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Abstract: The objective of this work is to show the application of a Deep Learning algorithm able to

operate the segmentation of ancient Egyptian hieroglyphs present in an image, with the ambition to

be as versatile as possible despite the variability of the image source. The problem is quite complex,

the main obstacles being the considerable amount of different classes of existing hieroglyphs, the

differences related to the hand of the scribe as well as the great differences among the various

supports, such as papyri, stone or wood, where they are written. Furthermore, as in all archaeological

finds, damage to the supports are frequent, with the consequence that hieroglyphs can be partially

corrupted. In order to face this challenging problem, we leverage on the well-known Detectron2

platform, developed by the Facebook AI Research Group, focusing on the Mask R-CNN architecture

to perform segmentation of image instances. Likewise, for several machine learning studies, one of

the hardest challenges is the creation of a suitable dataset. In this paper, we will describe a hieroglyph

dataset that has been created for the purpose of segmentation, highlighting its pros and cons, and the

impact of different hyperparameters on the final results. Tests on the segmentation of images taken

from public databases will also be presented and discussed along with the limitations of our study.

Keywords: deep learning; convolutional neural networks; image recognition; ancient Egyptian

hieroglyphs; cultural heritage

1. Introduction

The applications of the Artificial Intelligence (AI) are permeating almost any field of
science, from chemistry and physics [1,2] to healthcare [3] and space research [4]. In recent
years, this exponentially growing pattern can be primarily attributed to the particular class
of algorithms known as Neural Networks or Deep Learning [5] (a sub-field of AI), which are
adaptable to a variety of situations and well-suited to a data-driven approach to problem
solving. More generally, the success of these methods has been also made possible by the
advances in both computational power and telecommunications, which allow developers
to share huge datasets and computational resources [6,7].

Computer vision is undoubtedly one of the scientific disciplines that has been most
impacted by AI’s advancements; currently, the vast majority of its applications are based
on a specific class of Deep Neural Networks called Convolutional Neural Networks (CNN).
Many of the issues in this subject can be solved by CNNs, including detection, recognition
and segmentation tasks, as well as images generation [8–11].

The deployment of large neural network architectures capable of facing such tasks
resulted in a horizontal spread of these technologies across many different fields, such
as clinical imaging [12–14] or cultural heritage [15]. In the latter field, solutions were
proposed, for example, for the recognition of the old Kuzushiji Japanese writing style [16,17],
Maya [18] and Egyptian hieroglyphs classification [19,20]. These applications can be a very
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challenging test for CNNs, due to the complexity of the problem deriving from the artifacts’
state of conservation or the high variability of documents [21–23]. Some of these challenges
will be discussed later in this article.

In this work, we evaluate the application of the well-known framework Detectron2 [24–26]
when applied to the study of ancient Egyptian hieroglyphs, with the final goal of offering
a solution to the segmentation task. Problems related to the creation of a well-suited
dataset to train a CNN are described. In addition, some limitations, mainly related to the
dimensions and quality of images, are also pointed out.

Segmentation is a fundamental step in several hieroglyphs analysis tasks: for example,
it is the starting point for symbol transliteration and, subsequently, for language translation;
at the same time, it may open the possibility to study the similarities between glyphs,
moving towards the identification of the so-called “hand of the scribe”. Therefore, another
objective of this study may be seen as investigating the role of CNNs supporting the work
of Egyptologists.

The paper is organised as follows: In Section 2, we address the complexity of the
hieroglyphic writing system, in order to highlight the challenging aspects that any Deep
Learning application might encounter. Then, in Section 3, we describe the main features
and the reasons why we opted to use Detectron2, followed by an explanation of our dataset
creation procedure. In Sections 4 and 5, we provide the results obtained on the validation
and test sets and on images taken from public datasets. Concluding remarks are presented
in Sections 6.

2. Ancient Egyptian Hieroglyphs

Ferdinand de Saussure defines the Egyptian word as a linguistic sign with a signifier,
which is the graphic aspect, and a signified, the linguistic internal structure [27]. The signifier
can be composed of one or many hieroglyphs at once. The Egyptian hieroglyph itself is
composed of two different elements: the phonogram and the semagram. The former plays
a phonetic role: it could either indicate the sound of the sign (or of a sequence of signs), or
act as a phonetic complement. The latter is the graphic symbol, expressing an idea which
is related to it. Inside a word, the semagram could simply act as the represented object
indicating a word, or as a determinative, specifying the lexical field the word belongs to.

Ancient Egyptian hieroglyphs are represented by more than 700 ideograms belonging
to about 26 categories; these ideograms are combined to create words and sounds, as
briefly explained before. There are different ways of writing hieroglyphs, such as cursive or
monumental; they can be written in different directions as well, as shown in Figure 1.

Figure 1. Various reading directions of ancient Egyptian hieroglyphs.
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Another very important point to bear in mind is that hieroglyphs were written on
a large variety of supports, such as papyri, stone and wood, with significant differences:
while in the papyrus case, we deal with shapes filled of ink applied on the support, in
the case of stone hieroglyphs being carved, thus forcing the segmentation algorithm to
base its recognition power on the shadows, which can change depending on the lighting
conditions and set-ups adopted during the image acquisition. Furthermore, when working
with artifacts dating back thousands of years, the state of conservation may become critical,
with many hieroglyphs potentially damaged and, consequently, a loss of information must
always be taken into account, since ageing of the surfaces causes fading and alteration of
the symbols

The highly complex scenario just depicted is a very intriguing test for CNNs, which
are able to “learn” from data and incorporate into a network the knowledge of the “expert”
without attempting to construct a model (which is too difficult to be estimated). At the
same time, non-trivial problems must be faced when a Deep Learning solution is pursued:
the principal issues are related to data scarcity and sparsity.

3. Materials and Methods

This work aims to provide a solution to the problem of the segmentation of all the
instances of Egyptian hieroglyphs in a given image; in this section, the deep learning tools
and the used dataset are described.

3.1. Detectron2

The problem of multiple instances segmentation in an image by using Deep Learning
approaches has been extensively studied in recent years, as evidenced in several review
papers [28,29]. For the specific task of image segmentation, many CNN architectures have
been proposed, such as the popular U-Net [12], mainly devoted to semantic segmentation,
Fast R-CNN and Faster R-CNN [10,11]. Mask R-CNN [24], an extension of the Faster
R-CNN, is well suited for instances segmentation.

In this study, we used Detectron2 [25,26], a framework developed by the Facebook
AI Research Group (FAIR). One of the main reasons for choosing Detectron2 is that it
represents a “state of the art” framework for the task of image segmentation, achieved as
an evolution of previous networks. Detectron2 includes implementations for many object
detection algorithms, such as the above-mentioned Mask R-CNN, Faster R-CNN and Fast
R-CNN. An advantage of Detectron2 is its flexibility in integrating different networks as the
backbone to be used for subsequent processing steps, e.g., classification (which, however,
were not considered in this study). We decided to use Mask R-CNN as object detection
algorithm in the Detectron2 framework, relying on the results coming from benchmark
studies, such as [29–32], which demonstrated the high performances of Mask R-CNN in
comparison to other networks.

More specifically, region-based CNNs are a family of Convolutional Neural Networks
that tries to extend classical detection and recognition tasks to the case of images with
multiple instances of objects of interest [10,11]. In a nutshell, the system consists of two
modules. The first module is the Region Proposal Network (RPN), which is responsible
for generating category-independent region proposals, i.e., areas of the input image that
are the candidate to contain an object of interest. These regions are also referred to as
Regions of Interest (RoI). An objectness score is associated with each RoI: this score quantifies
the probability that an area contains an object belonging to one of the classes of interest
vs. background. The second module classifies the proposed regions. The two modules
share some convolutional layers in order to optimize calculations and rely upon a single
deep CNN (the backbone), which is responsible for generating the feature maps. In this
study, we selected as a backbone network the well-known ResNet [8]; more specifically,
we used a model that was pre-trained on the COCO dataset [33] and that was finely tuned
over the dataset of segmented hieroglypghs (described in the following), exploiting the
transfer learning paradigm. The output of the segmentation network is a set of rectangular
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bounding boxes, hopefully one for each instance of an object belonging to one of the classes
of interest, along with a label for the predicted class. Parallel to the classification task, Mask
R-CNN also produces for each RoI, in a parallel branch, a binary mask that, in the ideal
case, should be perfectly superimposed to the object contained in the bounding box. This
binary mask is the actual outcome of the segmentation task we are interested in: it is worth
noticing that this is performed independently from both bounding-box regression and
classification [24].

3.2. The Dataset

Training the Mask R-CNN needs the availability of a suitable dataset containing a
number of different Egyptian hieroglyphs (as large as possible), along with a segmentation
mask associated with each of them (the ground truth). An amount of pictures are available
online, for example in the repositories of museums, such as the collection of “Egyptian
Museum in Turin” (Italy) [34] or “The Met” in New York (US) [35], but, unfortunately, all
these images are not segmented. Furthermore, most of the images are not yet ready to
be used for training, having different dimensions, resolutions, point of views, etc. Thus,
likewise in many machine learning problems, the construction of a dataset for training
purposes needs an accurate selection and preparation of the images. More specifically,
better results are expected if the images contain symbols as uniform as possible (in terms of
dimension). Often, images contain both hieroglyphs and drawings, so that, even though
Detectron2 works with input images of arbitrary size, cropping patches from larger images
was performed to extract “text” areas.

In this work, we used different resources to create our dataset. Part of the images
comes from the dataset used by the authors of “GlyphReader” [36,37]. Images from this
dataset represent the stelae contained in the Egyptian Pyramid of Unas, and each image
contains many hieroglyphs. The number of images is limited (ten) and, more importantly
for their use in a training process, they are quite similar to each other, i.e., they come from
the same stelae and have the same support, so that they lack the “hetereogeneity” necessary
to make the network learn the generic features important for segmentation. Therefore, the
dataset was extended by adding images representing different writing styles and supports,
available thanks to the online resources cited above. Our final dataset is then composed by
101 images, each containing multiple glyphs. The dataset was split in training (59 images),
validation (14 images) and test set (28 images). Some examples are shown in Figure 2.

Figure 2. Examples of images (on different supports) belonging to our dataset: papyrus on the top

and bas-relief on the bottom.
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After image selection, all the instances in the training and validation sets were manu-
ally segmented and labeled using the VGG Image Annotator tool (VIA) [38] in order to create
the “true” segmentation mask of all the hieroglyphs contained in the images. VIA allows
images to be annotated with bounding-boxes, circles or, as in our case, polygonal masks.
The annotations were saved in a json file, which can be read by the Detectron2 framework.
At the end of the manual segmentation process, the gathered instances of hieroglyphs and
associated masks for the training set were 2198 and those for the validation set were 564.
An example of the outcome of this manual segmentation process is shown in Figure 3.

Figure 3. Examples of manual segmentation of the instances of hieroglyphs in an image using a

VGG-Image Annotator.

Since in this work we were only interested in the segmentation task, we labeled each
hieroglyph in an image as belonging to the generic “glyph" class, so that, at a pixel level,
we are dealing with a binary classification task between background and glyph.

It is worth noting that hieroglyphs are represented by more than 700 different ideograms.
The segmentation process benefits from using a training dataset populated with the major-
ity of hieroglyph classes. In our case, it can be noticed that the classes of glyphs are not
exhaustively represented and, in some cases, just a few instances per class are present. This
fact can be an evident limitation to the generalization capability of our model. Despite that,
in the Experimental Results section, we will show that the network is able to also segment
glyphs that were not present into the training dataset.

4. Results on the Training and Validation Set

Several experiments were set up in order to evaluate the performance of the analysed
network and its dependence on network hyper-parameters, such as thresholds and number
of training epochs.

The network is trained to find the bounding-boxes and the polygonal of all the hiero-
glyphs within an image, without any distinction among the different classes of hieroglyphs.
As already mentioned, this can be achieved by training the network to detect only one
generic class, labelled as “glyph”, from the surrounding “background”. As an output
of the segmentation process, we have an RoI with a mask highlighting the object and a
bounding-box around it.

Two major choices influence the performance of the segmentation network: the thresh-
old on the objectness score and the number of training epochs. The former is used by Mask
R-CNN in order to select candidate regions to be fed to the backbone network for classifica-
tion; thus, this threshold has an influence on the number of selected regions that can be
classified as glyph. The latter influences the training duration and has an influence on the
accuracy of the segmented regions; how to measure such an accuracy will be discussed in
the following.
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The effect of different choices of the hyperparameters is illustrated in Figure 4. Figure 4a,b
show the output masks selected for two different values of the objectness score threshold
when the number of epochs used during the training stage is 300. It is apparent that
decreasing the threshold produces an increase of the number of selected objects, even
though low quality instances are included (the higher the quality of an output mask, the
closer its approximation to the underlying glyph). It is also apparent that high quality
masks will be necessary when a classification (and then transliteration/translation) task
will be associated with the segmentation one. The quality of the output masks can be
enhanced by tuning the number of epochs of the training stage. Figure 4c, for example,
shows the output masks extracted with a threshold equal to 0.5, but using 500 epochs.

(a)

(b)

(c)

Figure 4. Segmentation results obtained after 300 epochs and objectness score threshold equal to

0.7 (a); after 300 epochs and objectness score threshold equal to 0.5 (b); and after 500 epochs and

objectness score threshold equal to 0.5 (c).
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A visual proof about the learning evolution of the network can be inferred from
Figure 5, where we focus on the masks extracted for a single hieroglyph, with a threshold
equal to 0.5, and after 300, 500 and 3000 epochs.

Figure 5. Focus on the segmentation of a single glyph (left) after training for 300, 500, 3000 epochs

(right panel, from top to bottom).

The influence of network hyper-parameters is further illustrated in Figure 6, in which
segmentation results for a large number of epochs (3000) and different objectness score
thresholds are illustrated: Figure 6a,b refer to thresholds equal to 0.7 and equal to 0.1,
respectively. From Figure 4a, obtained with a selective threshold (equal to 0.7) and a low
number of epochs (equal to 300), we observe the detection of a low number of instances.
Figure 6a demonstrates that increasing the number of epochs improves the objectness score
so that the number of detected of instances considerably increases. Figure 6b, on the other
hand, shows that a comparable quality, in terms of segmentation masks, can be achieved
even with a poorly selective threshold (0.1).

(a)

(b)

Figure 6. Segmentation results obtained with a training of 3000 epochs with an objectness score

threshold equal to 0.7 (a) and with an objectness score threshold equal to 0.1 (b).
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All the results shown so far were obtained starting the learning process from a model
pre-trained on the COCO-dataset. To illustrate the importance of the transfer learning
paradigm, we also tried to train the network “from scratch”, achieving, however, signif-
icantly worse results. The segmentation obtained by using training from scratch with a
duration of 3000 epochs and a threshold on the objectness score equal to 0.7 is shown in
Figure 7. Despite the high confidence of the RPN, related to the high objectness scores, the
quality of the segmentation masks is rather poor with respect to the results obtained with
pre-training (see Figure 6a).

Figure 7. Segmentation results obtained with a training from scratch of 3000 epochs and with an

objectness score threshold equal to 0.7.

For a quantitative assessment of the segmentation process, we can use metrics com-
monly used for this purpose. Given a glyph with a known segmentation mask, i.e., the
ground truth, and the mask predicted by the network, the Intersection Over Union (IoU)
is the ratio between the overlapping areas of ground truth and prediction over the area
of their union; this metric ranges from 0 to 1. By setting a threshold on the IoU, we can
discriminate successful segmentations (IoU above the threshold) from unsuccessful ones.
Taking the average successful rates over the whole dataset yields an average precision
(AP) of the segmentation process and, therefore, a measure of its quality. The AP metric
obviously depends on the threshold that we use to select the successful segmentation: for
example, by using a threshold of 0.75, we obtain a metric referred to as AP75 (expressed
as percentage). The IoU and AP metrics can be applied not only to masks, but also to
bounding boxes.

In Table 1, the segmentation quality evaluated on the validation set obtained for an
objectness score threshold equal to 0.5 and for a different duration of the training process
is shown; more specifically, the AP50 and AP75 values are tabulated. Results in Table 1
show that both bounding box and mask regression achieve better performances for a higher
number of epochs, that is, they benefit from a longer training.

Table 1. Performance metrics of the segmentation process (on the validation set) vs. the training

epochs (objectness score threshold = 0.5).

Number of Epochs Bounding-Box Regression Mask Regression

AP50 AP75 AP50 AP75

300 82.0% 56.0% 77.8% 37.8%
500 90.4% 77.3% 86.8% 51.3%

3000 93.4% 85.0% 91.2% 65.8%

Additionally, in order to further quantify the IoU behaviour varying with the choice of
the different hyper-parameters, we report in Table 2 the results relative to the single glyph
representing the “owl” in the bottom left part of the image in Figure 4. As can be seen, the
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threshold value, which impacts the detection ability, has not influence on the IoU, while
the number of iterations improves the quality of the segmentation as measured by the IoU.

Table 2. Performance metrics of the segmentation process for a specific hieroglyph (“owl”), vs. the

training epochs and objectness score threshold ([f.s.] refers to the training from a scratch case).

Number of epochs 300 300 500 3000 3000 3000 [f.s.]
Threshold 0.5 0.7 0.5 0.1 0.7 0.7

IoU 0.84 0.84 0.87 0.90 0.90 0.33

In summary, the above results show the influence of some important hyper-parameters
of the network on the segmentation performance. As to the objectness score, this influences
the symbol detection ability. On the other hand, the number of epochs influences the IoU
metrics, so that training duration can be traded for segmentation quality.

5. Results on the Test Set

Once the network has been trained and validated, it is ready for its use as a predictor
for the segmentation of images containing hieroglyphs, indicated as test set. In the test set,
we inserted images coming from different resources and characterized by various supports,
such as papyrus, stone and pottery. The idea is testing the CNN in a real scenario, despite
this possibly being distant from the training conditions.

Figure 8 shows some results that can be considered as examples of good quality
hieroglyph segmentation; the pictures come from the online Egyptian collection of the
MET of New York [35]. The instances were selected by using a threshold equal to 0.7 and
a training duration of 3000 epochs. In this case, the support is stone, with hieroglyphs
in bas-relief; for these signs, the extracted masks represent the underlying glyphs with a
good quality (since the the ground truth is not available, only a qualitative evaluation is
attempted here). We note also that part of the glyphs were excluded due to an objectness
score below the threshold.

Figure 8. Examples of segmentation on stones. Cat. numbers DP253181, EG548). Credits to the MET

collection [35].

Another segmentation example is shown in Figure 9, where the Cyperus papyrus is
depicted. In addition, in this case, the quality of the final segmentation can be considered
good for most of the extracted hieroglyphs, even though it is also possible to appreciate the
difficulties encountered with those instances of glyphs characterized by a low contrast.
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Figure 9. Segmentation example on Cyperus papyrus. From the Book of the Dead of Nebhepet, scribe of

the necropolis (cat. number 1768). Credit to the Egyptian Museum of Turin online collection [34].

Many other tests were performed on images depicting signs on different supports
(papyrus, pottery, wood), showing similar results as those described above. It is interesting
to notice the ability of the Mask R-CNN to catch also glyphs that were not present in the
train set. This can be ascribed to the ability of the deeper layers of the CNN to learn basic
features (e.g., contours) and associate them to the recognition of a generic “glyph” object.

Deep Neural Networks are extremely high-performance algorithms to discover pat-
terns in data, but some limitations in their application can be pointed out. A first issue is
that training should be performed on a considerable amount of samples, especially if the
aim is creating a model with generalization capabilities. In this work, the dataset used to
train the CNN model contained a moderately large, but not huge, number of images and
manually segmented glyphs. Thus, the main limitation to the obtained results could be
related to an inadequate number of samples.

Moreover, hieroglyphs can be written on different supports. For example, in the case
of papyrus, the shape of the hieroglyph is fully determined by the ink painted on the
support, whereas, in the case of bas-reliefs, shadows strongly contribute to the shape of
the glyph, so that it may depend on the different environmental conditions (illumination,
angle, etc.) in which the pictures were taken.

Finally, as in all archaeological objects and historical artefacts, damage to the support
is frequent, with the consequence that hieroglyphs can be partially corrupted. These effects
are, for example, visible in Figure 10, showing the segmentation output of a papyrus.
Glyphs with a good contrast (i.e., where the ink has been preserved) seem to also produce
a good segmentation result (see, for example, the blue mask on the top left in Figure 10),
whereas glyphs with low contrast or evident scrapings are badly or partially segmented;
in some cases, the segmentation process completely fails: different instances are wrongly
connected or even artifacts are classified as glyphs (see the red mask in Figure 10).
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Figure 10. Example of critical segmentation results (on Cyperus papyrus, from the Egyptian Museum

of Turin online collection, Book of the Dead of Nebhepet, scribe of the necropolis, cat. number 1768): on the

left the original document, on the right the segmented one.

6. Conclusions

In this work, we analyze the properties of the Detectron2 framework as a tool to face
the problem of ancient Egyptian hieroglyphs segmentation. A pre-trained model was
employed and finely tuned by using an ad-hoc dataset constructed on images taken from
different sources. Hieroglyph segmentation is a difficult task due also to the variety of the
signs and the possible corruption of symbols caused by millennial ageing. Notwithstanding
these adversities, in our experimental tests, we have shown that a CNN-based approach
may be a good candidate to solve the segmentation problem, with promising quantitative
results on the validation set and qualitatively fine results on images taken “from the
wild”. Segmentation performance is limited by several issues inherent to the quality and
amount of the raw available data, for which possible countermeasures—such as using data
augmentation or image enhancement techniques—still need to be investigated.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence

CNN Convolutional Neural Network

R-CNN Region based Convolutional Neural Network

RPN Region Proposal Network

Mask R-CNN Mask Region based Convolutional Neural Network

COCO Common Objects in Context
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