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Quantum Simulating the Electron Transport in Quantum
Cascade Laser Structures

Andrea Trombettoni, Francesco Scazza, Francesco Minardi,* Giacomo Roati,
Francesco Cappelli, Luigi Consolino, Augusto Smerzi, and Paolo De Natale

Ultracold fermionic atoms are proposed to be used in 1D optical lattices to
quantum simulate the electronic transport in quantum cascade laser (QCL)
structures. The competition between the coherent tunneling among (and
within) the wells and the dissipative decay at the basis of lasing is discussed.
In order to validate the proposed simulation scheme, such competition is
quantitatively addressed in a simplified 1D model. The existence of optimal
relationships between the model parameters is shown, maximizing the
particle current, the population inversion (or their product), and the
stimulated emission rate. This substantiates the concept of emulating the
QCL operation mechanisms in cold-atom optical lattice simulators, laying the
groundwork for addressing open questions, such as the impact of
electron–electron scattering and the origin of transport-induced noise, in the
design of new-generation QCLs.

1. Introduction

Quantum cascade lasers (QCLs)[1,2] are among the most strik-
ing examples of how quantum mechanics is nowadays at the
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basis of everyday-life technology, from the
implementation of gas-related sensors and
radars to cultural heritage investigation.[3]

QCLs are realized by metamaterials, con-
sisting of hundreds of semiconductor lay-
ers forming multiple-quantum-well struc-
tures, providing an extraordinary flexibility
and versatility in designing a large number
of configurations. Since QCLs first demon-
stration, many fundamental advancements
have been achieved regarding their oper-
ation capabilities. By improving heat ex-
traction and carrier diffusion, continuous-
wave room temperature operation has been
achieved for mid-infrared QCLs,[4] while
THz devices have very recently achieved op-
eration temperatures that can be handled
by thermoelectric cooling.[5,6] The emitted

power has also been increased, reaching for mid-infrared QCLs
the watt level[7] and 31% wall-plug efficiency.[8] Moreover, two
fundamental aspects of QCLs emission properties have been clar-
ified. First, the intrinsic linewidth narrowness of QCLs emis-
sion has been experimentally demonstrated.[9–11] This feature re-
sults from the ratio between radiative and nonradiative decay of
the laser transition, which for QCLs is unbalanced toward the
latter.[12] This relates to a low efficiency but also to a narrow in-
trinsic linewidth, being the spontaneous emission highly sup-
pressed above threshold. Second, the capability of QCLs to gen-
erate frequency combs in free-running continuous-wave opera-
tion has been demonstrated.[13–16] Thanks to the high third-order
nonlinearity characterizing the activemedium, four-wavemixing
couples the modes emitted by Fabry–Pérot QCLs[17–19] establish-
ing a fixed phase relation.[20,21] In order to control and improve
further the spectral properties (e.g., the spectral coverage[22] and
the frequency/phase noise[23–26]), a considerable effort has been
undertaken to reduce the group velocity dispersion characteriz-
ing the waveguide (Gires–Tournois[27] and double-waveguide[28]

approaches).
However, the quest for the ideal QCL design is a real chal-

lenge, made even harder by the complex, expensive and time
consuming fabrication processes. The present-day maturity has
been reached by harnessing advanced carrier-transport nu-
merical modeling techniques,[29] such as Monte Carlo (MC)
methods,[30–32] density-matrix (DM) based transport models[33,34]

and non-equilibrium Green’s function (NEGF) approaches.[35–37]

While they enabled the current performance of QCL devices,
they provide an incomplete description of the physical pro-
cesses governing the system dynamics. Even if fully quantum
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transport models such as DM or NEGF approaches can ideally
describe both coherent and incoherent effects accurately, the
ensuing computational cost typically requires to introduce sev-
eral approximations, trading computing speed for accuracy and
generality.[38] On the other hand, self-consistent semi-classical
MC techniques optimize the numerical efficiency, but completely
neglect quantum coherence and tunneling.[29] Important aspects,
such as electron–electron interactions or other scattering mecha-
nisms, time-resolved dynamics, and coupling with the laser field
cannot be thus fully taken into account by either quantum or
semi-classical approaches, due to their inherent quantummany-
body nature, despite they are expected to play a fundamental role
for the laser performance.[29] For example, the dominant mech-
anism behind the temperature degrading of THz QCLs is still
debated.[39]

In this paper we propose an analog quantum simulator con-
sisting of an ultracold Fermi gas trapped in an optical lattice, to
study electron transport in QCLs.[40–42] The goal is to reproduce
the fundamental QCL structure (i.e., an array of tunnel-coupled
quantum wells) for optimizing QCLs operation. The optical lat-
tice of our quantum simulator replicates the periodic structure of
the semiconductor layers in QCLs, while the laser-assisted tun-
neling of ultracold fermions emulates electron inter-layer tunnel-
ing under an applied voltage. QCL operation is crucially based
on dissipation-assisted transport in the injector regions; its per-
formance hinges on a delicate balance between coherent radia-
tive and non-radiative decay processes between narrow energy
bands in quantum wells,[43] whereby efficient electron transport
optimizes the laser performance. By quantitatively modeling the
tunneling dynamics in the minimal case of three levels in each
well and non-interacting particles, we study the elementary rela-
tions among the key parameters governing QCL lasing, showcas-
ing the potential of atomic quantum simulations for a more thor-
ough understanding of the essential physical processes at play
in QCL systems. In particular, we report the relative parameter
values which maximize the current and the population inversion
within a three-level model structure.

2. Quantum Simulation of Relevant Physical
Processes in QCLs

An analog quantum simulator is a physical platform whose
dynamics reproduces the evolution of a theoretical quantum
model that cannot be solved by means of classical numeri-
cal approaches. The reason is that complex quantum models
evolve in exponentially large Hilbert spaces that would require
equally large computational matrices that cannot be managed
by the most powerful classical computers available today or in
the foreseen future. The quantum model is supposed to cap-
ture the essential physics of a real quantum system realized
in the laboratory. The main desired characteristics of analog
quantum simulators are their scalability and their resilience
against noise and decoherence. A further crucial ingredient is
the possibility to accurately tune the parameters of the exper-
imental platform—such as carrier–carrier interactions, tunnel
couplings, disorder strength, and temperature—to address the
largest class of relevant dynamical regimes. Quantum simu-
lating electron transport in real quantum-engineered devices

such as QCLs may provide new insights into the quantum me-
chanical effects governing dissipative electron transport within
QCL active regions. So far, numerical simulation of QCLs in
both the mid-infrared and THz regions provided several in-
sights into transport and gain mechanisms.[29,37,44] However,
further optimization of QCL design requires to fully include
in the simulations many other relevant mechanisms that can
affect laser operation, such as electron-electron interactions[45]

and the unavoidable presence of disorder.[46] Furthermore, for
high-resolution spectroscopy applications, it is necessary to
minimize both frequency and amplitude noise of the emitted
radiation.[11,47–53] An atomic quantum simulation of electron
transport in QCL structures can give direct insight in the model-
ing of:

• Electron–electron scattering: This has been argued to be one
of the most important scattering mechanisms,[54] so far taken
into account via mean-field approaches (Hartree approxima-
tion) or simplified treatments of the two-body interaction self-
energy to describe the screened Coulomb interaction as it oc-
curs in the 2D quantum-wells heterostructures.[29,30,32,36] Of
special interest is the dependence of the interaction effects
on temperature. In cold atom quantum simulators, the atom-
atom interactions have an extremely short range with respect
to the typical wavelength of atomic wavefunctions (contact,
delta-like interactions), with a coupling strength that is conve-
niently controlled bymeans ofmagnetic Feshbach resonances,
which allow the study of both weakly and strongly interacting
regimes.[55] At the same time, the temperature can be indepen-
dently adjusted and accurately measured.

• Disorder: In QCLs an important symmetry-breaking effect
between periods is induced by fabrication tolerances, which
can also be introduced on purpose to obtain broadband
lasing.[56] In ultracold atomic systems, the impact of disorder
on transport can be studied by superimposing speckle pat-
terns or incommensurate optical lattices on the primary lattice
potential.[57] In this way, the disorder strength and correlation
length are fully controllable.

• Real-time dynamics: Typically, QCL models solve for the pe-
riodic steady state of the system, calculating scattering matrix
elements for individual values of the applied bias voltage.[29]

In contrast, time-resolved simulationsmay require calculation
of the matrix elements at every time step, resulting in much
more time-consuming computations. Cold atoms could pro-
vide direct information, since it is possible to visualize their
dynamics and the relative state populations in real-time by di-
rect imaging of the relevant atomic states. In this context, a
numerically efficient simplified density matrix approach for
simulations over extended time and propagation length scales
has been developed.[58] On the other hand, time-resolved full-
coherence density matrix models are available.[59–61] They can
serve as validation tools for cold atoms simulations.

• Transport-induced QCL noise: A relevant contribution to the
laser noise is given by the electron transport itself. This noise
appears to be intrinsic to the devices operation[9,62] and can
be at least partially explained with the filling and emptying of
impurity states in injector regions.[63] Additional noise might
come from electric field domains forming when QCLs oper-
ate in a regime of negative differential conductivity.[64] This
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Figure 1. Cold-atom implementation of dissipation-assisted directional transport, driven by a combination of coherent (straight arrows) and incoherent
(wavy arrows) couplings in a tilted periodic potential. a) Illustration of the QCL-like laser-assisted transport mechanism within a minimal three-level
model. A first laser field couples coherently with strength 𝜏 two states localized in neighboring wells j and j+1, labeled as |1⟩ and and |3⟩, driving
the tunneling in a tilted array of quantum wells, which would otherwise be suppressed. In turn, state |1⟩ is coherently coupled with strength Ω to the
lower laser level |2⟩ localized in the same well, which spontaneously decays onto state |3⟩ with rate 𝛾 . b) Detailed implementation of the laser-assisted
tunneling process with cold atoms in a 1D lattice. Here, |1⟩ (blue), |2⟩ (red), and |3⟩ (violet) refer to different internal states of the atom. In the sketch,
atoms on site j are transferred to site j+1 by a two-photon Raman-assisted process, changing their internal state from |3⟩ to |1⟩. The state |1⟩ is optically
pumped back to state |3⟩ through a laser resonant with the |1⟩ → |2⟩ transition. c) In a full 1D lattice realization, unidirectional atomic transport is
driven by the combination of the three couplings 𝜏, Ω, and 𝛾 .

kind of noise, manifesting in the lasers emission frequency
and amplitude, is mirrored in the bias current, whose fluctu-
ations could be theoretically investigated and experimentally
addressed with tunable parameters and an expected good
statistics in a cold atom simulator.

3. The Simulator Scheme

The proposed simulation of electron transport in QCLs is based
on ultracold fermionic atoms tunneling through a 1D optical
lattice. Periodic lattice potentials with adjustable well spacing
are routinely generated by interfering two laser beams under a
suitable angle. The periodic potential generated by the resulting
standing-wave pattern consists of an array of equidistant wells,
whose height is simply tuned by setting the laser intensity. In
this way, ultracold atoms can be trapped in individual quasi-2D
layers, separated by potential barriers. This geometry reproduces
that of QCL heterostructures, in which 2D semi-conductor layers
are tunnel-coupled through thin insulating barriers. Interactions
between internal atomic states, parametrized by the s-wave scat-
tering length, can be controlled via Feshbach resonances. In this
way it is possible to smoothly tune the gas fromweakly to strongly
interacting by the application of an external homogeneous mag-
netic field.
Here, we consider using different internal states of the atoms

to mimic the different levels in the quantum wells of QCL het-
erostructures. In particular, we propose to simulate a three-level
QCL structure, where each of the inter-level coupling strengths

can be tuned (see Figure 1). In particular, the relevant couplings
between levels are provided by different laser-assisted processes:
i) inter-well tunneling (i.e., injection and extraction) is engi-
neered through laser-assisted tunneling in a tilted lattice poten-
tial; ii) coherent coupling (analogous to stimulated emission) is
provided by coherently driving the transition between the two
analog laser levels; iii) the dissipative coupling (analogous to non-
radiative depletion) is emulated by tuning the spontaneous decay
rate of the lower laser level, via optical quenching to a short-lived
higher-energy atomic state. Possible atomic implementations of
these couplings are sketched in Figure 2. Alternatively, dissipa-
tion could be introduced by adding an interacting atomic bath
that surrounds the lattice-trapped atoms and is unaffected by the
lattice potential.[65] For a bosonic medium, this would emulate
the presence of phonons and phonon-assisted nonradiative de-
cay of the QCL laser levels.[43]

A tunable linearmagnetic-field or optical gradient can produce
the analogue of the bias voltage imposed at QCLs electric con-
tacts. This external potential introduces a uniform offset between
the energyminima of adjacent wells, and it is key to obtain unidi-
rectional transport in the system. For weak gradients and in the
absence of driving, interactions or disorder, the atoms perform
Bloch oscillations, and no net current along the lattice is observ-
able. A strong inter-well offset larger than the width of the lowest
lattice band localizes the atomic wavefunctions into few lattice
sites, inhibiting Bloch oscillations. The tunneling of fermions
between neighboring lattice sites along this tilted washboard
potential is then restored by a direct laser coupling between the
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Figure 2. Detailed proposed implementation of the required tunable couplings for: a) 6Li atoms, or b–c) fermionic two-electron atoms, such as 87Sr
or 173Yb. While in (a) and (b) a two-photon Raman coupling is used to engineer internal state-changing tunneling processes with amplitude 𝜏, in (c) a
single-photon optical clock laser coupling is exploited. In order to tune the dissipative, spontaneous emission rate 𝛾 , the naturally long-lived lower laser
level |2⟩ is optically coupled to a short-lived higher-lying state with a tunable strength Ωaux, quenching its lifetime 𝛾 ≃ 𝛾aux Ω2

aux∕(𝛾
2
aux + 4Δ2

aux), where
the auxiliary laser is detuned from resonance by Δaux.

[74,75]

localized Wannier–Stark states centered on adjacent sites (sim-
ilarly to what implemented in ref. [66]). In particular, directional
transport can be driven by dissipation through spontaneous
photon emission, with a scheme reminiscent of two-photon
Raman sideband cooling[67] (see Figure 1). Each transport step
ends with the spontaneous emission of a photon after the atom
has moved by one lattice spacing. No subsequent transport
step can occur in the absence of such dissipative process.[65]

Furthermore, in principle, some noise can be added on the
tilting gradient emulating the noise on the QCL current driver.
The described setup is ideal to investigate the (combined) ef-

fects of disorder and interactions, which are thought to play a
key role in QCLs performance. In the proposed experiment, both
interactions and disorder can be introduced and controlled in a
continuous fashion. Interactions between fermions can be tuned
through Feshbach resonances, from zero to strong, accessing
the regime where many-body correlations govern the transport
dynamics.[68] Disordered potentials can be generated by addi-
tional high-resolution optical potentials. By playing with the ge-
ometrical arrangement of the generating laser beams, both “in-
plane” and longitudinal randomness can be introduced. The “in-
plane” disorder can be realized by shining on the atomic planes
speckle or binary (Poissonian) disorder patterns.[69,70] They can
be tailored through digital micro-mirrors devices (DMD), explor-
ing both static and dynamical disorder. These potentials can be
imprinted on a spatial scale comparable with the mean inter-
particle distance to reach the regime where quantum effects
are dominant.
In QCLs, longitudinal disorder (i.e., along the direction of

propagation) arises from the imperfect growth of the layers dur-
ing the molecular-beam epitaxy deposition. The performance
of QCLs is strongly affected both by the relative arrangement
of the layers and by the background doping level. To simulate
such effect with ultracold fermions, a quasi-periodic lattice can
be created by overlapping a weak lattice, incommensurate to the
main one, that shuffles the energy minima, which become non-
periodically modulated (periodicity is restored only at the very
long length scale of the beating between the two lattices, i.e., sev-

eral microns). This quasi-periodic system displays a transition
from extended to localized states analogous to the Anderson tran-
sition, already in 1D for a non-interacting gas.[57] The combina-
tion of disorder and interactionsmodifies the dynamics along the
lattice, mimicking the transport of electrons in the non-perfect
QCL heterostructures.
To reproduce even more closely the real QCL structure, more

exotic light potentials can be designed. As an example, meso-
scopic lattices can be implemented, as recently demonstrated in
ref. [71]. They may include a series of few thin optical barriers,
imprinted onto the atoms with high spatial resolution by a DMD.
By controlling and tuning their number, shape and relative sep-
aration, it is possible to study the dynamics in different condi-
tions to eventually optimize transport along the lattice. The in-
jection of an external current could be simulated by inserting
the mesoscopic lattice in between two atomic reservoirs,[71] and
rigidly moving the potential at constant velocity.[72]

4. Simulator Model and Experimental
Implementation

The ultracold gas simulator, engineered as discussed above, al-
lows to investigate a master equation of the form

�̇� = − i
ℏ
[H, 𝜌] + [𝜌] (1)

whereH is the effectiveHamiltonian governing the coherentmo-
tion of fermions in the lattice and[𝜌] is the Lindbladian describ-
ing the spontaneous emission. To fix the notation, in this Section
we denote by the index i the wells, that is, the minima of the pe-
riodic potential, and by |j, 1⟩, |j, 2⟩, |j, 3⟩ the kets denoted respec-
tively by |1⟩, |2⟩, |3⟩ in the well j in Figure 1a.
The Hamiltonian entering Equation (1) refers, in general, to a

spinful multi-component Fermi gas and the corresponding mas-
ter Equation (1), once that the appropriate Lindblad operator 
is specified, is of course very hard to solve, due to the fact that
the Hilbert space grows exponentially with the number of sites.
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Instead, the time-dynamical solution of Equation (1) would be
provided by the ultracold quantum simulator which we propose
to experimentally realize.

4.1. Simplified Model Hamiltonian

The central problem faced by all quantum simulators is the cer-
tification of their results. There are not available in the literature
quantum error-correction protocols allowing to preserve the fi-
delity of the simulator quantum state with the state of the system
that must be simulated. The only possible strategy is to bench-
mark the experimental results in dynamical regimes that are ac-
cessible to a theoretical numerical analysis. To this purpose, it is
therefore important to develop solvable toy-models that can cap-
ture some essential features of the full quantum system thatmust
be simulated. It is important to emphasize that these toy-models,
however, will not merely act as simple test-beds, but can provide
useful insights on the competition of various time scales and en-
ergies of the real complex system in terms of a few dimension-
less control parameters. For these reasons, we will develop and
study in this Section a 1D, non-interactingmodel of the quantum
electron transport in QCL structures. Our model consists of non-
interacting particles that can tunnel between weakly-coupled ad-
jacent wells, each containing three non-degenerate energy levels.
We study the interplay between the intra- and inter-wells coher-
ent dynamics in presence of dissipation, which leads to an effec-
tive dynamical phase diagram containing quantum-Zeno frozen
islands surrounded by coherent transport regions. Our model is
similar to a previous model suggested in the literature where a
one-body density matrix was written in the two-level, or in the so-
called full approximation (see Chapter 12 in ref. [43]), and could
not therefore capture the competition among tunneling and in-
ternal dynamics that we study below. The simplifiedmodel can be
experimentally simulated by using an atomic Fermi gas (e.g., 6Li
atoms) in the setup illustrated in Figures 1 and 2. Our toy model
does not include effects such as interparticle interactions, defects,
and interactions with transverse degrees of freedom, whose full
characterization is challenging for numerical studies, but illus-
trates the competition between tunneling, coherent oscillations
and spontaneous emission in a simple, and experimentally ac-
cessible scenario.
The HamiltonianH has the general form

H = H𝜏 +HΩ (2)

H𝜏 describes the tunneling from a well to the next one and, more
precisely, the tunneling from the level |j, 3⟩ in the jth well to the
level |j + 1, 1⟩ in the (j + 1)th well[76]

H𝜏 = 𝜏
∑
j

(c†j,3cj+1,1 + h.c.) (3)

where c†j,𝛼 is the fermionic operator creating a particle in the level
|j, 𝛼⟩, that is, in the state 𝛼 (with 𝛼 = 1, 2, 3) of well j. Instead,HΩ
describes the coherent coupling from |j, 1⟩ to |j, 2⟩ in each well j
HΩ = Ω

∑
j

(c†j,1cj,2 + h.c.) (4)

To simulate disorder, on-site energy terms may be added, in
order to have wells with different zero point energies. Moreover,
it should be noticed that the Hamiltonian (2), with (3) and (4)
can be seen, in the language of electrons hopping in a lattice,
as a “spinless” Hamiltonian, in the sense that a single fermionic
species is present and at most one fermion can occupy the state|j, 𝛼⟩. In principle, a further degree of freedom can be added, to
obtain a “spinful” effective Hamiltonian and to accomodate even
contact interactions of two fermions in the same |j, 𝛼⟩ state. With
atomic gases both local and non-local interactions[73] can be en-
gineered; however, in the simplified model presented here, we
do not consider the effect of interactions, paralleling the simpli-
fied density matrix models used in the QCL literature.[43] It is
important to note that the simplified Hamiltonian (2) assumes
that all fermions do occupy a single motional band in the lattice.
However, for typical values of 𝜏 (see Section 4.2), atoms confined
in the lattice are not well described by the Lamb–Dicke regime,
and spontaneous photon emission leads to a finite population of
excited motional bands. These remain uncoupled in absence of
interactions, but would need to be explicitly taken into account
for describing the interacting problem.
Our main goal is to explore competition between the coherent

processes (∝ 𝜏,Ω) and the spontaneous dissipative terms. Need-
less to say, the understanding of the “spinless” case provides the
basis for more complete models needed to quantum simulate
mechanisms relevant in QCL structures. It is now necessary to
specify how the Lindbladian operator can be expressed. To de-
scribe spontaneous emission, see Figures 1 and 2, following the
toy model discussed before, we choose

[𝜌] =
∑
j

(
𝛾jLj𝜌L

†
j − (𝛾j∕2){L

†
j Lj, 𝜌}

)
(5)

with

L(j) = c†j,3cj,2 (6)

Since we do not consider the effect of inhomogeneities between
different wells, wewill consider all the 𝛾i’s equal by putting 𝛾i ≡ 𝛾 .
In the next Section we comment on the experimental values of
the parameters, and their tunability within the schemes illus-
trated in Figure 2.

4.2. Parameter Values in Experimental Implementations

The simplified model introduced in Equations (1), (2), and (5)
features three main parameters: the effective strength of the tun-
neling term between adjacent wells, 𝜏; the coherent coupling be-
tween a pair of levels in each well, Ω; and the incoherent leakage
of particles into the lowest level of each well, 𝛾 .
In Section 3 we have shown schemes of a simulator that can be

used for alkali fermionic atoms, such as lithium, or for alkaline-
earth-like fermionic atoms such as ytterbium or strontium. Since
in the next Section we are going to present estimates of physical
quantities with varying 𝜏, Ω, and 𝛾 , it is useful to briefly discuss
how these parameters can be effectively changed in the differ-
ent schemes.
First, let us refer to the scheme in panel (a) of Figure 2, valid for

fermionic alkalis such as 6Li. The parameterΩ∕h (where as usual
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h = 2𝜋ℏ) can be varied in the range ≈ 100 Hz–10 kHz, while the
parameter 𝜏∕h likely can be adjusted between ≈ 10 Hz–100 Hz,
considering reasonable laser intensities and lattice depths, while
avoiding excessive spontaneous emission and associated heating
from the intermediate state in the two-photon scheme. On the
other hand, the spontaneous emission rate 𝛾 , induced by optically
coupling the naturally long-lived level |2⟩ to short-lived higher-
lying states, can be varied from 0 to tens of kHz.[74,75]

In the scheme from panel (b) of Figure 2, referring to,
for example, Yb or Sr atoms, thanks to the presence of nar-
row transitions reducing the undesired spontaneous emission,
the laser-assisted tunneling amplitude may reach values 𝜏∕h ≈
100 Hz,[77] while the tunability range forΩ and 𝛾 is similar to al-
kali atoms in panel (a). For the scheme (c), 𝜏∕h can be even larger,
up to ≈ 1 kHz, since it is driven by a single photon transition.
In the present model, and for subsequent results, we are not

including the incoherent decay of level |1⟩ which is generally
present in real QCL structures,[12] although it is especially con-
nected to laser emission.[43] In the atomic simulator, such term
can be made negligibly small, and will not be further considered.

5. Dynamics in Non-Interacting Models

Focusing at the optimization of the laser emission rate, we con-
sider the coherent coupling Ω and the decay rate 𝛾 as the tun-
able parameters in the simulation, while the tunneling ampli-
tude 𝜏 is taken as the overall energy and timescale reference. This
last value for three-quantum-wells QCL active regions is typically
𝜏∕h ≃ 0.08 THz,[43] whileΩ∕h ≃ 0.4 THz and 𝛾∕h ≃ 0.4 THz, for
a recent realization of mod-infrared QCLs.[78] To maximize the
laser emission rate, we aim to have at once a large population
inversion and an efficient transport through the wells.

5.1. Single-Well Toy Model

Let our analysis start from the building block of the transport
process, for which there are three states in the generic well j. The
more numerous are the particles in |3⟩ levels, themore favored is
the transport. Particles are coming from the well j − 1, and more
precisely from the level |3⟩ in the well j − 1, and this is introduced
in the model by having the population at the initial time t = 0
entirely in the state |j − 1, 3⟩ denoted, for the sake of brevity, by|0⟩.
Dropping the index j, we rewrite the Hamiltonian and the

Lindbladian as

H = 𝜏(c†0c1 + h.c.) + Ω(c†1c2 + h.c.) (7)

 = 𝛾L𝜌L† − 𝛾

2
{L†L, 𝜌} (8)

with L ≡ c†3c2. Furthermore, since 𝜏 sets the energy scale, we re-
define Ω and 𝛾 in units of 𝜏: in practice we set 𝜏 = 1.
Let us discuss now the competition taking place between the

coherent coupling, ∝ Ω, and the decay term, ∝ 𝛾 . Supposing for
simplicity thatΩ = 1, when 𝛾 = 0, the populationmoves from |0⟩
to |1⟩ and to |2⟩, but no population ends in |3⟩, thus no transport

Figure 3. Time evolution of N3 for 𝛾 = 0 (black), 0.5 (orange), 1 (red), 2
(green), 5 (blue), 10 (magenta), and 20 (purple) in the four-level model.
The values of the parameters 𝜏,Ω are chosen to be 𝜏 = Ω = 1; time is in
units of ℏ∕𝜏. Inset: Values of N3 at time t0 = 2.5 as a function of 𝛾 in the
four-level model.

occurs. When 𝛾 ≠ 0 transport starts but if 𝛾 becomes too large,
the decay ∝ 𝛾 acts as an effective measurement and, due to the
quantum Zeno effect,[79] the population remains in the subspace
spanned by |0⟩, |1⟩, and |2⟩ for times increasing with 𝛾 . There-
fore, at any given time t0, the number of particles in |3⟩ increases
with 𝛾 for 𝛾 smaller than an optimal value 𝛾opt, and then decreases
upon further increasing 𝛾 with 𝛾 > 𝛾opt. This behavior is shown in
Figure 3, whereN3(t) = ⟨c†3c3⟩ denotes the number of particles in
level |3⟩ at time t. The initial state is chosen to be as c†0|vac⟩, that
is, one particle in the level |0⟩. The presence of an optimal value
𝛾opt (which depends on t0) is clearly seen in the inset. For Ω ≠ 1,
the non-monotonic behavior is still present, and if Ω > 1 (easier
to implement with respect to the case Ω < 1, see the discussion
in the previous section), 𝛾opt increases with Ω.

5.2. Two Wells with Periodic Boundary Conditions

The above discussion focused on two subsequent wells, with the
Lindbladian term acting to accumulate particles in the lowest
level of the second well. Then, it is natural to ask what are the
effects on the full cascade of wells, and how we can characterize
the competition between the different terms producing a station-
ary state. Clearly, a complete answer to these issues may come
from the proposed quantum simulation with cold atoms, how-
ever here we provide a simple description and a first qualitative
understanding from considering two subsequent wells with pe-
riodic boundary conditions.[37] With the two wells labeled by j
and j + 1, let denote now the operators c†j−1,𝛼 by c

†
𝛼
with 𝛼 = 1, 2, 3

and similarly c†j,𝛼 by c
†
𝛼+3, so that the operators c1, c2, c3 refer to

the fermionic operators destroying particles in the levels of the
well j − 1, and c4, c5, c6 to the ones destroying particles in the lev-
els of the well j. A schematic representation of this notation is in
Figure 4.
We then obtain Equation (1) with

H = 𝜏c†3c4 + Ω(c†1c2 + c†4c5) + 𝜏c†6c1 + h.c. (9)
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Figure 4. Labeling of the levels for the two-wells model of Section 5.2 (no-
tice that in literature the notation with the ket |1⟩ in the bottom is often
used): 𝜏 is the tunneling between wells, Ω the coherent coupling on the
laser transition, and 𝛾 the radiative decay of the lower laser level. Periodic
boundary conditions imply that tunneling 𝜏 connects also |6⟩with |1⟩ (not
shown).

and  given by

 = 𝛾
∑
j=1,2

(
Lj𝜌L

†
j −

1
2
{L†j Lj, 𝜌}

)
(10)

with L1 = c†3c2 and L2 = c†6c5.
The main difference with the four-levels case analyzed in Sec-

tion 5.1 is that a non-trivial stationary state is reached. With
Ni ≡ ⟨c†i ci⟩, the population of the lowest level in the second well,
N6, reaches an asymptotic value after a transient that is longer
both for small and large values of 𝛾 .
In the following considerations and figures we are considering

as initial state 𝜌(t = 0) = |1⟩⟨1|, that is, all the population in the
level |1⟩. Notice that, our periodic boundary conditions imply that
the asymptotic values of quantities will be the same in the two
wells, for example,Nasympt

1 = Nasympt
4 ,Nasympt

2 = Nasympt
5 , and so on

(labeling with asympt the quantities for t → ∞).
Actually, we use six levels to clearly illustrate themotion of par-

ticles between the wells. A minimal model could restrict to a sin-
gle well, that is, levels |1⟩, |2⟩, |3⟩, and implement the periodic
boundary conditions by having tunneling between |1⟩ and |3⟩.
For the cases discussed below, we verified that the two models
yield identical results for the asymptotic values.
To assess the performance of the modeled QCL, our main in-

terest is upon the following quantities:

• the expectation value I of the current operator Î = −i (c†3c4 −
c†4c3), given by I = −2 Im[𝜌43] (with this choice, for the consid-
ered initial condition, I > 0);

• the population inversion (e.g., in the second well)

ΔNinv(t) = N4(t) − N5(t) (11)

so that the population is truly inverted on the laser transition
for ΔNinv > 0. As a good proxy of the laser emission rate, we
will take ΔNinvΩ2.[80]

The goal of the following discussion is to summarize the de-
pendence of the asymptotic values of the above quantities upon
Ω and 𝛾 , and to point out the occurrence of optimal values.
As in previous Section, we start with the case Ω = 𝜏 and then

generalize toΩ ≠ 𝜏. However, it is interesting to observe that cer-
tain relations for asymptotic values hold in both cases. First we
get

|𝜌43|asympt = Iasympt

2
(12)

(actually valid at any time). Moreover we obtain

𝛾 Nasympt
5 = 𝜏Iasympt (13)

𝜏 (Im[𝜌43])
asympt = Ω (Im[𝜌54])

asympt (14)

Equations (12) and (13) are particularly useful since they relate
the current to the coherence, and the decay rate to the current via
the occupation of the intermediate level, respectively.

5.2.1. Ω = 𝜏

Let our analysis start from the case Ω = 𝜏. Solving the Lind-
blad equation, it clearly appears that the (desired) inversion takes
place. Typical plots of the time dependence of the different quan-
tities are reported in Appendix, to which we defer for further de-
tails. First, we observe that, due to symmetry 𝜏 ↔ Ω, we obtain

Nasympt
1 = Nasympt

3 ; Nasympt
4 = Nasympt

6 (15)

Since for the symmetry induced by the periodic boundary condi-
tions it is Nasympt

1 = Nasympt
4 , Nasympt

2 = Nasympt
5 , then it follows that

N4 − N3 → 0 for large time, as it can be verified. One could add
a Lindbladian term of the form ̃ = �̃�

∑
j=1,2(L̃j𝜌L̃

†
j −

1
2
{L̃†j L̃j, 𝜌})

with L̃1 = c†3c1 and L̃2 = c†6c4, that is, adding a dissipative term in-
coherently transferring atoms from the highest to the lowest level
of each well, that, in the atomic simulators described in the pre-
vious Section, is typically larger than the incoherent decay term
from |1⟩ to |2⟩). In that case the symmetry given by Equation (15)
no longer holds.
Our results are shown in Figure 5, where we plot ΔNasympt

inv ,|𝜌43|asympt and Iasympt as a function of 𝛾 .
In Figure 5 we find a non-monotonic behavior for the transport

quantities, that is, the current I and of the coherence |𝜌43|, for
which the optimal values of 𝛾 are finite. This results from the
combined presence of the tunneling and the dissipative terms: if
𝛾 is vanishingly small the population does not reach the lowest
level, while for large 𝛾 the coherence and the tunneling between
wells are suppressed.
At variance, the population inversion ΔNinv and the stimu-

lated emission rate grow with 𝛾 , the former reaching the value
0.25 in the large 𝛾 limit. The reason is that for large values of
𝛾 the occupation of the intermediate levels |2⟩ and |5⟩ is in-
creasingly suppressed, so that Nasympt

2 = Nasympt
5 → 0 for 𝛾 → ∞.

Then, due to Equation (15) all the other four values go the same
value, which for the normalization has to be Nasympt

1 = Nasympt
3 =

Nasympt
4 = Nasympt

6 = 1∕4.
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Figure 5. Long-time values of population inversion ΔNinv (black), coher-
ence |𝜌43| (red), and current I (green) as a function of the decay parameter
𝛾 (with 𝜏 = Ω = 1).

5.2.2. Ω ≠ 𝜏

The first observation is that the population inversion increases
with lowering Ω, so that its maximum value occurs for Ω = 0, as
shown in Figure 6a. This is quite reasonable as for low values of
the coherent couplingΩ the population of the intermediate states|2⟩ and |5⟩ vanishes. Actually, as Ω increases the inversion itself
disappears, that is, ΔNinv turns negative at a specific value Ω0.
For Ω > Ω0, population inversion does not take place, it reaches
a negative minimum and then grows again, remaining negative
and vanishing for large Ω.
Related to the population inversion, the stimulated emission

rate ΔNinvΩ2 displays a non-monotonic behavior, with a maxi-
mum forΩ = Ω1 for any given value of 𝛾 , see Figure 6b. To maxi-
mize the laser emission, the coherent couplingΩmust be chosen
equal toΩ1: for smallΩ, the probability amplitude is suppressed,
while for large Ω the population is not inverted and photon gain
yields to photon absorption. The optimum value Ω1 is approxi-
mately linear with 𝛾 as shown in Figure 7.
As for the transport properties, the current I also displays a

non-monotonic behavior, with a maximum for Ω = Ω2, approxi-
mately linearly with 𝛾 and also shown in Figure 7.
We conclude by noting that there is not a single figure of merit

for the operation of a QCL. Optimizing the current, hence the
transport of electrons across the QCL heterostructure, is certainly
beneficial to the laser efficiency, but it is not the most appropri-
ate figure of merit if we aim to the largest laser power: indeed,
current flows also in a configuration of non-inverted population
(ΔNinv < 0) where the laser emission is absent. Reasonably, as
far as the laser power is concerned, the most sensible figure of
merit is the rate of stimulated emission. On the other hand, it is
known that QCL linewidth depends upon the ratio of radiative to
non-radiative decay of the upper laser level,[12,43] that is, |1⟩ and|4⟩. Due to the absence of non-radiative decay, our model is unfit
to optimize, for example, the spectral performance. An additional
goal in QCL design, not addressed within ourmodel, is to achieve
the highest possible operating temperature.[37]

With the aim of comparing the simulation results with real
QCLs operation, we remark that with respect to the QCL param-

eters reported above, that is, 𝜏∕h ≃ 0.5 THz, Ω ≃ 5𝜏 and 𝛾 ≃ 5𝜏,
we find that both the laser emission rate and the current would
improve with smaller values of Ω, approximately equal to 1.5𝜏
and 2𝜏, respectively.[81] This shows a simple, first example of the
potential of this simplified transport model to guide QCL design
parameters, suggesting that a full quantum simulation with cold
atoms, including explicitly interaction effects, will provide opti-
mized parameters for future improved lasers.

6. Summary

We have proposed a cold-atom platform to simulate key features
of electron transport in QCLs, that are deemed to be essential
to understand and improve the performance of current devices.
Specifically, we have described a QCL simulator to be realized
with an ultracold Fermi gas trapped in a 1D lattice in presence of
a tunable linear magnetic field gradient, detailing the simulation
engineering of the individual processes that electrons undergo
in their transport along the QCL heterostructure. We argued that
the atom-based simulator can be key to investigate aspects that
are hardly dealt with present-day computational tools, such as
electron–electron interactions and disorder, by exploiting Fesh-
bach resonances and by appropriately shaping the trapping laser
configuration, respectively.
In dealing with the simulation of electron transport in QCL

heterostructures, the relevant parameters are the hopping co-
efficients, the inter-well tunneling 𝜏 and the intra-well coher-
ent transition strength Ω. They compete with the parameter
𝛾 , that is, the strength of the incoherent decay present in the
Lindbladian term . The parameters 𝜏, Ω, and 𝛾 can be varied
within different schemes, which we discussed providing realistic
estimates.
Two simplified single-particle models have been numerically

studied to guide the setup of the cold-atom experiment. The first
model has a single well fed by particles coming from the adja-
cent well, while in the second model two wells are present with
periodic boundary conditions. In the latter, asymptotic values are
reached after a transient. In both cases, competition between the
hopping terms 𝜏,Ω and the decay term 𝛾 is evidenced, together
with the presence of optimal values of 𝛾 for the emission rate, the
transport, and the coherence. In the former, single-well model,
the ratio Ω∕𝜏 does not play a qualitative role, and it merely shifts
the optimal value of 𝛾 . However, this is not the case in the more
realistic two-wells model, since the presence of population inver-
sion depends on the ratio Ω∕𝜏.
Despite their toy-model nature, the two proposed models al-

ready display significant features, such as the competition be-
tween the hopping and the incoherent decay, the presence of non-
monotonic behaviors for different relevant quantities (including
the current) and the dependence of the population inversion on
the model parameters.
Important effects that are not included in the discussed mod-

els, and cannot easily be estimated by numerical simulations,
can be added in a tunable way in the proposed quantum sim-
ulator, related to controllable disorder and interactions, emulat-
ing screened Coulomb repulsion among electrons in the struc-
ture. Interactions can provide an additional source of decoher-
ence, but also amechanism for thermalization of the longitudinal
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Figure 6. Asymptotic values of: population inversion a) ΔNinv, b) laser emission rate Ω2ΔNinv, c) current I, and d) IΔNinv. For clarity, we show these
quantities multiplied by 100 (moreover, 𝜏 = 1).

Figure 7. Value of the coherent coupling Ω1 (Ω2), black (red) line, that
maximizes the stimulated emission rate (the current), as a function of 𝛾 ,
for 𝜏 = 1.

photon-assisted motion into transverse degrees of freedom. The
present proposal can also be extended to include interactions
with additional transverse degrees of freedom, which would
be of importance in view of quantum simulations of realistic
QCL structures.

We consider this proposal the first step toward a quantum-
assisted optimization of complex heterostructured devices via
analog atomic simulations, providing a clear-cut example of how
quantum simulators may impact on real-life technology.

Appendix: Detailed Time Dynamics of the
Two-Well Model

In this Appendix we provide further details on the dynamics of
the model discussed in Section 5.2.
We consider the case in which 𝜏 = 1 and Ω is fixed while 𝛾

varies. Regarding the populations Ni, interestingly, for Ω ≠ 1 a
non-monotonic behavior of Nasympt

6 versus 𝛾 arises. More in gen-
eral, the coherences also display a non-monotonic behavior with
𝛾 , and of course vanish for large 𝛾 . Due to Equation (12), the same
behavior is exhibited by I. At variance,N4 has amonotonic behav-
ior, unlike the population inversion ΔNinv which becomes nega-
tive for large enough 𝛾 , then reduces back toward zero, then be-
coming negative and, again, assumes a non-monotonic behavior
vanishing for large 𝛾 .
In Figure A1 we plot the asymptotic values of ΔNinv, z, and

I as a function of 𝛾 for 𝜏 fixed and Ω = 𝛾 , with z = N4 − N3.
In Figure A2 we plot the time dependence of the populations
Ni (i = 1,… , 6) for 𝜏 = Ω and a particular value of 𝛾 . It holds
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Figure A1. Long-time values of ΔNinv (black), z (red), and I (green) as a
function of 𝛾 for 𝜏 = 1 and Ω = 𝛾 .

Figure A2. Time evolution of the populations Ni for 𝜏 = Ω = 𝛾 = 1. N1
(N4): solid (dotted) black line; N2 (N5): solid (dotted) red line; N3 (N6):
solid (dotted) green line. For clarity, N2, N5 are shifted up by 0.5, and N3,
N6 by 1.

that Nasympt
1 = Nasympt

3 and Nasympt
4 = Nasympt

6 . We verified that if a
incoherent Lindbladian decay is added between levels |1⟩ − |3⟩
and |4⟩ − |6⟩, then it is not longer true that Nasympt

1 = Nasympt
3

and Nasympt
4 = Nasympt

6 , but the relations Nasympt
1 = Nasympt

4 and
Nasympt
3 = Nasympt

6 continue to hold. In Figure A3 we plot the time
evolution of the different quantities of interest for the same value
of 𝛾 used in Figure A2: ΔNinv, z, ż, I, |𝜌43|, where z(t) = N4(t) −
N3(t) is the imbalance between the highest level of the secondwell
and the lowest of the first, and ż is the rate of population transfer
between the two wells. For this particular value of 𝛾 , asymptoti-
cally, a population inversion condition is reached. Due to having
reached the asymptotic stare, it is ż → 0 for t → ∞. In agreement
with the fact that Nasympt

1 = Nasympt
3 and Nasympt

4 = Nasympt
6 we find

that z → 0 for large times.
Figure A4 gives the time dynamics of the populations Ni for

a case with 𝜏 < Ω (𝜏 = 1, Ω = 3, 𝛾 = 3). We obtain that Nasympt
1 ≠

Nasympt
3 and that the inversion does not take place, as depicted in

Figure A5 where also z, ż, I, and |𝜌43| are plotted. Figures A6 and
A7 refer to a case featuring 𝜏 > Ω: there, we see inversion.

Figure A3. Time evolution of ΔNinv = N4 −N5 (solid black line), z and ż
(solid and dashed red lines), I and |𝜌43| (solid and dashed green lines),
for the same parameters of Figure A1, that is, 𝜏 = Ω = 𝛾 = 1. For clarity,
red (green) lines are shifted up (down) by 0.25.

Figure A4. Time evolution of the populationsNi for 𝜏 = 1 and Ω = 𝛾 = 3.
N1 (N4): solid (dotted) black line;N2 (N5): solid (dotted) red line;N3 (N6):
solid (dotted) green line. For clarity, red (green) lines are shifted up by 0.25
(0.5).

Figure A5. Time evolution of ΔNinv = N4 −N5 (solid black line), z and ż
(solid and dashed red lines), I and |𝜌43| (solid and dashed green lines),
for the same parameters of Figure A4, that is, 𝜏 = 1 and Ω = 𝛾 = 3. For
clarity, red (green) lines are shifted up (down) by 0.5.
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Figure A6. Time evolution of the populations Ni for 𝜏 = 1 and Ω = 0.4,
with 𝛾 = 5. N1 (N4): solid (dotted) black line; N2 (N5): solid (dotted) red
line; N3(N6): solid (dotted) green line. For clarity, red (green) lines are
shifted up by 0.5 (1.0).

Figure A7. Time evolution of ΔNinv = N4 −N5 (solid black line), z and ż
(solid and dashed red lines), I and |𝜌43| (solid and dashed green lines),
for the same parameters of Figure A6, that is, 𝜏 = 1, Ω = 0.4 and 𝛾 = 5.
For clarity, red (green) lines are shifted up (down) by 0.5.
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