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1 Introduction

In these notes we prove that, in quasi-discrete closure models, the ISLCS forward
(backword) conditional reachability operator can be expressed using a (possibly)
infinite disjunction of nested formulas using only conjunction and the IMLC
backward (forward) proximity operator.

2 Preliminaries and Terminology

We recall the notion of path as a continuous function; for all other definitions
and notation we refer to [2,1].

Definition 1 (Continuous function). Function [ : X1 — X5 is a continuous
function from (X1,C1) to (Xo,Ca) if and only if for all sets A C X7 we have
f(C1(A)) C Ca(f(A)). °

Definition 2 (Index space). An index space is a connected® CS (I,C) equipped
with a total order < C I x I with a bottom element 0. We often write 11 < t2
whenever 11 < tg and t1 # ta, (t1,t2) for {t]n <t <o}, [t1,02) for {e]u <iv <
ta}, and (11,te] for {t]11 <t <ia}. o

For QdCMs, index spaces are intervals [0, n] over the set of natural numbers,
with the successor relation and the closure operator Cgy. induced by such a
relation.

Definition 3 (Path). A path in CS (X,C) is a continuous function from an
index space J = (I,C7) to (X,C). A path m is bounded if there exists { € I
such that (1) = w(€) for all v such that £ < t; we call the minimal such ¢ the
length of m, written len(r). .

We need some additional notation and terminology:

3 Given CS (X,C), A C X is connected if it is not the union of two non-empty
separated sets. Two subsets A1, Ao C X are called separated if A1 NC(A2) =0 =
C(A1) N Az. CS (X,C) is connected if X is connected.



Definition 4. Given IMLC formulas @1 and ®o, we let Wy, Ws . .. be the following
formulas:
—
Uy =N &
— — —
Uy =N (P2A N D1) =N (P2 A W)

<

Us =N (P2 N Ws)

so that, for j > 1 we have:
j+1 nested N

— “—

Wit =N (2 A W) = N (BoA N (.. N (P2A N B1))) .

Definition 5. We say that a bounded path 7 is internal loops free (ILF, or
canonical, in the sequel) if and only if whenever (i) = w(j) for some i < j then
w(k) = mw(i) for all k > i.

Intuitively, canonical paths are obtained by removing “redundant” cycles leaving
only the last one, starting at the index that determines the length of the path.

Definition 6. A path 7 is a @1[Ps]-path if and only if there exists £ > 0 such
that M, w(£) = 1 and M,7w(j) = P2 for all j € (0,£).

We note that for each @q[Ps]-path 7 there is a (shorter) canonical path 7’
such that 7(0) = 7'(0) and 7’ is a @4 [Ps]-path as well.

3 The main result

Theorem 1. For all x € X and ¥; as in Definition 4 the following holds:
M,z |:7>> P1(Do] if and only if M,z = V5, ;.

Proof. Suppose M,z ):F @1 [P2]. This means that M,z = &y or that there
exists a @1[P]-path rooted in z. In the first case, by definition, we have x € [$4]

and, since A QE (A) for all A C X, we also have x GE ([@4])- So, by definition

of j\7, we have M, x ’:/\7 ®;. Consequently, by definition of ¥;, M,z |= ¥, and
thus M,z = \/j>1 ¥;. In the second case, there exists also a canonical ®;[®,]-
path 7 such that 7(0) = x and lenw = n for some n > 1; by Lemma 1 below,
we get M,z |= ¥, for some n > 1, and thus M,z = V5, ¥;.

Assume now M,z |= \/,5, ¥;. This means there exists n > 1 such that M,z |=
¥,,. By Lemma 2 below, there exists a @1[®2]-path = with 7(0) = z so that, by

definition of p, M,z [=p &1[Ps). Q.E.D.

Lemma 1. For all n > 1, formulas @1, ®o and formula ¥, as in Definition 4,
if ™ is a canonical @1[Po]-path of length n over model M, then M, m(0) = W,



Proof. We proceed by induction on n.

Base case (n=1): if len7 = 1, and 7 is a canonical @, [@5]-path, then M, (i)

@, for all i > 1 necessarily, and so also M, 7(1) = @,. This last fact implies, by

Lemma 2(5) of [2], 7(0) €C (x(1)) € ([#:]). This means M, 7(0) EA" &
+—

by definition of A/ and so, by Definition 4, M, 7(0) |= ¥;.

Induction step: Let m be a canonical @;[®3]-path of length n + 1. Then 7',

defined as 7(i) = w(i + 1), is also a canonical @;[Ps]-path and lenn’ = n. So,

by the induction hypothesis, M, 7'(0) &= ¥, which means M, (1) = ¥, since

(1) = 7’(0) by definition of /. Moreover, since n+1 > 2, path 7 has at least two

elements before the ending loop. This implies that M, 7(1) |= @2 as well, since

is a canonical @ [®]-path. That is, 7(1) € [P2 AY,]. By Lemma 2(5) of [2], we
— — <~

have that 7(0) €C (7(1)) CC ([P2 A¥,]). So, we have M, 7(0) EN (P2 AW,)
—

by definition of A/ and thus M, 7(0) = &, 4;. Q.E.D.

Lemma 2. For alln > 1, formulas @1, @5 and formula ¥, as in Definition 4, if
M,z =W, then there exists a ®1[Pso]-path © such that 7(0) = x and lenw < n.

Proof. By induction on n.
+—
Base case (n=1): M,z = ¥ if and only if M,z =N P4, by Definition 4, if

and only if x 62 ([21]), by definition of j\7 By definition of E, z € [P1] or
there exists y € [@1] such that (z,y) € R, where R is the relation underlying

the closure operator? 8 In the first case, let 7 be defined as w(j) = « for j > 0.
Trivially, 7 is a @4 [@o]-path, 7(0) = 2 and lenm = 0 < 1. In the second case, let
7 be defined as 7(0) = z and «(j) = y for 7 > 1. This function 7 is continuous,
as shown by Lemma 3 in the Appendix, and so it is a @;[Ps]-path. Moreover,
m(0) =2 and lenm =1 < 1.
—
Induction step: Suppose M,z = ¥, 11, that is M,z EN (P2 A W,,), by Def-
— —

inition 4. This means = €C ([P2 A ¥,]) by definition of N. By definition of
—

C, x € [P2 AW,] or there exists y € [P2 A ¥,] such that (z,y) € R. In the
first case, we have that M,z | ¥, and, by the Induction Hypothesis, there
exists @q[Po]-path 7 such that 7(0) = z and lenw < n < n + 1. In the sec-
ond case, by the Induction Hypothesis we know that there exists @;[®P2]-path
7’ such that 7'(0) = y and lenn’ < n; moreover, by hypothesis we also know

—

that M,y | &2 and that y €C ({z}), since (x,y) € R. We define 7 as fol-
lows: m(0) = = and w(i + 1) = 7'(i) for ¢ = 0...1lenn’. By Lemma 4 in the
Appendix we know that 7 is continuous; moreover 7 is a @1[P3]-path since 7’ is
a @1[Ps]-path, m(1) = 7’'(0) = y so M, xw(1) = P2 and since lenn’ < n we also
get lenm < n+ 1. Q.E.D.

4 Recall that M = (X, Z, V), where 8 (and not E) is the reference closure operator.



4 Finite models

We close these notes by noting that if M = (X, a V) is finite, then the length
of any canonical path over M is bounded by the cardinality |X| of X. Moreover,
we recall that for each @1 [®s]-path 7 there exists a canonical @q[Ps]-path 7’ such
that 7(0) = #’(0). Thus, the infinite disjunction in Theorem 1 can be replaced

by VXL @
Corollary 1. Suppose X is finite. Then, for allz € X and ¥; as in Definition 4
the following holds: M, x ):; D1 (Do) if and only if M,z = \/lj)il1 v;.

Appendix

Lemma 3. Let z,y € X with (x,y) € R, where R is the relation underlying E
Let furthermore 7 be defined as 7(0) = x and w(j) =y for j > 1. Then 7 is a
continuous function.

Proof. Let N C N. We have to show that 7(Ceuec(N)) C C (m(N)). If N = §

the assert follows trivially. If N # () and 0 € N, then we also have 0 & Cgyec(N)

by definition of Cgyce. This implies that 7(Csycc(N)) = {y} = 7(N) and then
—

— — —

C (m(N)) =C ({y}). So, we get 7(Caucc(N)) = {y} S C ({y}) =C ((N)) where
we used that A CC (A) for all A C X. Finally, if 0 € N, we have that {0,1} C
Csucc(N) so that 7(Csucc(N)) = {z, y}. Moreover, since x = 7(0) € 7(N), noting

that y EE ({z}) since _()m,y) € R, we get that {x,y} QE (m(N)). So we get
T(Coucc(V)) = {z,y} € C (7(N)). QED.

Lemma 4. Letxz,y € X with (x,y) € R. Let 7 be a bounded path over M, with
7'(0) = y and define m as 7(0) =  and w(i + 1) = 7'(i) for i = 0...1lenn’.
Then 7 is a continuous function.

Proof. Let N be an arbitrary subset of N. We have to show that 7(Csycc(IN)) C
c (m(N)). We first of all note that for all N C N\ {0} we have:

i, Concc({i—1]ie N})={i—1]i€ N}UN and
i {i—1lie{jlj—1eN}}=N.

We proceed separately for the case in which 0 ¢ N and 0 € N.
case 0 ¢ N:

7r(CSMC(N))
[Def. of Csyec ]
a(NU{i|i—1€ N})

= [f(AUB) =n(A)Un(B) for all A,B C X]
r(N)Ur({i|i—1€ N})



[Def. of 7 in terms of ']
T({i—1]ie NYur({i—1]ie{jlj—1€N}})
—  [Point (i) above]
7({i — 1]i € N})Ur'(N)
= [#(A) U (B)=7'(AUB) forall A,BC X|
7({i—1]i € NYUN)
—  [Point (i) above]
7' (Csucc({i — 1|7 € N}))

N

7’ continuous by hypothesis |

[
¢ (F({i-1]ie N}))
[
(

Def. of 7 in terms of 7’|

Ql

m(N))

case 0 ¢ N:
First of all note that m(Ceuce ({0})) CC (7({0})). In fact 7(Couce ({0})) =
7({0,1}) = {W(O),W(L)} and b);hypothesis W(OL— zand 7(1) =y 68 ({x}&
since (z,) € R, and € ({2}) =C ({x(0)}); 50 (Couce ({0})) = {x(0), w(1)} <C

({m(0)}). We proceed with the following derivation:
7(Conce (N)

= [Def. of Zsucc]
m(NU{i]i—1€ N})

= [T(AUB) =w(A)Un(B) for all A,B C X |
r(N)Un({i|i —1€ N})

= [Let N=N)\{0}]
{0y UN)Ur({1}U{i|i—1€ N})

= [T(AUB) =m(A)Un(B) for all A,B C X|

*({0}) Un(N) U({1}) Un({i]i — 1€ N})

= [ Rearranging |

r(NYun({ili—1e N})uUn({0,1})

[Def. of 7 in terms of 7/ and Point (ii) above (as before, but on N)]
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©{i—1]ie N})ur'(N)ur({0,1})
= [r(A)ur(B)=n(AUB)forall A,BC X|
7({i—1]ie N}UN)U=({0,1})

[Point (i) above; Def. of Cauee({0}))]
7 (Couce({i — 1|7 € N})) U (Couce({0}))

[7' is continuous by hypothesis]

N

¢ (7({i—1]i € N}) Un(Conec({0}))

= [Def. of 7 in terms of 7]

€ (1(N)) Un(Cance({0}))
[7(Couce({0})) CC (w({0})): see above]
¢ (x(M)u C (x({0})
—  [C(AUC (B)=C (AUB) forall A,BC X]

¢ (=(N) UR({0}))
= [T(A)Um(B)=7(AUB) for all A,B C X|

N

¢ (a(NU{0})
= [N = N U{0} by definition]

¢ (x(N)) QED.
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