the robotic arm 343 
has performed its task correctly or to adapt tasks due to changes in external or internal conditions such as 344 
heatwaves or abnormal milk production (Fuentes et al., 2020); c) control tasks (start/stop) taken over by the 345 
control unit (Kulatunga et al., 2017); d) storage of the data in the control unit or in the cloud (Kulatunga et 346 
al., 2017). 347 

Within the physical domain additional entities have been placed, namely the old milking system is being 348 
replaced by the robot, requiring reconfiguration of the milking shed, additional space for the computer 349 
system, but also the cows need to adjust to this new milking method (Wildridge et al., 2020). The cows, for 350 
example, can now get milked whenever they want, instead of 2 or 3 times a day at fixed hours (Hogeveen et 351 
al., 2001; Jacobs & Siegford, 2012). Moreover, walking into a robotic milking system and not having a 352 
recognizable process is something that needs to be taught to the cows and may take up to several weeks 353 
(Jacobs & Siegford, 2012). Some cows will never adjust to this new system and have to be taken off farm.   354 

This combination has a big impact on the social domain. The initial intended outcomes, or the needs of the 355 
farmer that initiated the digitisation process, namely increased flexibility, less physical effort and a reduction 356 
of labour costs (Rodenburg & House, 2007), will also have secondary effects on organisational rules of the 357 
farming household, the allocation of labour time of the farmer, a change of the skill portfolio of the farm, up 358 
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to an evolution of social values of the farmer and the farming community (Floridi et al., 2013; Hansen, 2015; 359 
Oudshoorn et al., 2012; Rodenburg, 2017; Was et al., 2011). It also has inclusion and exclusion effects, 360 
because the initial investment of implementing milking robots is high and therefore often these robots are 361 
only within reach for medium to large farms, requiring the development of robust financial plans (Shortall et 362 
al., 2016). 363 

Describing the changes in the SCPS with the introduction of robotic milking on a farm starts with considering 364 
the necessary conditions to be in place in order to avoid negative unintended (albeit often unknown or 365 
unseen) impacts. One of the design conditions could for example be that the robotic arm needs to be 366 
designed in such a way that it does not negatively impact on animal health and welfare, despite the cow 367 
having to adjust to this new way of milking. For all intents and purposes, the robotic arm may actually increase 368 
animal health and welfare, due to a more secure disinfection of the udder or the ability of the cow to be 369 
milked whenever is needed, hence possibly reducing the risk of mastitis (De Mol & Ouweltjes, 2001; Krömker 370 
et al., 2010). An access condition related to the design of the robotic arm and its software is that the farmer 371 
must be able to understand and interpret the data gathered throughout this milking process. In terms of 372 
system complexity, all the different elements as discussed before become connected, and this requires 373 
adjustments in the ways farms are structured and new organisational arrangements as regards the way data 374 
are stored and exchanged (Eastwood et al., 2017).  375 

3.2 Digitalisation of the dairy value chain 376 
Besides an automatic milking system, there are often numerous other digital technologies on a dairy farm, 377 
such as neck collars or feed sensors, which all generate data and are increasingly connected through means 378 
of IoT (Wolfert et al., 2017). This data can be combined to gain new insights, supporting farmers with 379 
additional farm management information and tools, thus aiming to provide added value to farmers. This 380 
exponential on-farm data generation also provides new opportunities for agribusinesses. Integration of data 381 
at all steps of the production chain (pasture/crop data, animal feed, weather, animal health, milk production 382 
and quality) multiplies the potential of the use of data at all levels of the chain (Pesce et al., 2019), and opens 383 
new markets for digital services and equipment. This in turn also impacts the farm-level digitisation as 384 
technologies need to be designed in such a way that they can communicate with each other or that data can 385 
be shared and combined. Digitisation of dairy farms thus implies a restructuring of the dairy value chain 386 
(Eastwood & Renwick, 2020). I.e. a digitalisation process, whereby for example advisors need to be able to 387 
support farmers in understanding and using the digital technologies, or technology providers provide tools 388 
that are interoperable with other digital technologies of other providers (Eastwood et al., 2017).  389 

The above shows that changes in the cyber domain (e.g. combining different data sets) affects the social 390 
domain, such as the relations between actors on- and off farm, in this case between farmers and (digital) 391 
technology and service providers. This can include many other actors as well, such as suppliers, processors, 392 
regulators, the community, and many others. In the example mentioned above advisors and technology 393 
providers need to define a new role and adjust their relation with farmers to some degree (Rijswijk et al., 394 
2019). Moreover, digital technologies may positively affect farmers’ social status, making the profession 395 
more attractive for young people. On the other hand, automation may bring to deskilling of workers, 396 
marginalisation and unemployment (Sparrow & Howard, 2020).  397 

In the physical domain, several effects can also be seen.  For example, dairy systems, and livestock systems 398 
in general are among the most critical for their impact on the environment as they contribute to Green House 399 
Gas emissions, to pollution of water, soil and air, and have a low efficiency of conversion into nutrients in 400 
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comparison with other food sources (Duru & Therond, 2015; FAO, 2018; Smith et al., 2014). ICTs are 401 
increasingly considered in relation to dealing with these challenges (Tullo et al., 2019), e.g. sensors can detect 402 
odours (Pan et al., 2007), polluters, GHGs (Banhazi et al., 2012). These sensors can also detect behaviour, 403 
indicating whether the animal is undergoing stress (Tullo et al., 2019). Through means of blockchain, a 404 
technology based on distributed databases of encrypted data, this data can turn into non-modifiable 405 
information that accompanies the product and allows for tracing back to the farm that has generated a given 406 
outcome (Kamilaris et al., 2019). While aiming to enhance sustainability and animal welfare this can, 407 
however, also have negative consequences on both farmer, worker, and animal autonomy who could 408 
become to some extent ‘servants’ of automated dairying systems (Bear & Holloway, 2019a; Holloway et al., 409 
2014a, 2014b; Rotz et al., 2019b; Vik et al., 2019).  410 

Regarding the conditions, when moving from digitisation to digitalisation the different conditions become 411 
even more interlinked encompassing a multitude of entities in each domain of the SCPS, thereby in itself 412 
showing the increasing system complexity. Referring to the example above of data generation and 413 
combination on- and off farm design conditions can include the interoperability between different 414 
technologies, as mentioned above, and preferably the data generated on- and off farm is FAIR (findable, 415 
accessible, interoperable and reusable) (Jouanjean et al., 2020; Mons, 2018) to those who need it, while as 416 
well as considering ethical, legal and social implications (ELSI) (van der Burg et al., 2020).  For example, access 417 
concerns the right of farmers to repair their machines or own their own data, which sometimes is restricted 418 
due to intellectual property rights of the manufacturer (Bronson, 2018; Carolan, 2018). 419 

 Future developments in value chain transparency, compliance, digital policy enactment can further increase 420 
system complexity. For example, retailers could be interested in data about milk quality, including its 421 
environmental footprint, as this information may add value to the product if communicated to consumers 422 
(Ridoutt & Hodges, 2017). Health authorities could be interested in data about state of health of the herd, so 423 
they can build epidemiological models, and environmental authorities can check if the farm complies with 424 
emission limits (OECD, 2019). Policy support could be conditioned to the respect of minimum standards.  425 
Hence, the technologies have broader structural systemic implications (Vik et al., 2019).  426 

3.3 Implications for responsibilisation 427 
The illustration highlights that an analysis of the SCPS along with analysis of the conditions of design, access 428 
and system complexity supports the identification of the different (potential) positive and negative impacts 429 
of the digital transformation process in agriculture and rural areas (see a summary in table 3 of some issues 430 
identified in the illustration). Hence, it enables a sharper problematisation, which in turn helps to elucidate 431 
who may be responsible for understanding and dealing with these impacts. It shows that for some issues 432 
actors have a direct responsibility to attend for example animal welfare issues during the operation of the 433 
technologies, but also ex-post responsibility, i.e. a duty to respond to undesired or unintended consequences. 434 

TABLE 3. APPLICATION OF THE SCPS FRAMEWORK TO IDENTIFY ISSUES AROUND DIGITAL DAIRY FARMING 435 

 Design Access System complexity 

Social Increased flexibility of the 
farmer. 

(Re- and De-)Skilling of 
farmers and workers to 
operate AMS.  

Changing organisation rules 
of the farming household. 
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Reduced labour costs on 
farm. 

Less physical effort required.  

Farmers need the right to 
repair and to own their own 
data (FAIR and ELSI 
principles). 

 

Financial in- or exclusion due 
to investment costs. 

Marginalisation or 
unemployment of farm 
workers. 

Advisors need to take new 
roles. 

Reduced autonomy of 
farmers and workers. 

Farming becomes more 
attractive to young people. 

 

Different allocation of labour 
time. 

Evolution of social values of 
the farmer and the farming 
community.  

Tracking & tracing for retail 
purposes and compliance 
through data sharing for 
policy purpose can cause 
biases towards farmers.  

New power dynamics 
between all actors (e.g. 
farmer and advisor). 

Cyber ‘Datafication’ of all 
components of the dairy 
farm to allow for the 
technology to communicate. 

Added value for farmers of 
through farm management 
tools. 

New markets for service 
providers, e.g. online data 
platforms  

 

 

Data gathered by automated 
milking systems is linked to 
manufacturers databases 
and to regulatory systems. 

Physical Breeding needs to be 
attuned to AMS. 

Increased animal welfare due 
to tracking of animal 
behaviour. 

 

 

Cows need to be trained to 
adjust to AMS. 

Discharging cows which do 
not fit AMS. 

Reduced animal autonomy. 

 

Restructuring of milking 
sheds and farm lay-out to 
accommodate AMS with 
possible effects on 
landscapes and biodiversity.  

 

 436 

In our dairy farming example the on-farm data generation and the subsequent disclosure would increase 437 
responsibilisation of farmers, as they would be accountable for product and environmental quality and 438 
animal welfare. Additionally, those requiring the data disclosure, and those that set the standards for product 439 
and environmental quality as well as animal welfare have an even bigger responsibility of supporting farmers 440 
in meeting these requirements, as trade-offs and ethical dilemmas may also arise. As digital technologies 441 
require an investment small farmers may not be able to finance this, causing an additional problem of being 442 
unable to demonstrate their performance regarding the quality of their product and environmental 443 
compliance. Land prices could also be affected; retailers may decide to exclude underperforming farmers 444 
from their supply chains. Disclosure of data about farm pollution may generate stigma of the community 445 
over polluting farmers (OECD, 2019), and misuse of data may cause reputation damage to compliant farmers. 446 
These aspects show that the impact of technologies – and their game-changing potential - would depend on 447 
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the broader SCPS in which they are embodied, and should thus be considered in early stages of technology 448 
design and including the governance and regulatory implications and requirements. Designing different 449 
socio-cyber-technical solutions may change the distribution of costs and benefits of information flows, as it 450 
shapes the way data are made available, accessed and owned. Depending on the availability, access, 451 
ownership of data the relations of power between actors of the system could be strongly affected, as shown 452 
by the debate about data sharing arrangements (van der Burg, Wiseman, & Krkeljas, 2020). Furthermore, 453 
and this is perhaps different from SCPS in other settings where this may be a more indirect or remote 454 
environmental effect (Berkhout & Hertin, 2004), in an agricultural and rural setting, there may also be a direct 455 
impact on the ecological system (Klerkx et al., 2019a), as shown by the example in Table 3 ‘restructuring of 456 
milking sheds and farm lay-out to accommodate AMS with possible effects on landscapes and biodiversity’. 457 

 These aspects also show that a range of actors are involved, such as farmers, advisors,  animal welfare NGOs, 458 
regulators, equipment manufacturers connected in different ways to different issues, and that issues may 459 
play out at different scales (on-farm, near farm, regional, national, global) (Eastwood et al., 2017)  Also, in 460 
view of the sometimes unintended consequences which perhaps not be fully captured in design, ex-post 461 
responsibility should be a continuous concern to adapt and adjust where and when necessary during further 462 
diffusion and scaling of technologies, also addressing institutional and power dynamics that affect inclusion 463 
and exclusion of actors (Klerkx & Rose, 2020; Kok et al., 2021; Rose et al., 2021; Wigboldus et al., 2016).   464 

4. Discussion and conclusion: Unravelling Socio-Cyber-Physical Systems 465 

to support ‘responsibilisation' 466 

In this article a framework was developed connecting three domains of SCPS and their relationships to 467 
conditions for successful digital transformation (design, access and system complexity). Digital 468 
transformation changes the distribution of costs, benefits and responsibilities in system, requiring involved 469 
actors to act upon possible negative effects of costs and benefits. This is in line with claims that digital 470 
transformation of agriculture and rural areas should not be technology driven, but problem-driven and be 471 
open to different transition pathways (Klerkx & Rose, 2020; Lajoie-O'Malley et al., 2020; Rose & Chilvers, 472 
2018). Past experiences of agricultural and rural modernisation have demonstrated that ‘technology push’ 473 
without addressing the underlying socio-economic (and ecological) dimensions risk to generate unpleasant 474 
or unwanted outcomes (Horlings & Marsden, 2011; Pingali, 2012), and calls have been made for ‘just 475 
transitions’ (Lamine et al., 2019). For this reason, the issue of digital transformation cannot be only a matter 476 
of catching up with the digital divide, rather, digital transformation of agriculture and rural areas should be 477 
linked to a broader transformation of the socio-economic patterns of development and linked to coherent 478 
strategies.  479 

Following calls in the literature to further elaborate RRI for application to digital transformation in agriculture 480 
and rural areas (Bronson, 2018, 2019a; Cowie et al., 2020; Eastwood et al., 2019b; Rose & Chilvers, 2018; 481 
Rose et al., 2021), this paper offers a framework to support articulation of the digitisation and digitalisation 482 
situation at hand. The  lens of SCPS can assist in highlighting consequences of altered relations between the 483 
social, cyber and physical domain, and thus how the structure and power dynamics within the system may 484 
change. The framework aids in problematisation of the potential digitisation and digitalisation impacts (i.e. 485 
anticipation), informs the process of defining social responsibility (i.e. moral responsibilities and 486 
accountabilities), and supports reflexivity.  487 
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 488 
Anticipation of consequences could improve the design capacity, for example through transdisciplinary 489 
involvement of relevant stakeholders. By gaining deeper awareness of the systemic impact of digital 490 
technologies, researchers and technology developers learn to associate their work to its impact, so to better 491 
appraise the pros and the cons and to anticipate any unintended consequences in terms of access and 492 
systemic complexity. This enables them in their capabilities to grasp ‘the digital’ and its effects (Dufva & 493 
Dufva, 2018; Fielke et al., 2021; Rijswijk et al., 2019), and turns this into ‘responsibilisation capability’. It also 494 
enables highlighting a wider range of relevant actors and the (ir)responsibilities they have, and what this 495 
implies for designing the arenas in which RRI can be enacted (e.g., Living Labs, Transformation Labs , 496 
Innovation Platforms, see (Pereira et al., 2020; Turner et al., 2020)). Beyond an initial RRI exercise, given the 497 
relational nature of and complex interactions in SCPS which affect transformation dynamics (Kok et al., 2021), 498 
and beyond initial phases of design, technology development and implementation, this could also be a 499 
continuous reflection in the  process of what has been dubbed ‘responsible scaling’ (Wigboldus et al., 2016).   500 
 501 
In terms of policies, the SCPS framework can support performance-based policies around research an 502 
innovation or digitalisation strategies, as it has the potential to connect science-policy-society interfaces,  for 503 
example through improving technology foresight, giving methodological strength to multi-actor projects and 504 
providing facilitation tools for innovation platforms. Furthermore, the framework could help to identify needs 505 
for support to rural actors to address access and complexity issues related to digitalisation, as it can be 506 
applied to the regional contexts. Embodied into criteria for funding and for policy assessment, frameworks 507 
like the SCPS can form the missing link between technology development and sustainable development of 508 
agriculture and rural areas.   509 
 510 
This framework, however, only sets out the broader contours for supporting participatory assessment, 511 
planning and design of digital transformation processes. Hence further work is needed to operationalize 512 
criteria for assessing both the SCPS and the conditions for impact. This can be part of future RRI efforts 513 
connected to specific digital transformation processes in agriculture and rural areas. 514 
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