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Abstract: Micro-arc oxidation (MAO) is a versatile surface-modification method that promotes
higher wear and corrosion resistance, osseointegration, and biological activity to titanium alloys’
surfaces. This study aimed to modify the surface of a recently developed metastable β Ti alloy,
which exhibits more favorable mechanical properties for implant applications compared to some
commercial Ti alloys, by incorporating Ag into the coatings to introduce a bactericidal function to
the surface. The Ti-30Nb-5Mo alloy, with lower elastic modulus, was treated by the MAO method
using electrolyte solutions containing calcium acetate, magnesium acetate, β-glycerol phosphate,
and varied concentrations of silver nitrate (1.5 mM, 2.5 mM, and 3.5 mM). With an increase in the
concentration of silver ions in the electrolyte, the galvanostatic period during the MAO process
decreased from 1.7 s to 0.5 s. The Ca/P ratio increased from 0.72 up to 1.36. X-ray diffraction showed
that the MAO coatings were formed by rutile and anatase TiO2 main phases and calcium phosphates.
X-ray photoelectron spectroscopy analysis detected the presence of amorphous Nb2O5, CaCO3, and
MgCO3, and metallic and oxide forms of Ag. The increase in Ag in the electrolyte decreased the
coating thickness (from 14.2 µm down to 10.0 µm), increased the contact angle (from 37.6◦ up to
57.4◦), and slightly increased roughness (from 0.64 µm up to 0.79 µm). The maximum inhibition of
Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans strains growth was of 43%, 43%,
and 61%, respectively. The Ag did not negatively affect the differentiation of adipose-tissue-derived
mesenchymal stem cells. Therefore, the treatment of the surface of the innovative Ti-30Nb-5Mo alloy
by the MAO method was effective in producing a noncytotoxic porous coating with bactericidal
properties and improved osseointegration capabilities.

Keywords: antimicrobial activity; micro-arc oxidation; silver; coating; surface modification; titanium
alloy
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1. Introduction

Titanium (Ti) and its alloys have a combination of mechanical, chemical, and biological
properties that makes them particularly important in the medical field, especially for
biomedical implants [1,2]. However, it is essential to impart biofunctional properties to their
surfaces to enhance their effectiveness [3,4]. Various surface-modification treatments can
be carried out to improve the surface properties of Ti alloys and make them more suitable
for use as implants [5]. Chemical vapor deposition (CVD) [6], physical vapor deposition
(PVD) [7,8], sol–gel [9], plasma spray [10,11], and micro-arc oxidation (MAO) [12] are
among the most commonly used surface treatments of Ti alloys.

MAO is an electrochemical surface-modification method capable of producing sur-
faces with high corrosion and wear resistance on Ti, magnesium (Mg), and aluminum
(Al) alloys [13,14]. A surface with higher porosity obtained after MAO treatment can
promote high adhesion and growth of bone cells, providing better implant fixation [15–17].
Furthermore, it is a cheap and versatile method since it is possible to change several process
parameters, such as substrate [5,17], electrolyte solution [18,19], voltage and current [20,21],
processing time [20], and temperature [22]. By changing these parameters, it is possible
to control the number and size of pores in addition to the thickness of the coatings [3]. By
increasing the current and applied voltage, for example, it is possible to obtain a coating
with larger pores [23–26].

An MAO coating produced on a Ti alloy substrate is composed of TiO2. Both rutile and
anatase phases can be present in the coatings, and it is possible to alter their concentrations
by changing parameters during processing [27,28]; however, the higher photocatalytic
activity of the anatase phase may result in a better bacterial property [29].

Another problem that can be solved by modifying Ti alloy surfaces via MAO is post-
operative infection. Even following all asepsis and antisepsis protocols during the surgical
procedure, microbial contamination of a wound can happen [30]. Thus, by adding an-
tibacterial agents to the electrolyte solution of the MAO process, it is possible to produce
coatings capable of fighting against microorganisms immediately after the surgical proce-
dure [31,32]. The most commonly used elements for producing coatings with bactericidal
properties are copper (Cu), zinc (Zn), and silver (Ag) [33]. Among them, Ag has the most
significant potential against microorganisms [34]. This is due to the infiltration of Ag+ ions
through the bacteria’s nucleic membrane, which alters and damages their DNA [33].

The Ti-30Nb-5Mo alloy is a β-metastable alloy with a body-centered cubic (bcc) crys-
talline structure that was recently developed. It has a higher hardness (~260 HV) and a
lower elastic modulus (69 GPa) than the commercially pure Ti (CP-Ti) (164 HV and 100 GPa,
respectively) and is not cytotoxic [35,36]. Its higher hardness makes the alloy more resistant
to wear, and the elastic modulus closer to that of human bone (~30 GPa for cortical bone)
helps to prevent the “stress shielding” effect, which can lead to loss of bone density and,
consequently, to implant failure [37]. Therefore, it could represent an alternative to the use
of the Ti-6Al-4V alloy since aluminum (Al) and vanadium (V) elements are considered
to be toxic and harmful for the human body over the entire period of implantation [38].
Additionally, niobium (Nb) is utilized to enhance Ti alloys’ corrosion resistance by forming
a natural protective layer of TiO2 and Nb2O5 [39,40].

The effect of Zn added to the Ti-30Nb-5Mo alloy coating has already been studied by
Cardoso et al. [41]. However, a weak bactericidal effect of Zn was not enough to affect the
growth of some bacteria strains on the coating’s surface.

In this paper, the addition of various concentrations of Ag to the electrolyte solution
containing calcium (Ca), phosphorus (P), and magnesium (Mg) was studied to produce
MAO coatings on the Ti-30Nb-5Mo alloy. As a metastable β-alloy, it has a lower elastic
modulus value than commercial Ti alloys. Additionally, it contains Nb, which can also be
incorporated into the produced coatings, enhancing its corrosion resistance. In the present
study, the surface properties and morphology of the coatings and how different concen-
trations of Ag affect microorganism growth on the alloy surface were investigated. X-ray
diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were employed
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to analyze the oxide composition of the coatings. The properties of the coatings were
investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), and
contact angle measurements. Antimicrobial activity was investigated using Escherichia coli,
Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans.
Finally, the growth and differentiation of adipose mesenchymal stem cells (AMSCs) was
also analyzed.

2. Materials and Methods

The Ti-30Nb-5Mo alloy was arc-melted in an argon-controlled atmosphere furnace.
Once melted, the ingots were hot-rolled and cut to obtain 1 mm thick substrate samples
measuring 10 × 10 mm2. Finally, the samples were annealed for 6 h at 1000 ◦C, with a
heating and cooling rate of 10 ◦C/min. Detailed information on this alloy’s cast and bulk
properties can be found in previous works [35,36,42].

The MAO process used a DC power source, Keysight, N5751A (Keysight, Santa
Rosa, CA, USA). The surface-modification treatment was performed at room tempera-
ture for 60 s, applying 300 V and a limited current of 2.5 A. The electrolyte solution
contained 0.35 M calcium acetate monohydrate ((CH3COO)2Ca·H2O), 0.02 M β-glycerol
phosphate pentahydrate (C3H7Na2O6P·5H2O), 0.1 M magnesium acetate tetrahydrate
((CH3COO)2Mg·4H2O), and x mM (x = 1.5, 2.5, and 3.5) silver nitrate (AgNO3). The con-
centration of all compounds was determined based on the literature analysis [17,43–45].
The samples were labeled 1.5 Ag, 2.5 Ag, and 3.5 Ag, according to the concentration of
AgNO3 in the electrolyte solutions.

A scanning electron microscope (SEM), model 300 FE, from Zeiss (Carl Zeiss, Oberkochen,
Germany) was used to obtain images. Cross-sectional images were collected by an Olympus
BX51 M optical microscope (Olympus, Tokyo, Japan). Micrographs and cross-sectional
images were analyzed using the ImageJ software (version 1.53t) to obtain information on
porosity, pore density, pore size, and thickness through the difference in contrast between
the pores and the rest of the surface.

XRD analysis was carried out on a MiniFlex600 diffractometer (Rigaku, Tokyo, Japan).
The data were collected using Cu Kα radiation and 10◦/min collection time (0.04◦ steps).
XPS data were collected using a spectrometer, Phoibos 100-MCD5 from SPECS (SPECS,
Berlin, Germany), with an AlKa (1486.6 eV) achromatic radiation source. The instrument
was operated in FAT mode at 100 W. A channel width of 1 eV was used for wide regions,
and 0.1 eV for high-definition regions. The CasaXPS software (version 2.3.25) was used to
calculate the composition of each element based on the peak intensities.

Contact angle measurements with deionized water were performed on an HTM Reetz
GmbH goniometer (HTM Reetz GmbH, Berlin, Germany). The wettability of the samples
was determined using the droplet technique. Three drops were deposited on each sample
for statistical calculations. AFM images were obtained in noncontact mode using an XE-120
microscope (Park, Suwon, Republic of Korea), with two 30× 30 µm2 images taken to assess
surface roughness.

In order to test the microorganism growth on the substrate and coatings, four different
bacteria strains (S. aureus, E. coli, P. aeruginosa, and E. faecalis), along with the C. albicans
fungus, were used. Before testing, all the samples underwent sterilization by autoclaving at
a temperature of 121 ◦C for a duration of 20 min. Subsequently, each sample was transferred
into individual tubes. In each of these tubes, a suspension of a single microorganism,
previously prepared using 5 mL of Brain Heart Infusion solution (BHI, DIFCO, Sparks, NV,
USA), was added. All tests were conducted three times to ensure accuracy and reliability of
the results. A BHI medium with no samples was used as the control. Every microorganism
was cultivated at its optimal growth temperature (28 ◦C for fungus and 37 ◦C for bacteria)
with slow agitation for 24 h. A biophotometer (Eppendorf, Hamburg, Germany) was
employed to measure the optical density at a wavelength of 600 nm to assess the growth
of microorganisms.
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For cell tests, adipose mesenchymal stem cells (AMSC) were employed. The AMSCs
were extracted from the adipose tissue of 3-month-old female lambs obtained from a local
slaughterhouse. The cells were incubated with substrates for 24 h, followed by the addition
of MTT solution (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide, Sigma-
Aldrich, Gillingham, UK) to the DMEM medium (Gibco, Loughborough, UK) containing
10% Fetal Calf Serum (FCS, Gibco, Loughborough, UK). The solution with the AMSCs
was subjected to a controlled environment at 37 ◦C with 5% CO2 for a period of 3 h.
Following this incubation, the culture medium was removed, and absolute ethanol (Sigma-
Aldrich, Gillingham, UK) was added to replace the MTT solution. This test is based on
the reduction in MTT, a yellow tetrazolium salt, to insoluble purple formazan crystals by
metabolically active cells. This reaction occurs predominantly in the mitochondria and
has been used to determine the cytotoxicity of substances potentially toxic to AMSCs.
The solubilized formazan was measured at 600 nm using a biophotometer (Eppendorf,
Hamburg, Germany).

To analyze osteogenic differentiation capacity, the AMSCs were subjected to a three-week
treatment with DMEM medium that contained 10% FCS supplemented with 50 µg/mL
ascorbic acid, 10 mM ß-glycerophosphate, and 107 M dexamethasone. Subsequently, the
cells underwent treatment with ethanol (70%) for 1 h at room temperature and were
washed with distilled water to fix them. Following this, the cells were thoroughly rinsed
with distilled water to eliminate any residual ethanol. Afterward, the cells underwent a
staining process using a 2% solution of Alizarin Red S (Carlo Erba, Cornaredo, Italy) for
30 min. The purpose of this staining was to identify the presence of calcium deposits within
the cells.

One-way analysis of variance (ANOVA) was used to identify statistically significant
differences and performed using the OriginPro® 8.5 software. Statistical significance was
defined as * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).

3. Results and Discussion

During the MAO process, the current of the circuit was monitored. Figure 1 presents
the time dependence of current obtained during the MAO process for the 1.5 Ag, 2.5 Ag,
and 3.5 Ag samples. The typical behavior of current versus time can be separated into two
main stages during the growth of the ceramic coating, and the first stage is highlighted
in Figure 1. During the MAO process, the current was limited to 2.5 A and remained at
this value during the galvanostatic stage. In this first stage, the oxide coating was growing
and did not have enough electrical resistance to break the dielectric barrier [46]. When the
potential reached a critical value, the dielectric barrier was broken (points highlighted in
Figure 1), and the current began to decrease (potentiostatic stage), tending to a constant
value in the final phase of the process. During the galvanostatic process, the electric arcs
had the highest energy, increasing the coating’s thickness and incorporating the electrolyte
elements into the coating. After breaking the dielectric barrier, the number of micro-arcs on
the sample’s surface decreased [17,46].

For the 1.5 Ag, 2.5 Ag, and 3.5 Ag samples, the dielectric barrier breakdown occurred
after 1.7 s, 1.2 s, and 0.5 s, respectively. Thus, the increase in the ions concentration in the
electrolyte reduced the time of the galvanostatic stage. This occurred because, with the
increase in the ions’ concentration, the solution conductivity also increased, which led to the
increase in the process energy, facilitating the coating growth and, consequently, breaking
the dielectric barrier more quickly. The same phenomenon was observed by Wang et al. [47],
who increased the concentration of NaPO3 in the electrolyte and, consequently, the time for
dielectric breakdown decreased.

Figure 2 shows the SEM images of the samples after MAO treatment with different
electrolyte solutions, varying the Ag concentration. It is possible to visualize the typical
morphology of surfaces oxidized by MAO, containing pores of different dimensions in the
shape of volcanoes. Small differences between the images can be observed, except for small
cracks that appear in the coating of the 3.5 Ag sample. The appearance of cracks may be
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associated with the increase in process energy due to the increase in the amount of ions in
the electrolyte. With the increase in energy, the temperature during the MAO process also
increased, which can cause cracks in the ceramic coating due to the difference between the
coefficient of thermal expansion of the ceramic (coating) and the metal (substrate) [48].
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Figure 3 displays the information obtained from the ImageJ software (version 1.53t)
regarding the sample surfaces’ porosity and pore density (number of pores/area). There
was no observable trend in the plotted curves, indicating that an increase in Ag in the
electrolyte solution did not significantly affect the variation in porosity and pore density of
the formed coatings (p > 0.05).
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The XRD patterns of the samples after the MAO incorporating Ag are shown in
Figure 4. Peaks from the anatase and rutile phases of TiO2 were detected in all samples.
Furthermore, calcium phosphate peaks were detected in the 1.5 Ag and 2.5 Ag samples.
Cardoso et al. [41] presented the results of the MAO process in the Ti-30Nb-5Mo alloy using
the same electrolyte, but without AgNO3. Their results showed that the crystalline part of
the Ag-free coating is composed only of TiO2 (65% anatase and 35% rutile).

Figure 5 presents the proportion of each phase detected by the XRD, calculated using
Equation (1) [49], which considers the relative intensity of each peak. There was an increase
in the rutile phase, compared to the coating without Ag [41], due to the increase in the
energy of the process.

%phase =
∑ Iphase

∑ Iall phase
(1)

TiO2 can exist in three crystalline phases: anatase, rutile, and brookite. The anatase
phase is the easiest to form as it requires low temperatures to become stable. Above 600 ◦C,
there is sufficient energy for the rutile phase to be formed [50,51]. Therefore, due to the
extremely high temperature during the formation of arcs in the MAO process [52,53], there
is enough energy to stabilize both the anatase and rutile phases of TiO2.

To calculate the crystallinity of the samples, each diffraction pattern was decomposed
in the OriginPro® 8.5 software, obtaining an area of amorphous halo (Aa) and another area
of crystalline peaks (Ac). Thus, crystallinity was calculated using Equation (2) [54].

crystallinity =
Ac

AT
× 100 (2)

where AT is a total area (Ac + Aa) [54].
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Figure 5 also shows the crystallinity of each coating. There was no significant variation
in the crystallinity between the coatings of the 1.5 Ag and 2.5 Ag samples, and the values
were maintained between 29% and 30%. However, due to the absence of crystalline
calcium phosphates in the 3.5 Ag coating, the crystallinity of this sample decreased to 17%.
As mentioned earlier, the temperature during the MAO process is very high (~2000 K).
Furthermore, after the process is complete, the cooling rate is also high due to the electrolytic
bath in which the sample is immersed [46,53]. Therefore, the ceramic coating produced by
the MAO process tends to be predominantly amorphous [48,55,56].
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The low crystallinity also helps to explain why the percentage of the rutile phase is
lower in the 3.5 Ag sample. With increasing energy, the amount of rutile should increase.
However, the increase in energy also increases the cooling rate of the coating, increasing
the amorphous phase. Thus, most of the rutile phase is probable in the amorphous phase,
reducing its quantity in Figure 5.

Figure 6 represents the cross-section of the samples, with the thickness of each coating
displayed in the images. There was a slight increase in the thickness between the 0.0 Ag
and 1.5 Ag samples. However, no significant difference was observed between the 1.5 Ag
and 2.5 Ag samples, while the 3.5 Ag coating was thinner than the others. Although
MAO coating growth can occur throughout the process, it is during the galvanostatic
stage that this occurs most rapidly [17,46]. Based on Figure 1, it can be observed that the
galvanostatic period of the 3.5 Ag sample was less than half the time of the other samples.
Consequently, the remaining process time was insufficient for the 3.5 Ag coating to reach the
same thickness as the other two coatings. Zhang et al. [57] varied the Ag concentration in
the MAO electrolyte performed on CP-Ti samples. Their results also showed no significant
difference in thickness between the coatings, but a slight decreasing trend was observed in
samples with higher amounts of Ag.

In Figure 6d, a dark line between the substrate and the coating can be noticed. This
may indicate a coating peeling due to the preparation process for obtaining images and
could suggest a possible lower adhesion between the coating and the substrate. Further
analysis should be carried out in the future to understand this characteristic. Therefore,
considering that the black line may indicate low adhesion of the coating, the 1.5 Ag sample
shows higher adhesion with the substrate.

Since most of the coatings were composed of amorphous materials, Figure 7 displays
the high-resolution XPS spectra of the alloying elements (Ti, Nb, and Mo) and those
incorporated during the MAO process (Ca, P, Mg, O, C, and Ag), to analyze phases that were
not detected by XRD. Upon Ca spectrum deconvolution, peaks corresponding to the CaCO3
doublet appeared at 347.2 eV and 350.7 eV [45,58,59]. For P, at 133 eV, the spectrum showed a
(PO4)3− phosphate peak [45,59–61]. According to the Mg high-resolution spectrum analysis,
the peak for MgCO3 was observed at 1305 eV [45]. Regarding the alloying elements, the
TiO2 doublet was observed, with peaks at 458.5 eV and 464.1 eV [45,46,59,61,62], the Nb2O5
peaks of the 3d, 3d5/2, and 3d3/2 doublets were observed at 207.1 eV and 209.8 eV [46],
and no peaks of Mo were detected. In addition to the low concentration of Mo in the
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substrate alloy, its property as a valve metal makes its oxidation less energetically favorable
by the MAO method [41,63]. The Ag peaks (3d3/2 and 3d5/2) can be deconvoluted into
two doublets. The 368.4 eV and 374.4 eV peaks correspond to the metallic Ag [64,65],
and the doublet at 365.7 eV and 373.8 eV correspond to Ag 3d in the Ag2O form [65,66].
Contamination by C occurs due to the use of acetates, resulting in peaks of C–C, C–O–C, and
O–C=O bonds at 284.8 eV, 286.2 eV, and 290.0 eV, respectively, in the C1s spectrum [61,67].
Finally, the O1s spectrum exhibited peaks at 531.5 eV for metallic oxides and 533.6 eV for
hydroxide (OH) [59].
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From the spectra in Figure 7g, it can be observed that Ag is present primarily in the
metallic form, not in the Ag+ state. It is known that AgNO3 decomposes into metallic Ag
with temperature according to the following reduction reaction [68]:

2AgNO3
∆→ 2Ag + 2NO2 + O2

The composition of the elements identified by the XPS analysis is illustrated in Figure 8.
In Figure 8a, the compositions of the elements Mg, Ti, Nb, and Ag are presented, and in
Figure 8b, the compositions of the elements Ca, P, C, and O, along with the Ca/P ratio
for each sample are shown. The amount of Ti and O in the coatings decreased, while the
portion of C increased with higher concentrations of Ag ions in the electrolyte solution. The
concentration of P in the coatings decreased, while the amount of Ca remained practically
unchanged, resulting in a gradual increase in the Ca/P ratio. Zhang et al. [55] studied
the variation of Zn composition in the electrolyte to produce coatings on the Ti-6Al-4V
alloy. In [55], the authors showed that the Ca/P ratio of the coatings also increased with
rising Zn2+ concentration in the electrolyte. Therefore, they predicted that by increasing
the amount of Zn, values close to the ideal hydroxyapatite (HA) value (1.67) could be
reached [53]. Thus, it was speculated that the Ca/P ratio may also increase to values
close to 1.67, with the increase in the concentration of Ag ions in the electrolyte. However,
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increasing Ag should be performed cautiously since high levels of this element in the
coating can make it cytotoxic [33].
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A more significant increase in the amount of Ag in the coating was anticipated com-
pared to the observed result, as a higher concentration of AgNO3 in the electrolyte typically
results in a greater availability of Ag ions for incorporation. In fact, the 3.5 Ag sample had
a lower Ag content than the 2.5 Ag sample. This can be explained by the decrease in the
galvanostatic period. Figure 1 shows that the galvanostatic period of the 3.5 Ag sample
was the shortest of all, and it is known that during this stage, the highest incorporation of
the electrolyte elements into the coating occurs [46].

Figure 9 presents the 3D images of the coatings’ topography obtained by AFM. As in
the SEM images (Figure 2), it is possible to observe a typical morphology of MAO coatings
containing micropores. The average roughness values (RMS) of each sample are shown
in the graph in Figure 10. It was observed that a higher concentration of AgNO3 in the
electrolyte led to a slight increase in the roughness of the coatings (p < 0.001). This is
because the number of conducting ions in the electrolyte solution increased, leading to a
rise in energy during the MAO process [3,41,69]. The cracks in the coatings can also led to
the roughness [48].
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Figure 11 shows that the contact angle of the samples’ surface with distilled water
increased proportionally to the amount of Ag in the electrolyte. Despite the increase, all the
coatings had a contact angle lower than 90◦ and, therefore, were hydrophilic. The MAO
coatings containing TiO2 with a high surface polarity, easily binding with water molecules,
are characterized by hydrophilic character [17,48,70]. However, the appearance of cracks in
the coatings led to an increase in the contact angle. According to Chu et al. [71], cracks can
create air pockets due to the retention of atmospheric air, which increases the contact angle
of the surface.
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Figure 12 shows the results of the microorganisms’ growth (E. coli, S. aureus, E. faecalis,
P. aeruginosa, and C. albicans) in samples containing Ag. The BHI medium without samples
was used as the control group. The comparison with the sample without Ag was performed
with the data from Cardoso et al.’s [41] study. There was no significant difference in
the growth of E. coli and S. aureus compared to the control for any sample, but a slight
decrease in S. aureus growth was observed with the increase in the Ag concentration
(from 99% down to 94% growth). Analyzing the growth of the other bacteria strains
(E. faecalis and P. aeruginosa), their significant decrease was observed when incorporating
Ag into the coating of all samples. The growth of E. faecalis was 61%, 60%, and 57%, while
for P. aeruginosa, it was 57%, 63%, and 63%, on the 1.5 Ag, 2.5 Ag, and 3.5 Ag samples,
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respectively. Finally, for the 1.5 Ag and 2.5 Ag samples, a significant reduction in the
C. albicans’ fungus growth was registered (by 61% and 58%, respectively). The decrease in
the fungus growth was also significant for the 3.5 Ag sample compared to the control (by
14%). However, there was an increase when compared to the 2.5 Ag sample.
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Although the obtained results were expected for most of the prepared samples, an
unusual growth of microorganisms in some cases was observed. This happened likely due
to other factors affecting the microbial growth on the MAO coatings (beyond the presence
of bactericidal elements). The pH, temperature, the presence of other chemical compounds,
wettability, and, especially, the coatings’ roughness, can influence microorganisms’ adhe-
sion to the surface. Figures 11 and 12 demonstrated that all samples exhibit hydrophilic
properties, and that the roughness of the coatings increased for those containing with
higher amounts of Ag. Although hydrophilicity and roughness are important factors for
cell adhesion to the material’s surface, they also make the surface of the samples a favorable
environment for the growth of bacterial colonies [72–74]. Another factor can be a nonhomo-
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geneous presence of Ag in the coatings (as follows from the XPS results), creating regions
without impediments to microbial growth on the sample surface. Increasing the MAO
process time could overcome this problem, allowing a more homogeneous incorporation of
the elements.

Another factor that should be considered is in which form Ag is incorporated into the
MAO coatings (for example, as Ag nanoparticles (AgNPs), oxide Ag, metallic Ag, etc.). It is
known that AgNPs have an extremely high bactericidal effect when they are on the surface
of the coating [75]. However, the Ag contained in the samples prepared in this current study
was incorporated into the TiO2 coating. This made Ag release highly dependent on the
interaction of the coating with the medium around it [76]. In other words, the bactericidal
action of the coating depends on the capacity of water to interact and penetrate the porous
surface [33]. The wettability results obtained in this work showed that the contact angle of
the MAO surfaces increases with the addition of Ag. This causes the interaction between
the TiO2 coating and the bacteria membranes to be relatively smaller, reducing the release
of Ag. For E. faecalis and P. aeruginosa, this decrease in Ag release had no significant effect.
However, the decrease in effectiveness was noticeable for the C. albicans fungus since the
sample with greater Ag incorporation showed higher microbial growth compared to the
others with less Ag.

Figure 13 shows the AMSCs’ growth results obtained by the MTT method. The control
group tests were performed by growing the AMSCs without any samples, and the results
were also compared to the coating without Ag [41]. As the concentration of Ag increased,
the growth of AMSCs somewhat decreased, likely due to some cytotoxicity of Ag [33,64,77].
Therefore, controlling the concentration of Ag in materials is important to prevent cell
death. Regardless, the cell growth in all samples was above 70%: 98%, 92%, and 87% for the
1.5 Ag, 2.5 Ag, and 3.5 Ag samples, respectively. The ISO 10993-5 standard [78] established
that a sample is considered cytotoxic when the cell culture viability is less than 70% [79–81].
Therefore, none of the tested samples was cytotoxic, according to the ISO 10993-5 standard.
It is worth mentioning that the registered trend indicates that the amount of Ag should be
carefully controlled, and in the case of a further increase in Ag concentration, the samples
can become cytotoxic for the AMSCs.
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Figure 14 shows the images of cell monolayers in all the samples, which were stained
with Alizarin Red S to highlight calcium deposits in red. The positive control (+Ctrl)
consists of AMSCs that have differentiated into the osteogenic lineage without the substrate,
and the negative control (−Ctrl) is represented by nondifferentiated AMSCs. All the
images are similar to the positive control. Therefore, small amounts of Ag in the samples
developed in this work did not affect the differentiation of AMSC into the osteogenic
lineage. However, higher concentrations of Ag may negatively interfere with the process.
Cardoso et al. [41] showed that the same results were obtained with the coating without
Ag. Shimabukuro et al. [82] studied the addition of AgNO3 to the electrolyte during the
MAO treatment of CP-Ti and also demonstrated that adding small amounts of Ag did not
alter the differentiation of MC3T3-E1 cells.
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4. Conclusions

The present study demonstrated that the energy of the MAO process increased with
an increasing concentration of Ag ions from 1.5 mM to 3.5 mM.

The XRD analysis indicated that the coating’s crystalline main phase consisted of TiO2
(anatase and rutile) and calcium phosphates. The XPS spectra revealed that the coatings
contained both metallic Ag and Ag2O. The Ca/P ratio of the coatings increased from 0.72
to 1.36 when more Ag was added to the electrolyte, indicating that the value of 1.67 can be
reached if the Ag concentration is increased.

There was an increase in the coatings’ roughness (from 0.64 µm to 0.79 µm) and contact
angle (from 37.6◦ up to 57.4◦), but all the samples remained hydrophilic (<90◦).

The addition of Ag in the coatings reduced the growth of E. faecalis by approximately
40% for the 3.5 Ag sample, and of P. aeruginosa by approximately 40% for the 1.5 Ag sample,
as well as of the fungus C. albicans by approximately 60% for the 1.5 Ag sample.

Cell growth values were above 80% for all coatings produced, indicating that the
coatings are not cytotoxic, and the addition of Ag did not affect the differentiation of
AMSCs into osteogenic lineage. Hence, the MAO treatment effectively modified the
surface of the Ti-30Nb-5Mo alloy and produced noncytotoxic porous coatings that inhibited
microorganism growth and promoted better osseointegration.

Based on the results, the 1.5 Ag sample coating presented better characteristics for use
in biomedical and bactericidal materials.
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