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Abstract
Many plant parasitic and entomopathogenic nematodes harbor specialized and obligate bacteria as well as viruses. Given their 
evolutionary persistence, such cryptic species are considered to play effective roles during their host/microbe interactions 
lifetime, including mutualistic, antagonistic, or yet unknown host effects. To exploit such associations in plant protection, 
a comprehensive view is needed linking basic evolutionary relationships to applied aspects. This requires identifying the 
benefit or impact that hosts, acting as pests or biocontrol agents, receive from their endosymbionts. Targeting endosymbionts 
that are vital for a beneficial nematode or a pest may open novel perspectives for the management of their performance and 
traits, such as virulence or response to plant defense reactions. Some hypotheses are proposed to develop advanced control 
strategies through emerging biotechnological approaches.
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Key message

•	 Endosymbionts represent a useful resource with high 
potential for sustainable nematode management

•	 Some endosymbiotic bacteria sustain their host metabo-
lism

•	 Other endosymbionts, such as viruses and bacteria, nega-
tively affect their hosts providing benefits to crops

•	 Novel experimental efforts are needed for endosymbiont 
characterization

•	 Technologies targeting or silencing endosymbionts may 
open new perspectives in sustainable plant protection

Background

A widespread and diverse range of microbial endosym-
bionts occurs in higher animals and plants in any habitat. 
Genomic and observational data consistently revealed the 
presence of a cryptic but complex microbiota also in many 
invertebrate lineages, including beneficial microorganisms, 
endosymbionts, and biocontrol agents that, in several cases, 
co-evolved with their hosts (Chaston et al. 2011; Shi et al. 
2016; Dheilly et al. 2022). Given the time scale and dimen-
sions of such evolutionary radiation, the diversity, role and 
impact of many invertebrate endosymbiotic species remain 
still partially unexplored.

Nematodes are among the most abundant organisms on 
the planet and play several, fundamental ecological roles. 
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Plant parasitic nematodes (PPNs) represent a small fraction 
of the total nematode diversity. However, they cause severe 
damages accounting for up to 25% of global yield losses, 
with an annual economic impact estimated at ∼ 100 billion 
USD (Nicol et al. 2011). Most severe damages to agricul-
ture are caused by sedentary root-knot and cyst nematodes, 
mostly found in cropping systems characterized by inten-
sive monocultures. All PPNs are obligate pests, and their 
adaptations to parasitism gained benefits by acquiring genes 
from other species through processes such as horizontal gene 
transfer (Bird et al. 2015; Kikuchi et al. 2017). Similarly, 
the introgression of microorganisms with different endos-
ymbiotic capabilities and metabolic behaviors represented 
an evolutionary turning point that characterized the radia-
tions of many nematode lineages (Chaston et al. 2011; Shi 
et al. 2016).

A cryptic and diverse microbiota occurs in many nema-
tode taxa. “Cryptic” herein refers to microbial species that 
are difficult to characterize, recognize or even identify. 
Nematodes play a direct role in the crop environment, act-
ing as pests or insect pest regulators, such as PPNs or ben-
eficial entomopathogenic nematodes (EPNs), respectively. 
The discovery of cryptic endosymbionts often resulted from 
direct microscopic observations, multigenic metabarcoding 
or NGS-based -omic studies. These observations highlighted 
the insurgence of specific traits of cooperation or conflict-
ing interactions (Murfin et al. 2012; Baquiran et al. 2013; 
Martinson et al. 2020). PPNs and EPNs harbor a cohort of 
microorganisms (bacteria and/or viruses) underpinning com-
plex relationships, influencing, in some cases, the evolu-
tion of their hosts and involved in various metabolic and/or 
pathogenic interactions (Shi et al. 2016; Ogier et al. 2023).

Despite efforts to identify the nematode microbiota and 
to understand such associations, much information is still 
lacking, given the phylum Nematoda complexity and spread. 
A deep insight into the evolution of these systems could be 
important also to control the most severe pests. Extensive 
studies on symbiosis, supported by complete genomic data, 
may reveal how such interactions and adaptations persisted 
and were influenced by multiple factors. For example, it is 
not yet known whether and how agricultural practices and 
plant physiology affect the relationships between endosym-
bionts and their host nematodes. Consequently, few informa-
tion is available on the symbionts effects on the EPN efficacy 
and virulence or the PPN resistance to chemical treatments 
or to plant defensive metabolites.

Given their evolutionary persistence, such microbiota 
play highly effective roles for the hosts that were favored by 
selection, including mutualistic interactions. Endosymbiosis, 
however, involves the co-occurrence of antagonistic micro-
organisms, which are included in this review. Our goal was 
to update the most significant data  available thus far on the 
topic for PPNs and EPNs, aiming at evaluating the impact 

of  endosymbiotic microorganisms on plant production, and 
their potential in the regulation of  pests. Basic issue is to 
identify most suitable symbiont/pest associations, harness-
ing such species to manage plant pests (either nematodes 
and insects).

Nematode endosymbiotic bacteria

Obligate vertically transmitted endosymbionts

Studies on nematode endobacteria mostly focused on their 
detection and genomic characterization. The discovery of 
nematode endosymbiotic bacteria often resulted from ultra-
structural or taxonomic studies. Few data are available about 
their impact on the corresponding host biology and physiol-
ogy or about their potential to mitigate the damage that their 
hosts induce on parasitized plants. In fact, the quantitative 
evaluation of the effects of such associations is difficult due 
to the paucity of suitable culturing methods for bacteria that 
remain in large part unclassified or at the “Candidatus” sta-
tus. In recent years, however, multiple genomic approaches 
allowed more in-depth and in-host functional analyses. They 
were useful to identify and characterize such interactions, 
partially bypassing the need for cultivation (Brown et al. 
2015, 2016).

Vertically transmitted endosymbionts are passed from 
a parental generation to the offspring, being associated 
with the juveniles during the egg or embryo formation. 
Among them are PPN endocellular symbionts of genera 
“Candidatus Cardinium” (Bacteroidetes) and Wolbachia 
(α-Proteobacteria) (Noel and Atibalentja 2006; Atibalentja 
and Noel 2008; Haegeman et al. 2009; Brown et al. 2016; 
Brown 2018; Haegeman et al. 2009; Tarlachkov et al. 2023). 
Further bacterial endosymbionts reported in PPNs are “Can-
didatus Xiphinematobacter” (Verrucomicrobia) and “Ca. 
Xiphinematincola” (Burkholderiales) found in Xiphinema 
spp. (Coomans et al. 2000; Vandekerckhove et al. 2000; 
Brown et al. 2015, 2016; Orlando et al. 2016; Palomares-
Rius et al. 2021). These taxa likely represent a small fraction 
of the natural diversity of bacteria associated to nematodes, 
as other species and associations likely remain yet to be dis-
covered and described.

Candidatus Cardinium

These Gram-negative, rod-shaped bacteria include intracel-
lular endosymbionts present, with distinct lineages, among 
arthropods and nematodes. The bacteria grouped in “Ca. 
Cardinium” attracted interest as they can modify the host 
reproduction mode through induced parthenogenesis, femi-
nization and cytoplasmic incompatibility (Penz et al. 2012; 
Tarlachkov et  al. 2023). Bacterial cells similar to “Ca. 
Cardinium” were initially observed in the cyst nematodes 
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Heterodera glycines and H. avenae (Endo 1979; Yang et al. 
2017). Transmission electron microscopy images showed a 
similar endosymbiont in other cyst nematodes such as Glo-
bodera rostochiensis and H. goettingiana. The bacteria were 
localized in the ovary and oviduct wall cells and oocytes, 
suggesting a vertical transmission (Shepherd et al. 1973). 
The new taxon “Ca. Paenicardinium endonii” was then 
proposed for a similar endosymbiont found in second stage 
juveniles (J2) and adults of H. glycines (Noel and Atibalentja 
2006). The bacterium was located in the J2 pseudocoelom, 
hypodermal chords and intestine, in oocytes, ovaries, sper-
matozoa, and intestine of both females and males, and the 
hypodermal chords of males. Electron microscopy images 
also confirmed the presence of microfilament-like structures 
in the bacterial cells with an unknown function (Endo 1979; 
Noel and Atibalentja 2006).

Tarlachkov et al. (2023) recently revised the genus “Ca. 
Cardinium” reporting the occurrence of these bacteria in 
twelve cyst nematode species from four genera of Heterode-
ridae, with a further new taxon in the root lesion nematode, 
Pratylenchus penetrans. Phylogenetic analyses confirmed 
five distinct evolutive branches associated with marine 
copepods, biting midges, mites, and cyst nematodes, adding 
two new groups associated with P. penetrans, and ostracods 
(Tarlachkov et al. 2023). These authors also sequenced a 
new “Ca. Paenicardinium” from H. humuli whose genome 
(1.05 Mb) appeared to be smaller than that of other nema-
tode “Ca. Paenicardinium” genomes sequenced from H. gly-
cines (NCBI acc. n. CP029619) and P. penetrans, although it 
exhibited a higher G + C content. Genome sequencing data 
from populations of Rotylenchus zhongshanensis showed, 
also in this species, a further taxon phylogenetically close 
to the “Ca. Paenicardinium” occurring in cyst and lesion 
nematodes (Guo et al. 2022).

Wolbachia

Bacteria of this genus belong to the α-Proteobacteria line-
age. They are strongly associated with their hosts, including 
members from different evolutive branches. Species found in 
arthropods act as pathogens or affect the host reproductive 
biology. Wolbachia spp. play a fundamental nutritional role 
in their hosts. Nutritional mutualism between insects and 
Wolbachia strains has also been reported, evidencing the 
ability of the endosymbiont to synthesize vitamins that sig-
nificantly contribute to the host fitness (Nikoh et al. 2014). 
In the bed bug Cimex lectularius, a gonad-associated Wol-
bachia (wCle) showed changes in the infection frequency 
and abundance that were linked to the host life stage. Such 
obligate mutualism involves the production by wCle of vita-
mins such as biotin and riboflavin, that are required by the 
host during its development (Moriyama et al. 2015; Fisher 
et al. 2018). Among Nematoda, Wolbachia species are found 

in filarial nematodes, in which they have a mutualistic role 
(Sironi et al. 1995; Manoj et al. 2021). Also, in Brugia 
malayi, the causal agent of filariasis in humans, the abun-
dance of the bacterium was found to vary in relation to the 
host life stage (Fenn and Blaxter 2004). The discovery of 
Wolbachia endosymbiosys in filarial nematodes provided 
a first drug target to implement a successful human chemo-
therapy, based on various antibiotics (Hoerauf et al. 2000; 
Rao 2005; Bouchery et al. 2013). Such achievement is a 
practical example of the benefits derivable by the knowl-
edge about endosymbionts, to be hopefully replicated with 
nematode pests.

The Wolbachia evolutionary history and biology have 
been extensively investigated (Werren 1997; Kaur et al. 
2021) including the horizontal transmission events lead-
ing to insect host switch, not observed in filarial nematodes 
(Porter and Sullivan 2023). The presence of a Wolbachia-
like endosymbionts in PPNs was observed while studying 
genes expressed by the burrowing nematode Radopholus 
similis, parasitizing banana plants. Studies of the  R. similis 
genome highlighted approximately 1% of genes with a simi-
larity to Wolbachia sequences (Haegeman et al. 2009; Jacob 
et al. 2008). The role of Wolbachia in R. similis is unknown. 
However, there is an indication that it provides the host with 
essential metabolites, required for the nematode survival. 
Recent phylogenetic analyses revealed a new Wolbachia also 
in P. penetrans populations that also hosted a Cardinium 
endosymbiont (Brown et al. 2016; Wasala et al. 2019; Kaur 
et al. 2021).

Verrucomicrobia

Molecular ecology studies on these bacteria highlighted 
their ubiquitous occurrence, with members often reported 
from rhizosphere soil analyzed in metabarcoding studies 
(Schlesner et al. 2006). Nematode-hosted Verrucomicrobia 
include “Ca. Xiphinematobacter”, a group of obligate intra-
cellular endosymbionts of the dagger nematode Xiphinema 
spp. (Coomans et al 2000; Vandekerckhove et al. 2000). A 
strict, specific host association was reported for three spe-
cies, namely “Ca. Xiphinematobacter brevicolli”, “Ca. 
Xiphinematobacter americanum” and “Ca. Xiphinemato-
bacter rivesi”, found in X. brevicollum, X. americanum and 
X. rivesi, respectively (Vandekerckhove et al. 2000). The 
bacteria reside inside the epithelial cells of the nematode 
ovarian wall, and appear to influence their host reproductive 
mechanism. The 0.9 Mb genome of “Ca. Xiphinematobac-
ter” has been fully sequenced (GenBank acc. n. CP012665), 
revealing genes with a fundamental mutualistic role in the 
biosynthesis of nematode-essential amino acids (aa) and 
nutrient hiring (Brown et al. 2015). Members of this clade 
appear particularly sensitive to their microhabitat. In juve-
niles, they are located in the gut epithelial cells, while in 



1230	 Journal of Pest Science (2024) 97:1227–1244

the eggs the bacteria are clustered at one of the poles. From 
this location they spread, during the embryo development, 
to all endodermal daughter cells, to guarantee the vertical 
transmission pathway (Coomans et al. 2000; Vandekerck-
hove et al. 2000; Brown et al. 2015). The host nematode 
genus includes economically important pests, some of which 
are vectors of plant viruses. However, there are no data avail-
able on the effect of Ca. Xiphinematobacter on the host vec-
toring capability or its plant parasitic feeding behavior.

Other bacterial endosymbionts

Recently, a new intracellular bacterium was observed in fur-
ther Xiphinema species, as shown by a new 16S rRNA ribo-
somal gene sequence produced from X. pachtaicum, clus-
tering in the family Burkholderiaceae (β-Proteobacteria). 
Observations showed that the bacteria were located inside 
the body of adult X. pachtaicum females, particularly in 
the ovaries and intestinal epithelium (Palomares-Rius et al. 
2021). Although no direct observation was provided about 
its transmission route, the location in the ovaries likely sug-
gests a vertical transmission mode.

Phoretic endosymbionts (horizontally transmitted)

Pasteuria

Some endosymbionts can be horizontally transmitted to 
other members of the same or different species through 
non-hereditary means. Horizontal transmission occurs 
from an infected host to a new uninfected one, irrespec-
tive of their generation time. Pasteuria spp. (Bacillales) 

are nematode parasites having a vegetative life cycle that 
occurs entirely within their hosts. As such, they may be 
considered endosymbiotic. Being effective biocontrol 
agents, they can regulate the density of many host nema-
tode species in the rhizosphere environments. Pasteu-
ria spp. include taxa parasitic in free-living nematodes 
or PPN. They are invariably characterized by a specific 
and narrow host range, and by the production of durable, 
cup-shaped endospores (Sayre et al. 1991; Sturhan et al. 
2005; Stackebrandt 2014). The endospores are released in 
soil at the end of previous infection cycles and adhere to 
the nematode cuticle, acting as both infective and resting 
propagules (Fig. 1A). They  show a long-term resistance 
to adverse conditions and allow the bacterium to persist 
in the soil environment outside the host body. The latter 
is the only trophic niche suitable for the Pasteuria vegeta-
tive growth. There are no available data about the factors 
that trigger endospore germination, which has been always 
observed after adhesion to the host (Fig. 1A).

Although fastidious in nature, these bacteria have been 
produced in vitro and on larger scales on specific acidic 
media. Some isolates have been made available in commer-
cial bioformulations tailored on targeted applications (Hewl-
ett et al. 2004). The products include formulations based 
on endospores of Pasteuria penetrans for management of 
root-knot nematodes (Meloidogyne spp., RKN). Other spe-
cies are P. nishizawae for biocontrol of the soybean cyst 
nematode (H. glycines, SCN), and P. usgae for the sting 
nematode (Belonolaimus longicaudatus). However, despite 
data produced from field trials in different agro-ecosystems 
(Luc et al. 2010; Crow et al. 2011), several aspects of the 
Pasteuria-host interactions still need to be investigated in 

Fig. 1   Competitive exclusion 
of horizontally transmitted 
pathogenic endosymbionts para-
sitizing Meloidogyne incognita. 
Infective endospores of Pasteu-
ria penetrans attached to the 
cuticle of a living and healthy 
juvenile stage (A) and on a 
nematode already parasitized by 
a yet unclassified pathogen (B, 
C), that leads to a complete host 
digestion (D). Scale bars: A, 
D = 10 μm; B = 5 μm; C = 1 μm
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detail to improve its efficacy in biocontrol, especially related 
to its very narrow host specificity.

Some Pasteuria spp. have been investigated for nema-
todes management through field and greenhouse assays 
(Verdejo-Lucas 1992; Atibalentja et al 1998; Gowen et al. 
2008; Timper et al. 2016). Pausteria spp. host regulation 
occurs through a density-dependent relationship. The bac-
terium may persist in the rhizosphere environment for a long 
time, and was detected in the hosting nematode field popula-
tions up to two decades after its initial discovery (Ciancio 
et al. 2016).

Progress on knowledge about Pasteuria spp. biology 
has been achieved through the release of genome sequenc-
ing data.  The partially annotated genome of P. penetrans 
(isolate RES148) from RKN, shows a reduced genome 
(2.64 Mb, GenBank acc. n. ERZ1024078) enriched in trans-
posase and collagen genes, indicating a partial dependence 
on the host for basic metabolic pathways (Orr et al. 2018).

Genome sequencing efforts aimed at facilitating mass 
production by circumventing limitations related to the 
stringent metabolic requirements that make the Pasteuria 
industrial production  challenging and limited to niche appli-
cations. In fact, apart from host specificity and biocontrol 
efficacy, few data have been produced on the physiology, 
biochemistry and metabolic requirements of Pasteuria spp. 
(Phani et al. 2018). Despite such limitations, these parasites 
have a huge potential in organic agriculture as well as in 
conventional nematode management, due to their obligate 
and host-specific parasitism. Assays with inundative treat-
ments showed a remarkable reduction of target nematode 
densities, with an effect that was persistent in time (Cetintas 
and Dickson 2004).

The application potential of such nematode-associated 
bacteria appears far from being fully exploited, given the 
number of isolates and species (in the order of hundreds) 
resulting from their evolutive radiation and spatial spread. 
Further benefits include the high degree of host specificity 
and the null impact on other nematodes present in the rhizo-
sphere (Gowen et al. 2008; Timper 2009), or the soil envi-
ronment, together with the possibility of long-term storage 
at ambient temperature as durable and infective endospores.

Other bacteria

Other horizontally transmitted bacteria frequently were 
encountered in Italy in solanaceous crops. They include 
an unclassified and unculturable Gram-negative species 
pathogenic in J2 of M. incognita and other RKNs. Mature 
bacteria have a peculiar rod morphology resulting from 
four cells sequentially joined, yielding a kind of septa with 
empty and tapering apical cells (Fig. 1B–D). The bacterium 
proliferates after adhering  germinating cells penetrate the 
J2, then completely digesting the host body content. Dead 

nematodes filled with cells release the bacteria after body 
rupture, which infects new J2 through passive adhesion in 
soil. Concomitant infections were observed in J2 already 
encumbered with P. penetrans endospores, leading to the 
competitive exclusion of the latter, as the bacterium life 
cycle appears faster and is already completed within the J2 
in soil (Fig. 1B). The bacterium is fastidious, and no pure 
culture could be produced on most common nutritive media 
(Ciancio 2021).

Entomopathogenic nematodes and bacteria

Entomopathogenic bacteria (EPBs) are widely distributed 
and exhibit diverse host ranges, including EPNs (Stein-
ernema, Heterorhabditis) and EPN-like nematodes (eg., 
Caenorhabditis, Oscheius). These associations vary from 
phoresis and commensalism to facultative or obligate para-
sitism (Tarasco et al. 2023). As a result of the mutualistic 
partnership between the nematode and its bacterium, patho-
genesis is facilitated (Ogier et al. 2023).

Obligate EPBs, such as Photorhabdus and Xenorhabdus, 
complete their life cycles exclusively within the final insect 
host, while facultative ones (e.g., Serratia) can also grow 
outside the host. Endosymbionts Xenorhabdus and Pho-
torhabdus establish a genus-specific association with the 
infective juveniles (IJs) of Steinernema and Heterorhab-
ditis, respectively, obligate and lethal insect parasites. The 
genus Serratia is frequently associated with some nematode 
species of Oscheius, Caenorhabditis and other EPNs. They 
can be isolated, depending on the case, from the gut or cuti-
cle of juveniles (Loulou et al. 2023; Oggier et al. 2023). 
Serratia comprises species and strains recognized for their 
entomopathogenicity, such as S. nematodiphila and S. marc-
escens. The latter species, together with Providencia rett-
geri, are involved as bacterial mutualists in parasitism of the 
harlequin ladybird (Harmonia axyrid) by the parasitic nema-
tode Parasitylenchus bifurcatus, inducing the expression of 
sex-specific host immune responses (Gegner et al. 2018).

Recent sequencing studies reported that the core symbiont 
is also associated, in EPNs and EPN-like nematodes, with 
a diverse bacterial community, referred to as the “second 
bacterial circle” (Ogier et al. 2023). The microbiota com-
munity includes species of several genera, such as Proteus, 
Ochrobactrum, Providentia, Acinetobacter, Pseudomonas, 
Alcaligenes, Stenotrophomonas, among others (see Ogier 
et al. 2020, 2023). This pathobiome plays a role in contribut-
ing to the nematode pathogenicity. However, the nematode-
bacteria interaction is not always beneficial to the host. In 
some cases, the association has a detrimental effect on the 
nematode, as occurs in the phoretic and commensal relation-
ship between Paenibacillus spp. and EPNs (Enright et al. 
2003; El-Borai et al. 2005). The bacterium adheres to the IJ 
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cuticle inhibiting its motility and, consequently, its efficiency 
to find the host (Enright and Griffin 2005).

EPBs Xenorhabdus and Photorhabdus  stand out for their 
potential in pest management and other industrial applica-
tions (Abebew et al. 2022; Loulou et al. 2023). Currently, 
there are 31 and 22 valid species of Xenorhabdus and Pho-
torhabdus, respectively (Machado et al. 2023a, b; Ritter 
et al. 2023). The free-living IJs of Steinernema and Heter-
orhabditis locate and penetrate the insect through natural 
openings or the cuticle. Subsequently, they migrate to the 
hemocoel and release their gut bacterial symbionts, which 
rapidly multiply and induce a septicemia, thus killing the 
host (Labaude and Griffin 2018). The bacteria possess the 
ability to produce numerous virulence factors, allowing them 
to evade the insect immune response and the host microbiota 
(Tobias et al. 2018). Additionally, they play a protective role 
by producing several antibiotic molecules that prevent insect 
invasion by other contaminating microorganisms (Bode 
2009; Raja et al. 2021; Awori 2022). In this mutualistic 
association, the insect body becomes a suitable medium for 
the feeding and development of EPNs, which later feed on 
the bacteria and multiply in the insect cadaver, while the 
symbionts benefit from being transported by the IJs from 
one host to another.

Evolution and co‑evolution

The nematode families Steinernematidae and Heterorhab-
ditidae evolved at roughly the same time in the mid-Paleo-
zoic, ca. 375 M years ago (Poinar 1983). However, although 
both families present similarities, their life cycle and asso-
ciation with EPBs are the result of convergent evolution 
(Chaston et al. 2011). They had separate origins (polyphy-
letic), Steinernema evolving from a “proto-Rhabditonema” 
ancestor in a terrestrial environment and Heterorhabditis 
from a “Pellioditis-like-ancestor”, in a coastal habitat (Poi-
nar 1993).

Taxonomy and evolutionary history of EPN symbiotic 
bacteria have been re-assessed based on advances in molecu-
lar phylogeny (Sajnaga and Kazimierczak 2020). In contrast 
to their EPNs hosts, Xenorhabdus and Photorhabdus are 
phylogenetically more closely related to each other than to 
any other known species, being the genus Proteus the nearest 
neighbor. About 200–500 M years ago, a common ancestor 
of these bacteria was able to associate with Steinernema 
and Heterorhabditis (Sivaramakrishnan and Razia 2021). 
Subsequently, under selective pressures for maintaining this 
symbiosis, the ancestor evolved two distinct bacterial genera 
that established specific associations with their host (Chas-
ton et al. 2011).

In most cases the symbiotic association is highly spe-
cific and provides an excellent model to understand EPN 

evolution (Sajnaga and Kazimierczak 2020). The host pref-
erence is highest in Steinernema, in which each species 
established a symbiosis with one species of Xenorhabdus, 
whereas Xenorhabdus spp. can be associated with differ-
ent Steinernema species (Lee and Stock 2010; McMullen 
et al. 2017). Meanwhile, within the Heterorhabditis-Pho-
torhabdus complex, multiple associations between EPNs 
and bacteria species can be observed (Maher et al. 2017; 
Abd-Elgawad 2021).

Co-phylogenetic analyses provide insights into the 
evolutionary dynamics and interactions linking nema-
todes and their symbiotic bacteria. Some multigene 
approaches revealed a notable congruence between 
the phylogenies of EPNs and EPBs, which suggests 
that co-speciation occurred in some lineages of the 
Steinernema/Xenorhabdus and Heterorhabditis/Photorha
bdus complex (Maneesakorn et al. 2011; Bhat et al. 2019). 
However, other studies found no strict evidence of global 
co-evolution patterns (Lee and Stock 2010). Mismatches 
between the two phylogenetic trees can be attributed to 
factors such as host switching, in which EPBs switch 
between different nematode hosts, or incomplete host 
specificity, allowing EPBs to colonize additional nema-
tode species. Host switching and incomplete specificity 
can enlarge the bacterium host range, thus yielding incon-
sistencies between the phylogenies of symbiotic partners 
(Maneesakorn et al. 2011).

The capacity for host switching enables bacterial symbi-
onts to spread to different nematode taxa and adapt to new 
ecological niches, facilitating the dissemination of phylo-
genetically conservative traits (Sajnaga and Kazimierczak 
2020). However, host switching can also have detrimental 
consequences on the nematode host, resulting in a decline 
in reproductive fitness, symbiont carriage, and virulence 
(McMullen et al. 2017). These authors stated that the fit-
ness of both partners declines as the phylogenetic dis-
tance from the native association increases, suggesting 
that interaction specificity impacts the EPN virulence and 
longevity. In the symbiotic relationship, maintaining viru-
lence is crucial for the reproductive fitness (Stock 2019), 
facilitating the successful transmission of both partners 
from one insect host to another. The phylogenetic recon-
struction of different strains of Photorhabdus showed a 
general evolutionary trend towards an increase in virulence 
(Blackburn et al. 2016). Furthermore, studies have indi-
cated that evolved, more virulent bacterial strains showed 
reduced production of bacteriocin (antimicrobial peptides 
that are effective vs other bacteria) and faster growth, com-
pared to their ancestral populations, providing evidence 
that bacteriocin production carries significant costs at the 
population level (Bhattacharya et al. 2019).
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Viruses

Plant pathogenic viruses vectored by nematodes

Nematodes viriome includes a number of plant pathogenic 
viruses that are vectored and transmitted to the host plants 
by a relatively low number of species. The link between 
plant viruses and nematodes is known since the first descrip-
tion of Grapevine Fanleaf Virus (GFLV) transmission by 
the longidorid nematode X. index (Hewitt et al. 1958). Fol-
lowing this discovery, most information and data have been 
produced on the transmission of Nepo- and Tobraviruses to 
plants by members of the nematode families Longidoridae 
and Trichodoridae (Schellenberger et al. 2011). This vector-
ing association is non-pathogenic for the nematodes. It has 
been the object of several reviews available in the current 
literature (Taylor and Robertson 1975; Singh et al. 2020).

Both Longidoridae and Trichodoridae are polyphagous 
ectoparasitic nematodes belonging to distinct evolution-
ary lineages (Dorylaimida and Triplonchida, respectively). 
Given their phylogenetic distance, the vector-virus associa-
tion is considered to have appeared independently at least 
twice during the nematodes evolution. To date, twenty-four 
Longidoridae species are known to transmit twelve Nep-
ovirus and one Sadwavirus, whereas all three Tobravirus 
are vectored by thirteen nematode species of genera Para-
trichodorus and Trichodorus (Trichodoridae) (Decraemer 
and Robbins 2007; Bileva et al. 2009).

Xiphinema index, the vector of GFLV, is a long-lived 
species that acquires the virus particles when feeding on 
infected grapevine roots. It may acquire the virus also when 
feeding on root debris after the plants removal, keeping the 
particles for years and even during long-term storage in 
soil (Tzortakakis 2023). GFLV and its vector are present 
in almost any grapevine producing region worldwide, and 
cause a severe crop decline with high economic losses. The 
GFLV particles acquired during feeding remain adsorbed 
on the inner lining of the stylet and oesophagus, where they 
are retained. The virus coat protein mediates the particles 
adsorption on the inner cuticle as well as their movement  
inside the plant infected tissues, thus being responsable of 
the vector specificity. The particles are transmitted when the 
nematodes feed on new roots but are lost at moult (Wang 
et al. 2002).

Other longidorid vectors of plant viruses are X. diversi-
caudatum, that transmits Strawberry latent ringspot sadwa-
virus (SLRV) and Arabis mosaic nepovirus (AMV), and X. 
rivesi, vector of Cherry raspberry leaf nepovirus (CRLV, 
Cheravirus), Tobacco ringspot nepovirus (TRSV) and 
Tomato ringspot nepovirus (TomSRV). Xiphinema rivesi 
showed a long-term retention of TomRSV particles for up 
to three years, with surviving individuals capable of trans-
mitting the virus for two more years (Bitterlin and Gonsalves 

1987). Xiphinema americanum sensu stricto is also vector 
of CRLV, TRV and TomSRV. Members of X. americanum 
sensu lato (non-European populations) transmit Peach 
rosette mosaic nepovirus (Bileva et al. 2009). Other longi-
dorid vectors include Longidorus apulus and L. fasciatus, 
vectors of Artichoke italian latent nepovirus; L. elongatus, 
vector of Raspberry ringspot nepovirus (RRSV) and Tomato 
black ring nepovirus; L. arthensis, vector of Cherry rosette 
nepovirus and L. macrosoma, vector of RRSV (Brown et al. 
1995). Paralongidorus maximus is vector of AMV, SLRV, 
CLRV and RRSV (Jones et al. 1981; Bileva et al. 2009).

Among Trichodoridae, species of Paratrichodorus and 
Trichodorus are vectors of Tobacco rattle tobravirus (TRV), 
Pea early-browning tobravirus and Pepper ringspot tobravi-
rus (Harrison and Robinson 1986). Paratrichodorus pachy-
dermus and Trichodorus primitivus are vectors of TRV, one 
of the causal agents of potato spraing disease (Brown et al. 
1995; MacFarlane 2003).

Nematode viruses

Apart of plant viruses, molecular studies showed the occur-
rence of other virus lineages infecting nematode hosts, likely 
acting as pathogens or introgressed in the host genome as 
the result of ancestral insertions. Until recently the known 
interactions of viruses and nematodes were limited to a 
number of Caenorhabditis species (Félix et al. 2011; Franz 
et al. 2012, 2014; Frézal et al. 2019; Guo et al. 2014; Fujii 
and Wang 2023),  an iridovirus found in the insect parasitic 
nematode Thaumamermis cosgrovei (Hess and Poinar 1985), 
an icosahedral virus particles found in Gastromermis sp. 
(Poinar and Hess-Poinar 1992), and to a virus associated 
with Capillaria hepatica, a nematode parasitic of mammals 
(Williams et al. 2019). A futher virus associated to the EPN 
S. ceratophorum was recently identified (Wang et al. 2022).

Virus detection during the routine examination of nem-
atodes in light microscopy is not possible, as no specific 
symptom is associated to infections. Determining whether 
a nematode is infected by a virus is indeed a difficult task, 
requiring at least patient and consistent serial electron 
microscopy observations. Many PPNs, such as RKN or 
cyst nematodes, i.e., potato cyst nematodes (Globodera 
spp., PCN) or SCN, have a sedentary, parasitic life cycle 
and microscopic dimensions that make it difficult to observe 
stages in quantities sufficient to identify possible viral symp-
toms. Fortunately, new high-throughput sequencing methods 
(i.e., NGS) are facilitating the investigation of nematode-
viral genomes and related discoveries (Kumar et al. 2017; 
Vieira et al. 2022). NGS methods produce massive amounts 
of data, require relatively low amounts of starting material, 
and allow many potentially infected individuals to be tested 
in a single assay (Posada-Cespedes et al. 2017; Pérez-Losada 
et al. 2020). Using this new approach, novel viral genomes 
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have been discovered and identified from PPNs in the last 
years (Supplementary Table 1). DNA-based studies have in 
fact demonstrated the presence of viral lineages in the body 
of various PPN hosts, which likely act as pathogens or occur 
as the result of ancestral genome insertions.

There are few data on the effects of viruses on the para-
sitic fitness of nematodes, as well as on their tropism and 
on the mechanisms controlling transmission. The viriome 
of nematodes represents indeed a recent and new research 
field. Due to the ecological complexity of the rhizosphere 
food webs and, in a broader sense, of many agricultural sys-
tems, the study of viral infections in PPN is challenging. The 
occurrence of PPN infecting viruses suggests a potential for 
biotechnological applications to manage most severe pests 
in a sustainable way. For example, field and greenhouse data 
indicated that SbCNV-5 may affect SCN growth, acting as a 
biological control agent (Ruark et al. 2017). Visible, debili-
tating symptoms were reported for RKN infected by a virus-
like pathogen, although no viral particles were visualized 
(Loewenberg et al. 1959). A reduced fitness was reported 
in specimens of the free-living C. elegans infected by the 
Orsay virus, with changes in sexual behavior not observed in 
healthy nematodes (Frézal et al. 2019; van Sluijs et al. 2021).

Soybean Cyst Nematode (SCN) viruses

Heterodera glycines is a severe parasite of soybean with a 
complex interaction with its host (Bandara et al. 2020). Bio-
informatic investigations and SCN transcriptome assembly 
revealed nearly complete genomes of both negative- and 
positive-sense,  single-stranded RNA (ssRNA) viruses. SCN 
viruses are not integrated into the host genome. Detection 
of positive-strand SCN viruses indicated that they could 
replicate in J2. Such viruses were found in a greenhouse 
population of a single-cyst descent SCN line (Colgrove and 
Niblack 2008) and in field SCN populations (Bekal et al. 
2014). SCN virus infections are persistent. RNA samples 
extracted from SCN over a 4-years period indicated that the 
viral infections were long-lived and stable in the populations 
examined. Heterodera glycines-associated viruses have been 
also reported within populations of the clover cyst nematode 
H. trifolii and in the sugar beet cyst nematode H. schachtii 
(Ruark et al. 2017).

ScNV

ScNV contains five open reading frames (ORFs) coding for 
a nucleoprotein (N), a phosphoprotein (P), a matrix pro-
tein (M), a glycoprotein (G) and a RNA-dependent RNA 
polymerase (RdRp) large, non structural protein (L). ScNV 
genome is similar to the Midway virus (MIDWV) (Taka-
hashi et al. 1982). MIDWV and Nyamanini virus (NYMV) 
are closely related members of genus Nyavirus, in a distinct 

taxonomic unit in the family Bornaviridae, but in a distinct 
taxonomic unit (Mihindukulasuriya et al. 2009). Neighbour-
joining phylogenetic analysis of the RdRp aa sequences 
showed that ScNV is similar to viruses in the order Mon-
onegavirales, which are enveloped ssRNA viruses, with 
monopartite genomes of negative polarity.

ScRV

The ScRV genome contains five predicted ORFs similar to 
ScNV in size (Bekal et al. 2011). The predicted aa sequence 
of the largest ORF (V) in the ScRV genome is 46% similar 
to the RdRp or the Northern cereal mosaic virus (NCMV) 
L protein. Phylogenetic analysis of RdRp sequence showed 
the closest relationship of ScRV with the order Monon-
egavirales, member of the family Rhabdoviridae, genus 
Cytorhabdovirus.

ScPV

The ScPV genome, contains a single large ORF, that is 
closely related to enveloped viruses in the family Bunyaviri-
dae, genus Phlebovirus (Bekal et al. 2011). Phleboviruses 
have tripartite negative-sense ssRNA genomes. However, 
due to the less conserved products of the shorter M and S 
RNAs, only the L segment of the ScPV genome, containing 
the RdRp coding sequence, could be detected. ScPV groups 
with the type virus of this family (Bunyamwera virus) and 
is very similar to the Uukuniemi virus (UUKV) (Flick et al. 
2002).

ScTV

The genome of ScTV includes in a single ORF. It is related 
to Rice stripe virus (RSV) and Rice grassy stunt virus 
(RGSV), both members of genus Tenuivirus. Like tenuivi-
ruses, the ScTV L-protein is larger than the L proteins of 
most phleboviruses (Toriyama et al. 1994).

SbCNV‑5c

The genome of the Soybean Cyst Nematode virus-5 
(SbCNV-5c) encodes a single, 6004 aa polyprotein (Bekal 
et  al. 2014). Phylogenetic analysis performed on con-
served regions of the RdRp and RNA helicase indicated 
that SbCNV-5 is close to viruses in the genus Pestivirus. 
SbCNV-5 has been detected in greenhouse and field popu-
lations of SCN and in all four host stages: eggs, J2s, adult 
males and females (Bekal et al. 2014; Ruark et al. 2017). 
SbCNV-5 is not integrated into the SCN genome (Bekal 
et al. 2014).
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SCN NLV

This virus belongs to order Mononegavirales (family Nyami-
viridae). SCN NLV encodes a predicted nucleoprotein N, 
a phosphoprotein P, a glycoprotein G, the RdRp and two 
furher ORF-encoded proteins, with no attributable function-
ality due to the absence of sequence similarity (Ruark et al. 
2018). SCN NLV is close to SbCNV-1 but it is not classi-
fied in the genus Socyvirus. The SbCNV-1 and SCN NLV 
genomes differ by approx. 50%, indicating that SCN NLV 
likely represents a new genus or that the species bounda-
ries in this lineage should be expanded. SCN NLV has been 
sequenced from ten SCN populations and from H. trifolii 
(Ruark et al. 2018).

SCN BLV

SCN BLV is a futher RNA virus from order Bunyavirales, 
characterized by a negative-sense multipartite genome. Just 
like SCN NLV, SCN BLV also infects other arthropods, such 
as crustaceans and insects (Shi et al. 2016). Its polymerase 
sequence clusters with four other nematode host viruses. 
Detection with qRT-PCR and sequencing of its RdRps con-
firm the virus occurrence in nature as well as in the clover 
cyst nematode (Ruark et al. 2018).

Potato Cyst Nematode (PCN) viruses

The PcRV was discovered in populations of the PCN G. pal-
lida through high-throughput sequencing. Its reverse com-
plement strand includes five ORFs, with proteins varying 
from 180 (ORF 3) to 2180 (ORF 5) aa. This virus shows 
untranslated regions (UTR) of 156 and 641-nt at the 5’ and 
3’ termini of the positive strand, respectively. ORFs include 
putative genes for a nucleoprotein N, a phosphoprotein P, 
an unknown gene, a glycoprotein G and a putative RdRp or 
large non-structural protein L (Kud et al. 2022). The largest 
ORF 5-encoded protein showed similarities with the L-pro-
teins (RdRps) of rhabdoviruses. Phylogenetic analyses based 
on the L protein sequences placed PcRV close to ScRV in a 
distinct lineage, within an unclassified rhabdoviruses sub-
family. Kud et al. (2022) proposed a new genus including 
both viruses from PCN and SCN, classifying PcRV and 
ScRV in the subfamily Gammanemrhavirus. PcRV was 
detected in eggs, J2, and females, likely indicating a verti-
cal transmission. Infection appeared persistent and stable in 
the nematode populations examined, lasting at least 5-years.

Transcriptome data of G. pallida and G. rostochiensis 
revealed a positive-sense viral RNA genome named PCN 
PLV. The virus belongs to Picornavirales and produces 
a unique, predicted polyprotein (Ruark et al. 2018). PCN 
PLV does not show similarity with other viruses and requires 
an appropriate classification into a new genus. Proteases, 

helicases, and RdRps show conserved motifs of picorna-
like viruses.

Sugar beet cyst nematode (SBCN) virus

Single-stranded positive-sense RNA viruses named 
SBCNV1 and SBCNV2, were predicted from analysis of the 
H. schachtii transcriptome (Lin et al. 2018). The SBCNV2 
genome is organized in S, M and L segments, similar to the 
genome segments of members of some Bunyavirales.

SBCNV1 encodes a domain-containing polyprotein 
of members of Picornavirales. SBCNV1 was present in 
both eggs and J2 of SBCN, possibly indicating a vertical 
transmission. A negative-strand of SBCNV1 RNA was 
detected, indicating that replication of this virus occurs in 
H. schachtii (Lin et al. 2018). The SBCNV1 polyprotein 
contains domains of two rhinovirus (Rhv)-like picornavirus 
capsid proteins, a cricket paralysis virus (CRPV)-like (VP2-
like) capsid, a RNA helicase, a peptidase-C3 and a RdRp, 
organized similarly to the genomes of Picornavirales (Le 
Gall et al. 2008). Phylogenetic analysis based on the RdRp 
conserved aa sequence domains placed SBCNV1 together 
with PCNPV near to members of families Iflaviridae and 
Secoviridae. The very low aa identities of SBCNV1 and 
PCNPV with other Picornavirales members raised the pos-
sibility of a new taxonomical classification within the Picor-
navirales (Lin et al. 2018).

Root lesion nematode (RLN) virus

The genome of RLNV1, a positive-sense single-stranded 
RNA, was discovered in two independent pools of transcrip-
tomic datasets from the root lesion nematode P. penetrans 
(Thies et al. 1995). The presence of the virus has been con-
firmed in adults of both sexes but not in J2 or eggs. An 
hybridization assay, using an antisense probe of RLNV1m, 
detected the virus in the infected nematodes near to the 
esophageal glands (Vieira and Nemchinov 2019). Viral rep-
lication in RLN was also confirmed by PCR assay using 
a negative-strand-specific. RLNV1 belongs to the order 
Picornavirales. It consisted of a mono-cistronic genome 
with an ORF encoding a single, large polyprotein (Vieira 
and Nemchinov 2019). Phylogenetic analyses based on 
conserved RdRp domains placed RLNV1 in a distinct clade 
close to PCN PLV and SBCNV1, likely indicating the occur-
rence of a new family within the order Picornavirales. Fur-
thermore, the low-coverage alignments (around 5%) with 
nucleotide sequences of SBCNV1 and PCNPLV suggest 
that RLNV1 likely represents a new genus (Koonin et al. 
2008). The virus showed a widespread prevalence in North 
America and a low genetic variability (Vieira et al. 2020).
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Pine wood nematode (PWN) endogenous viral 
element

eBxnv‑1

The genome of the PWN, Bursaphelenchus xylophilus, a 
severe forest pest, includes an endogenous nodavirus-related 
sequence (eBxnv-1) (Cotton et al. 2016). This sequence is 
embedded in a degraded long terminal repeats (LTR) retro-
transposon, suggesting that the nematode genome integrated 
this positive-sense viral RNA in a single exon gene, encod-
ing a 570 aa hypothetical protein. This is similar to the RdRp 
(PS5057) of positive ssRNA viruses, and to the DNA/RNA 
polymerases superfamily (HMM SSF56672) (Cotton et al. 
2016). NCBI Blast analysis for this protein in Genbank showed 
similarity only to RdRps of nodaviruses. Phylogenetic data 
showed its relationship to RDRp of nodaviruses and close 
links to a subgroup of arthropod-infecting alphanodaviruses 
found in Lepidoptera. However, electron microscopy obser-
vations were unable to detect any virus particle in a nema-
tode tissue homogenate. Expression analysis of eBxnv-1 and 
LTR element (including the nodavirus-derived ORF), showed 
that they are expressed, although at a low level, during the 
whole B. xylophilus life-cycle, with no significant difference 
among developmental stages. Cotton et al. (2016) proposed the 
introgression of eBxnv-1 in B. xylophilus as an event where a 
RNA1 transcript, encoding the RdRp of a nematode nodavirus, 
infected the B. xylophilus germ line. Its reverse transcription in 
the cellular environment was likely followed by an LTR retro-
element non-homologous recombination, leading to its inser-
tion in the host genome. The B. xylophilus BUX.s01281.240, 
eBxnv-1 and BUX.s01281.242 genes are deposited in NCBI 
GenBank with acc. n. LC158686.

Entomopathogenic nematode virus

A dsRNA virus, named Steinernema ceratophorum par-
titivirus 1 (ScPV-1), was isolated from the entomopatho-
genic nematode, S. ceratophorum (Wang et al 2022). The 
positive-sense genome of ScPV-1 is composed of two seg-
ments of dsRNA1 and dsRNA2 with poly(A) tails at their 
3’ termini (Supplementary Table 1). ScPV-1 belongs to the 
family Partitiviridae. Phylogenetic analysis of the putative 
RdRp confirmed that ScPV-1 is a new member of genus 
Betapartitivirus.

Future perspectives and novel research 
paths

Reports and related data on the biology of several endos-
ymbionts are scattered in the scientific literature and gene 
databases, often resulting as indirect fallouts of research 

projects having a different goal. A more comprehensive 
view is needed, in relation to the potential of endosymbiotic 
associations and their links with crop productivity. Linking 
data derived from a basic evolutionary perspective to more 
applied aspects of plant protection requires the identification 
of  the benefit that pests gain by their endosymbionts. A 
second aspect concerns the identification of host adaptation/
virulence mechanism deployed by pathogenic endosymbi-
onts to evaluate their effective value as targets or tools for 
PPNs or insect pests management.

The quantitative assessment of the impact of endosymbi-
onts on crop productivity and pest regulation is of interest to 
achieve more sustainable plant protection methods and pest 
management approaches. The nutritional benefits that endo-
symbiotic associations provide to their hosts, for example, 
are only partially known and mostly for EPNs (Brown et al. 
2015; Raja et al. 2021). There is in fact still a knowledge 
gap for several PPNs-endosymbiont associations. Having 
passed the filter of evolution and selection, many endosym-
bionts, individually or in consortia, provide consistent and 
fundamental crop ecosystem services directly involved both 
in pest fitness or regulation. Many of them i.e., Pasteuria 
spp., are known as effective PPN biological control agents in 
natural conditions, ensuring a sustainable stability of yields. 
However, the performance of their in vitro or industrial pro-
duction still represents a factor limiting their widespread 
exploitation and application.

Initially, the interest in EPBs primarily focused on their 
symbiotic associations with EPNs. However, the current 
emphasis has shifted to their symbionts. The bioactive 
metabolites produced by these symbionts have a broad 
spectrum of applications, capable of killing harmful insects 
and PPNs, or microorganisms such as protozoa, bacteria and 
fungi (Abd-Elgawad 2022; Gulsen et al. 2022). EPBs secrete 
diverse arrays of bioactive compounds, including antibiotics, 
enzymes, bacteriocins, and toxins (see eg., Abd-Elgawad 
2022; Parihar et al. 2022; Kallali et al. 2024). These sec-
ondary metabolites can also serve as valuable sources for 
new pesticide or drug compounds (Parihar et al. 2022). They 
may act as lead molecules in the development of alternative 
solutions to replace existing ones, with applications in agri-
culture, pharmaceuticals, and industry (Cimen et al. 2022; 
Vicente-Díez et al. 2023a).

The use of EPBs as biocontrol agents is an attractive and 
promising approach in sustainable agricultural systems to 
manage a wide range of plant pests and pathogens. EPBs can 
serve as effective tools for crop protection, acting as stan-
dalone pesticides with versatile formulations of either the 
bacteria themselves or their bioactive metabolites, and can 
be applied in various forms such as pellets, powder, spray, 
suspension, or supernatant (Abd-Elgawad 2021, 2022). They 
have shown efficacy against different plant pests, including 
PPNs (see eg., Kepenekci et al. 2016; Caccia et al. 2018; 
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Sayedain et al. 2019; Kusakabe et al. 2022), insects (see eg., 
Shawer et al. 2018; Adithya et al. 2020; Yüksel et al. 2023; 
Vicente-Díez et al. 2023b, c), and fungi (see eg., Chacón-
Orozco et al. 2020; Cimen et al. 2021; Gulcu 2022). The 
results of EPB applications are promising for simultane-
ously controlling different plant pathogens and insect pests. 
In addition to this, there is the possibility of applying con-
sortia of EPBs, even with other biocontrol agents, achieving 
efficient results against insect pests (Spescha et al. 2023). 
However, additional research is imperative to optimize their 
utilization, encompassing a comprehensive understanding of 
their mode of action. Other goals include the development 
of effective formulations, and the identification of optimal 
application methods for field use. To make substantial pro-
gress in crop protection, these bacteria should be integrated 
into holistic crop management strategies (Abd-Elgawad 
2022).

A possibility for PPN management relies in their gene 
modification. This approach is, however, still at an early 
stage due to various obstacles (Kranse et al. 2021). However, 
viruses can be considered as possible tools for such modi-
fications, as already shown for animal parasitic nematodes 
(Hagen et al. 2021). SbCNV-5 appears as a candidate viral 
vector or for use, as infectious RNA, to manipulate expres-
sion of H. glycines genes. The relatively small, positive-
sense RNA genome of SBCNV1, compared to other RNA 
viruses that infect PPNs, also makes it an ideal candidate for 
future molecular studies. These could potentially lead to new 
measures for management of SBCN and/or of other related 
pests. Future research on the impact of nematode viruses 
on host multiplication and virulence will help explore their 
potential as a new strategy for management and control of 
most PPNs.

Understanding the ecological aspects of the triple inter-
action between bacteria-EPN-insect host is also crucial for 
biocontrol and pest regulation. For example, insects have 
developed defensive strategies to resist the attack of their 
natural enemies, including the sequestration of secondary 
metabolites from the plants on which they feed (Erb and 
Robert 2016; Beran and Petschenka 2022). This protective 
effect is achieved by selective stabilization and reactivation 
of toxins targeting different stages of the infection process 
of EPNs and their symbiont bacteria, suppressing parasitism 
(Robert et al. 2017). For that reason, to enhance the efficacy 
of the EPN-bacteria complex in integrated pest management, 
different breeding techniques are being explored, including 
bacterial and EPN strain engineering (Machado et al. 2020; 
Abd-Elgawad 2023).

The integration in plant protection of newly emerging 
biotechnologies such as the use of microRNAs interference 
or micropeptides may yield benefits in the development 
of novel, low impact management strategies (Lauresser-
gues et al. 2015). Silencing one of more genes active in the 

endosymbiotic associations that sustain a PPN survival may 
represent a future research objective. Efficient metabolism 
and gene expression are in fact required by endosymbionts to 
provide a nutritional benefit for their hosts, as shown by i.e., 
PPNs-associated Verrucomicrobia. However, most literature 
data deal with insect and bacteria associations, and a few 
afford the study of PPNs biology in terms of endosymbionts 
efficiency and host metabolism integration.

Methods in plant management through microRNAs and 
micropeptides have recently emerged as a fertile research 
field, with a potential in sustainable pest control (Lauresser-
gues et al. 2015; Badola et al. 2022; Erokhina et al. 2023). 
The application of gene interference in endosymbiotic asso-
ciations represents, hence, an attractive endeavor, given the 
severe impact that some species (i.e., RKN, SCN) have on 
yields, worldwide. Experimental data are, however, required 
to understand how to (i) determine the key metabolic path-
ways deployed by endosymbionts and (ii) interfere with their 
biology to build alternative and sustainable crop protection 
strategies.

Genetic engineering and manipulation technologies were 
applied to both Xenorhabdus and Photorhabdus. The inser-
tion of a tetracycline-inducible promoter activated a gene 
cluster with a non-ribosomal peptide synthase, allowed 
the identification of novel secondary metabolites (Yin 
et al. 2015). These approaches are promising, as they can  
identify new metabolites such as antimicrobial peptides or 
other toxins, that may have a potential and impact in pest 
management.

A promising research field also concerns the interac-
tions among different endosymbionts present in the same 
host, including the mechanisms of competitive exclusion, 
or the molecular mechanisms deployed by vertically trans-
mitted bacteria in the interaction with their hosts (Vande-
kerckhove et al. 2000; Palomares-Rius et al. 2021). In par-
ticular, it is still unclear how endosymbiotic bacteria may 
evade the nematode defense system and related enzymes, 
i.e. lysozyme. EPBs in fact do not induce harm to, and are 
tolerated by, their EPNs phoretic hosts (Boehnisch et al. 
2011). Host defensive mechanisms mediated by symbionts 
include the improvement of the host metabolic capabilities 
and vigor vs pathogens and parasites, together with chemical 
defense, competitive exclusion or immune system stimula-
tion (Flórez et al. 2015). Defensive mechanisms are active 
also in nematodes. However, there are still a few studies 
focusing on evolutionary conserved mechanisms such as the 
innate immunity (Kurz and Ewbank 2000; Wang et al. 2019) 
or the occurrence and role of antimicrobial peptides. These 
are widespread among invertebrates in which they play an 
important defensive role. The antimicrobial peptides iden-
tified in nematodes include the neuropeptide-like proteins 
found in C. elegans (McVeigh et al. 2008), and cecropins, 
nemapores, and different lysozymes found in animal or plant 
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parasitic species (Fanelli et al. 2008; Tarr 2012; Wang et al. 
2019).

Lysozyme-mediated protection from invading bacte-
ria appears particularly relevant. In rhabditids, lysozyme 
genes are expressed in the intestine, where their products 
act against pathogenic bacteria. However, the intestine is 
also the transit and storage environment of EPBs (Boehnisch 
et al. 2011). Different hypotheses may be formulated about 
the resistance or avoidance deployed by EPBs vs the 
lysozyme molecules (if any) produced by hosting EPNs. 
These include the possibility of a silencing effect exerted by 
EPBs on the expression of the host lysozyme genes, or the 
functional loss of  lysozyme-encoding genes. In both cases 
a hypothetical protective role of EPBs vs other nematode 
pathogenic bacteria may be postulated, to compensate for 
such eventual host impairment. EPBs are known to produce 
a broad arsenal of antibiotics and bioactive compounds, act-
ing as a chemical defense from bacteria, fungi or other inver-
tebrates such as ants, that invade the insect cadaver in search 
of a food source (Flórez et al. 2015). However, no data are 
available about the production and release of such effectors 
also within the EPNs digestive tract. Lysozyme coding genes 
are present in other rhabditids. A BLASTx search in NCBI 
database using C. elegans lys-1 (locus CELE.Y22F5A.4.1) 
and lys-2 (CELE.Y22F5A.5.1) showed highest identities 
with genes in Caenorhabditis spp. and other rhabditids 
(Diploscapter pachys, Helicephalobus sp. and Pristion-
chus pacificus), or Strongylida. However, no significantly 
similar sequences could be retrived from Steinernema nor 
Heterorhabditis when blasting lys-1 and lys-2 sequences vs 
their genomes, apart of some fragments (data not shown). 
This incongruence deserves further attention, as it suggests 
a possible loss or degeneration of lysozyme encoding genes 
in EPNs.

In conclusion, the study of the nematode cryptic microbi-
ome may yield new hypotheses and perspectives for future 
research work. These include the quantitative analysis of 
the endosymbionts impact on crops, encompassing not only 
plant parasitic nematodes but also the potential utilization 
of bacteria for controlling plant pests. A further aspect is 
the definition of gene silencing approaches to harm pests or 
improve the efficacy of biocontrol agents. Finally, a detailed 
insight on the symbiont/host/plant interactions may yield 
useful knowledge on fundamental pest traits such as hyper- 
or hypo-virulence, including the defense gene pathways acti-
vated by plant or insect hosts.
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