

ISTI Technical Reports

On the expressive power of IMLC and ISLCS

Vincenzo Ciancia, CNR-ISTI, Pisa, Italy

Diego Latella, CNR-ISTI, Pisa, Italy

Mieke Massink, CNR-ISTI, Pisa, Italy

Erik de Vink, Eindhoven University of Technology, Eindhoven, The Netherlands

ISTI-TR-2022/021

On the expressive power of IMLC and ISLCS Ciancia V.; Latella D.; Massink M.; de Vink E.P. ISTI-TR-2022/021

Abstract

In these notes we prove that, in quasi-discrete closure models, the ISLCS forward (backword) conditional reachability operator can be expressed using a (possibly) infinite disjunction of nested formulas using only conjunction and the IMLC backward (forward) proximity operator.

Closure spaces, Spatial logics

Citation

Ciancia V.; Latella D.; Massink M.; de Vink E.P. *On the expressive power of IMLC and ISLCS* ISTI Technical Reports 2022/021. DOI: 10.32079/ISTI-TR-2022/021

Istituto di Scienza e Tecnologie dell'Informazione "A. Faedo" Area della Ricerca CNR di Pisa Via G. Moruzzi 1 56124 Pisa Italy http://www.isti.cnr.it

On the Expressive Power of IMLC and ISLCS

Vincenzo Ciancia¹, Diego Latella¹, Mieke Massink¹, and Erik de Vink²

¹ CNR-ISTI, Pisa, Italy, {Vincenzo.Ciancia, Diego.Latella, Mieke.Massink}@cnr.it ² Univ. of Eindhoven evink@win.tue.nl

1 Introduction

In these notes we prove that, in quasi-discrete closure models, the ISLCS forward (backword) conditional reachability operator can be expressed using a (possibly) infinite disjunction of nested formulas using only conjunction and the IMLC backward (forward) proximity operator.

2 Preliminaries and Terminology

We recall the notion of path as a continuous function; for all other definitions and notation we refer to [2, 1].

Definition 1 (Continuous function). Function $f : X_1 \to X_2$ is a continuous function from (X_1, C_1) to (X_2, C_2) if and only if for all sets $A \subseteq X_1$ we have $f(C_1(A)) \subseteq C_2(f(A))$.

Definition 2 (Index space). An index space is a connected³ CS (I, C) equipped with a total order $\leq \subseteq I \times I$ with a bottom element 0. We often write $\iota_1 < \iota_2$ whenever $\iota_1 \leq \iota_2$ and $\iota_1 \neq \iota_2$, (ι_1, ι_2) for $\{\iota \mid \iota_1 < \iota < \iota_2\}$, $[\iota_1, \iota_2)$ for $\{\iota \mid \iota_1 \leq \iota < \iota_2\}$, ι_1, ι_2 for $\{\iota \mid \iota_1 < \iota < \iota_2\}$.

For QdCMs, index spaces are intervals [0, n] over the set of natural numbers, with the successor relation and the closure operator C_{succ} induced by such a relation.

Definition 3 (Path). A path in CS (X, C) is a continuous function from an index space $\mathcal{J} = (I, C^{\mathcal{J}})$ to (X, C). A path π is bounded if there exists $\ell \in I$ such that $\pi(\iota) = \pi(\ell)$ for all ι such that $\ell \leq \iota$; we call the minimal such ℓ the length of π , written $len(\pi)$.

We need some additional notation and terminology:

³ Given CS (X, \mathcal{C}) , $A \subseteq X$ is connected if it is not the union of two non-empty separated sets. Two subsets $A_1, A_2 \subseteq X$ are called *separated* if $A_1 \cap \mathcal{C}(A_2) = \emptyset = \mathcal{C}(A_1) \cap A_2$. CS (X, \mathcal{C}) is connected if X is connected.

Definition 4. Given IMLC formulas Φ_1 and Φ_2 , we let $\Psi_1, \Psi_2 \dots$ be the following formulas:

$$\begin{split} \Psi_1 &= \bigvee_{\mathcal{V}} \Phi_1 \\ \Psi_2 &= \bigvee_{\mathcal{V}} (\Phi_2 \land \bigvee_{\mathcal{V}} \Phi_1) = \bigvee_{\mathcal{V}} (\Phi_2 \land \Psi_1) \\ \Psi_3 &= \bigvee_{\mathcal{V}} (\Phi_2 \land \Psi_2) \\ \vdots \end{split}$$

so that, for $j \ge 1$ we have:

 $\Psi_{j+1} = \stackrel{\leftarrow}{\mathcal{N}} (\Phi_2 \land \Psi_j) = \stackrel{j+1 \ nested \ \overleftarrow{\mathcal{N}}}{\overleftarrow{\mathcal{N}} (\Phi_2 \land \overleftarrow{\mathcal{N}} (\dots, \overleftarrow{\mathcal{N}} (\Phi_2 \land \overleftarrow{\mathcal{N}} \Phi_1)))}.$

Definition 5. We say that a bounded path π is internal loops free (ILF, or canonical, in the sequel) if and only if whenever $\pi(i) = \pi(j)$ for some i < j then $\pi(k) = \pi(i)$ for all $k \ge i$.

Intuitively, canonical paths are obtained by removing "redundant" cycles leaving only the last one, starting at the index that determines the length of the path.

Definition 6. A path π is a $\Phi_1[\Phi_2]$ -path if and only if there exists $\ell \geq 0$ such that $\mathcal{M}, \pi(\ell) \models \Phi_1$ and $\mathcal{M}, \pi(j) \models \Phi_2$ for all $j \in (0, \ell)$.

We note that for each $\Phi_1[\Phi_2]$ -path π there is a (shorter) canonical path π' such that $\pi(0) = \pi'(0)$ and π' is a $\Phi_1[\Phi_2]$ -path as well.

3 The main result

Theorem 1. For all $x \in X$ and Ψ_j as in Definition 4 the following holds: $\mathcal{M}, x \models \overrightarrow{\rho} \Phi_1[\Phi_2]$ if and only if $\mathcal{M}, x \models \bigvee_{j>1} \Psi_j$.

Proof. Suppose $\mathcal{M}, x \models \overrightarrow{\rho} \Phi_1[\Phi_2]$. This means that $\mathcal{M}, x \models \Phi_1$ or that there exists a $\Phi_1[\Phi_2]$ -path rooted in x. In the first case, by definition, we have $x \in \llbracket \Phi_1 \rrbracket$ and, since $A \subseteq \overleftarrow{\mathcal{C}}$ (A) for all $A \subseteq X$, we also have $x \in \overleftarrow{\mathcal{C}} (\llbracket \Phi_1 \rrbracket)$. So, by definition of $\overleftarrow{\mathcal{N}}$, we have $\mathcal{M}, x \models \overleftarrow{\mathcal{N}} \Phi_1$. Consequently, by definition of $\Psi_1, \mathcal{M}, x \models \Psi_1$, and thus $\mathcal{M}, x \models \bigvee_{j \ge 1} \Psi_j$. In the second case, there exists also a canonical $\Phi_1[\Phi_2]$ -path π such that $\pi(0) = x$ and $\operatorname{len} \pi = n$ for some $n \ge 1$; by Lemma 1 below, we get $\mathcal{M}, x \models \Psi_n$ for some $n \ge 1$, and thus $\mathcal{M}, x \models \bigvee_{j \ge 1} \Psi_j$.

we get $\mathcal{M}, x \models \Psi_n$ for some $n \ge 1$, and thus $\mathcal{M}, x \models \bigvee_{j\ge 1} \Psi_j$. Assume now $\mathcal{M}, x \models \bigvee_{j\ge 1} \Psi_j$. This means there exists $n \ge 1$ such that $\mathcal{M}, x \models \Psi_n$. By Lemma 2 below, there exists a $\Phi_1[\Phi_2]$ -path π with $\pi(0) = x$ so that, by definition of $\vec{\rho}, \mathcal{M}, x \models \vec{\rho} \Phi_1[\Phi_2]$. Q.E.D.

Lemma 1. For all $n \ge 1$, formulas Φ_1 , Φ_2 and formula Ψ_n as in Definition 4, if π is a canonical $\Phi_1[\Phi_2]$ -path of length n over model \mathcal{M} , then $\mathcal{M}, \pi(0) \models \Psi_n$.

Proof. We proceed by induction on n.

Base case (n=1): if $len \pi = 1$, and π is a canonical $\Phi_1[\Phi_2]$ -path, then $\mathcal{M}, \pi(i) \models \Phi_1$ for all $i \ge 1$ necessarily, and so also $\mathcal{M}, \pi(1) \models \Phi_1$. This last fact implies, by **Lemma 2**(5) of [2], $\pi(0) \in \mathcal{C}(\pi(1)) \subseteq \mathcal{C}(\llbracket \Phi_1 \rrbracket)$. This means $\mathcal{M}, \pi(0) \models \mathcal{N} \Phi_1$ by definition of \mathcal{N} and so, by Definition 4, $\mathcal{M}, \pi(0) \models \Psi_1$. **Induction step:** Let π be a canonical $\Phi_1[\Phi_2]$ -path of length n + 1. Then π' , defined as $\pi'(i) = \pi(i+1)$ is also a canonical $\Phi_1[\Phi_2]$ path and $len \pi' = n$. So

defined as $\pi'(i) = \pi(i+1)$, is also a canonical $\Phi_1[\Phi_2]$ -path and $\operatorname{len} \pi' = n$. So, by the induction hypothesis, $\mathcal{M}, \pi'(0) \models \Psi_n$, which means $\mathcal{M}, \pi(1) \models \Psi_n$ since $\pi(1) = \pi'(0)$ by definition of π' . Moreover, since $n+1 \ge 2$, path π has at least two elements before the ending loop. This implies that $\mathcal{M}, \pi(1) \models \Phi_2$ as well, since π is a canonical $\Phi_1[\Phi_2]$ -path. That is, $\pi(1) \in \llbracket \Phi_2 \land \Psi_n \rrbracket$. By Lemma 2(5) of [2], we have that $\pi(0) \in \widetilde{\mathcal{C}} (\pi(1)) \subseteq \widetilde{\mathcal{C}} (\llbracket \Phi_2 \land \Psi_n \rrbracket)$. So, we have $\mathcal{M}, \pi(0) \models \widetilde{\mathcal{M}} (\Phi_2 \land \Psi_n)$ by definition of $\widetilde{\mathcal{N}}$ and thus $\mathcal{M}, \pi(0) \models \Psi_{n+1}$. Q.E.D.

Lemma 2. For all $n \ge 1$, formulas Φ_1 , Φ_2 and formula Ψ_n as in Definition 4, if $\mathcal{M}, x \models \Psi_n$ then there exists a $\Phi_1[\Phi_2]$ -path π such that $\pi(0) = x$ and $\operatorname{len} \pi \le n$.

Proof. By induction on n.

Base case (n=1): $\mathcal{M}, x \models \Psi_1$ if and only if $\mathcal{M}, x \models \overleftarrow{\mathcal{N}} \Phi_1$, by Definition 4, if and only if $x \in \overleftarrow{\mathcal{C}}$ ($\llbracket \Phi_1 \rrbracket$), by definition of $\overleftarrow{\mathcal{N}}$. By definition of $\overleftarrow{\mathcal{C}}, x \in \llbracket \Phi_1 \rrbracket$ or there exists $y \in \llbracket \Phi_1 \rrbracket$ such that $(x, y) \in R$, where R is the relation underlying the closure operator⁴ $\overrightarrow{\mathcal{C}}$. In the first case, let π be defined as $\pi(j) = x$ for $j \ge 0$. Trivially, π is a $\Phi_1[\Phi_2]$ -path, $\pi(0) = x$ and $\operatorname{len} \pi = 0 \le 1$. In the second case, let π be defined as $\pi(0) = x$ and $\pi(j) = y$ for $j \ge 1$. This function π is continuous, as shown by Lemma 3 in the Appendix, and so it is a $\Phi_1[\Phi_2]$ -path. Moreover, $\pi(0) = x$ and $\operatorname{len} \pi = 1 \le 1$.

Induction step: Suppose $\mathcal{M}, x \models \Psi_{n+1}$, that is $\mathcal{M}, x \models \bigwedge (\Phi_2 \land \Psi_n)$, by Definition 4. This means $x \in \mathcal{C}$ ($\llbracket \Phi_2 \land \Psi_n \rrbracket$) by definition of \bigwedge . By definition of $\stackrel{\leftarrow}{\mathcal{O}}$, $x \in \llbracket \Phi_2 \land \Psi_n \rrbracket$ or there exists $y \in \llbracket \Phi_2 \land \Psi_n \rrbracket$ such that $(x, y) \in R$. In the first case, we have that $\mathcal{M}, x \models \Psi_n$ and, by the Induction Hypothesis, there exists $\Phi_1[\Phi_2]$ -path π such that $\pi(0) = x$ and $\operatorname{len} \pi \leq n \leq n+1$. In the second case, by the Induction Hypothesis we know that there exists $\Phi_1[\Phi_2]$ -path π such that $y \in \stackrel{\leftarrow}{\mathcal{C}}$ ($\{x\}$), since $(x, y) \in R$. We define π as follows: $\pi(0) = x$ and $\pi(i+1) = \pi'(i)$ for $i = 0 \dots \operatorname{len} \pi'$. By Lemma 4 in the Appendix we know that π is continuous; moreover π is a $\Phi_1[\Phi_2]$ -path since π' is a $\Phi_1[\Phi_2]$ -path, $\pi(1) = \pi'(0) = y$ so $\mathcal{M}, \pi(1) \models \Phi_2$ and since $\operatorname{len} \pi' \leq n$ we also get $\operatorname{len} \pi \leq n+1$.

⁴ Recall that $\mathcal{M} = (X, \vec{\mathcal{C}}, \mathcal{V})$, where $\vec{\mathcal{C}}$ (and not $\overleftarrow{\mathcal{C}}$) is the reference closure operator.

4 Finite models

We close these notes by noting that if $\mathcal{M} = (X, \vec{\mathcal{C}}, \mathcal{V})$ is finite, then the length of any canonical path over \mathcal{M} is bounded by the cardinality |X| of X. Moreover, we recall that for each $\Phi_1[\Phi_2]$ -path π there exists a canonical $\Phi_1[\Phi_2]$ -path π' such that $\pi(0) = \pi'(0)$. Thus, the infinite disjunction in Theorem 1 can be replaced by $\bigvee_{j=1}^{|X|} \Psi_j$:

Corollary 1. Suppose X is finite. Then, for all $x \in X$ and Ψ_j as in Definition 4 the following holds: $\mathcal{M}, x \models \overrightarrow{\rho} \Phi_1[\Phi_2]$ if and only if $\mathcal{M}, x \models \bigvee_{i=1}^{|X|} \Psi_i$.

Appendix

Lemma 3. Let $x, y \in X$ with $(x, y) \in R$, where R is the relation underlying C. Let furthermore π be defined as $\pi(0) = x$ and $\pi(j) = y$ for $j \ge 1$. Then π is a continuous function.

Proof. Let $N \subseteq \mathbb{N}$. We have to show that $\pi(\mathcal{C}_{\mathtt{succ}}(N)) \subseteq \overrightarrow{\mathcal{C}}(\pi(N))$. If $N = \emptyset$ the assert follows trivially. If $N \neq \emptyset$ and $0 \notin N$, then we also have $0 \notin \mathcal{C}_{\mathtt{succ}}(N)$ by definition of $\mathcal{C}_{\mathtt{succ}}$. This implies that $\pi(\mathcal{C}_{\mathtt{succ}}(N)) = \{y\} = \pi(N)$ and then $\overrightarrow{\mathcal{C}}(\pi(N)) = \overrightarrow{\mathcal{C}}(\{y\})$. So, we get $\pi(\mathcal{C}_{\mathtt{succ}}(N)) = \{y\} \subseteq \overrightarrow{\mathcal{C}}(\{y\}) = \overrightarrow{\mathcal{C}}(\pi(N))$ where we used that $A \subseteq \overrightarrow{\mathcal{C}}(A)$ for all $A \subseteq X$. Finally, if $0 \in N$, we have that $\{0, 1\} \subseteq$ $\mathcal{C}_{\mathtt{succ}}(N)$ so that $\pi(\mathcal{C}_{\mathtt{succ}}(N)) = \{x, y\}$. Moreover, since $x = \pi(0) \in \pi(N)$, noting that $y \in \overrightarrow{\mathcal{C}}(\{x\})$ since $(x, y) \in R$, we get that $\{x, y\} \subseteq \overrightarrow{\mathcal{C}}(\pi(N))$. So we get $\pi(\mathcal{C}_{\mathtt{succ}}(N)) = \{x, y\} \subseteq \overrightarrow{\mathcal{C}}(\pi(N))$. Q.E.D.

Lemma 4. Let $x, y \in X$ with $(x, y) \in R$. Let π' be a bounded path over \mathcal{M} , with $\pi'(0) = y$ and define π as $\pi(0) = x$ and $\pi(i+1) = \pi'(i)$ for $i = 0 \dots \operatorname{len} \pi'$. Then π is a continuous function.

Proof. Let N be an arbitrary subset of N. We have to show that $\pi(\mathcal{C}_{\mathtt{succ}}(N)) \subseteq \overrightarrow{\mathcal{C}}(\pi(N))$. We first of all note that for all $N \subseteq \mathbb{N} \setminus \{0\}$ we have:

i. $C_{\text{succ}}(\{i-1 \mid i \in N\}) = \{i-1 \mid i \in N\} \cup N$ and ii. $\{i-1 \mid i \in \{j \mid j-1 \in N\}\} = N$.

We proceed separately for the case in which $0 \notin N$ and $0 \in N$. case $0 \notin N$:

$$\pi(\mathcal{C}_{\text{succ}}(N))$$

$$= [Def. \text{ of } \mathcal{C}_{\text{succ}}]$$

$$\pi(N \cup \{i \mid i - 1 \in N\})$$

$$= [\pi(A \cup B) = \pi(A) \cup \pi(B) \text{ for all } A, B \subseteq X]$$

$$\pi(N) \cup \pi(\{i \mid i - 1 \in N\})$$

[Def. of π in terms of π'] = $\pi'(\{i-1 \mid i \in N\}) \cup \pi'(\{i-1 \mid i \in \{j \mid j-1 \in N\}\})$ [Point (ii) above] = $\pi'(\{i-1 \mid i \in N\}) \cup \pi'(N)$ $= [\pi'(A) \cup \pi'(B) = \pi'(A \cup B) \text{ for all } A, B \subseteq X]$ $\pi'(\{i-1 \mid i \in N\} \cup N)$ [Point (i) above] = $\pi'(\mathcal{C}_{\mathtt{succ}}(\{i-1 \,|\, i \in N\}))$ $[\pi' \text{ continuous by hypothesis}]$ \subseteq $\overrightarrow{\mathcal{C}} (\pi'(\{i-1 \mid i \in N\}))$ [Def. of π in terms of π'] = $\overrightarrow{\mathcal{C}}(\pi(N))$

case $0 \notin N$:

First of all note that $\pi(\vec{\mathcal{C}}_{succ} (\{0\})) \subseteq \vec{\mathcal{C}} (\pi(\{0\}))$. In fact $\pi(\vec{\mathcal{C}}_{succ} (\{0\})) = \pi(\{0,1\}) = \{\pi(0),\pi(1)\}$ and by hypothesis $\pi(0) = x$ and $\pi(1) = y \in \vec{\mathcal{C}} (\{x\})$, since $(x,y) \in R$, and $\vec{\mathcal{C}} (\{x\}) = \vec{\mathcal{C}} (\{\pi(0)\})$; so $\pi(\vec{\mathcal{C}}_{succ} (\{0\})) = \{\pi(0),\pi(1)\} \subseteq \vec{\mathcal{C}} (\{\pi(0)\})$. We proceed with the following derivation:

$$\begin{aligned} \pi(\vec{\mathcal{C}}_{\text{succ}}(N)) \\ &= [\text{Def. of } \vec{\mathcal{C}}_{\text{succ}}] \\ \pi(N \cup \{i \mid i - 1 \in N\}) \\ &= [\pi(A \cup B) = \pi(A) \cup \pi(B) \text{ for all } A, B \subseteq X] \\ \pi(N) \cup \pi(\{i \mid i - 1 \in N\}) \\ &= [\text{Let } \hat{N} = N \setminus \{0\}] \\ \pi(\{0\} \cup \hat{N}) \cup \pi(\{1\} \cup \{i \mid i - 1 \in \hat{N}\}) \\ &= [\pi(A \cup B) = \pi(A) \cup \pi(B) \text{ for all } A, B \subseteq X] \\ \pi(\{0\}) \cup \pi(\hat{N}) \cup \pi(\{1\}) \cup \pi(\{i \mid i - 1 \in \hat{N}\}) \\ &= [\text{Rearranging}] \\ \pi(\hat{N}) \cup \pi(\{i \mid i - 1 \in \hat{N}\}) \cup \pi(\{0, 1\}) \\ &= [\text{Def. of } \pi \text{ in terms of } \pi' \text{ and Point (ii) shown (as here in the matching of the matching of$$

= [Def. of π in terms of π' and Point (ii) above (as before, but on \hat{N})]

$$\begin{aligned} \pi'(\{i-1 \mid i \in \hat{N}\}) \cup \pi'(\hat{N}) \cup \pi(\{0,1\}) \\ &= [\pi(A) \cup \pi(B) = \pi(A \cup B) \text{ for all } A, B \subseteq X] \\ \pi'(\{i-1 \mid i \in \hat{N}\} \cup \hat{N}) \cup \pi(\{0,1\}) \\ &= [\text{Point } (i) \text{ above; Def. of } \mathcal{C}_{\texttt{succ}}(\{0\}))] \\ \pi'(\mathcal{C}_{\texttt{succ}}(\{i-1 \mid i \in \hat{N}\})) \cup \pi(\mathcal{C}_{\texttt{succ}}(\{0\})) \\ &\subseteq [\pi' \text{ is continuous by hypothesis}] \\ \vec{\mathcal{C}} (\pi'(\{i-1 \mid i \in \hat{N}\})) \cup \pi(\mathcal{C}_{\texttt{succ}}(\{0\})) \\ &= [\text{Def. of } \pi \text{ in terms of } \pi'] \\ \vec{\mathcal{C}} (\pi(\hat{N})) \cup \pi(\mathcal{C}_{\texttt{succ}}(\{0\})) \\ &\subseteq [\pi(\mathcal{C}_{\texttt{succ}}(\{0\})) \subseteq \vec{\mathcal{C}} (\pi(\{0\})): \text{ see above}] \\ \vec{\mathcal{C}} (\pi(\hat{N})) \cup \vec{\mathcal{C}} (\pi(\{0\})) \\ &= [\vec{\mathcal{C}} (A) \cup \vec{\mathcal{C}} (B) = \vec{\mathcal{C}} (A \cup B) \text{ for all } A, B \subseteq X] \\ \vec{\mathcal{C}} (\pi(\hat{N}) \cup \pi(\{0\})) \\ &= [\pi(A) \cup \pi(B) = \pi(A \cup B) \text{ for all } A, B \subseteq X] \\ \vec{\mathcal{C}} (\pi(\hat{N} \cup \{0\})) \\ &= [N = \hat{N} \cup \{0\} \text{ by definition}] \\ \vec{\mathcal{C}} (\pi(N)) \end{pmatrix} \end{aligned}$$

References

- Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: Back-and-forth in space: On logics and bisimilarity in closure spaces. In: Jansen, N., Stoelinga, M., , van den Bos, P. (eds.) A Journey From Process Algebra via Timed Automata to Model Learning - A Festschrift Dedicated to Frits Vaandrager on the Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 13560, pp. 98–115. Springer (2022)
- Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: On bisimilarities for closure spaces - preliminary version. CoRR abs/2105.06690 (2021), https://arxiv.org/abs/2105.06690