

ISTI Technical Reports

On the expressive power of IMLC and ISLCS

Vincenzo Ciancia, CNR-ISTI, Pisa, Italy

Diego Latella, CNR-ISTI, Pisa, Italy

Mieke Massink, CNR-ISTI, Pisa, Italy

Erik de Vink, Eindhoven University of Technology, Eindhoven, The Netherlands

ISTI-TR-2022/021

On the expressive power of IMLC and ISLCS Ciancia V.; Latella D.; Massink M.; de Vink E.P. ISTI-TR-2022/021

Abstract

In these notes we prove that, in quasi-discrete closure models, the ISLCS forward (backword) conditional reachability operator can be expressed using a (possibly) infinite disjunction of nested formulas using only conjunction and the IMLC backward (forward) proximity operator.

Closure spaces, Spatial logics

Citation

Ciancia V.; Latella D.; Massink M.; de Vink E.P. *On the expressive power of IMLC and ISLCS* ISTI Technical Reports 2022/021. DOI: 10.32079/ISTI-TR-2022/021

Istituto di Scienza e Tecnologie dell'Informazione "A. Faedo" Area della Ricerca CNR di Pisa Via G. Moruzzi 1 56124 Pisa Italy http://www.isti.cnr.it

On the Expressive Power of IMLC and ISLCS

Vincenzo Ciancia¹, Diego Latella¹, Mieke Massink¹, and Erik de Vink²

¹ CNR-ISTI, Pisa, Italy, {Vincenzo.Ciancia, Diego.Latella, Mieke.Massink}@cnr.it ² Univ. of Eindhoven evink@win.tue.nl

1 Introduction

In these notes we prove that, in quasi-discrete closure models, the ISLCS forward (backword) conditional reachability operator can be expressed using a (possibly) infinite disjunction of nested formulas using only conjunction and the IMLC backward (forward) proximity operator.

2 Preliminaries and Terminology

We recall the notion of path as a continuous function; for all other definitions and notation we refer to [2, 1].

Definition 1 (Continuous function). Function $f: X_1 \to X_2$ is a continuous function from (X_1, \mathcal{C}_1) to (X_2, \mathcal{C}_2) if and only if for all sets $A \subseteq X_1$ we have $f(\mathcal{C}_1(A)) \subseteq \mathcal{C}_2(f(A)).$

Definition 2 (Index space). An index space is a connected³ CS (I, C) equipped with a total order $\leq \leq I \times I$ with a bottom element 0. We often write $\iota_1 < \iota_2$ whenever $\iota_1 \leq \iota_2$ and $\iota_1 \neq \iota_2$, (ι_1, ι_2) for $\{\iota \mid \iota_1 < \iota < \iota_2\}$, $[\iota_1, \iota_2)$ for $\{\iota \mid \iota_1 \leq \iota < \iota_2\}$ $\{\iota_1, \iota_2\}$, and $(\iota_1, \iota_2]$ for $\{\iota \mid \iota_1 < \iota \leq \iota_2\}.$

For QdCMs, index spaces are intervals $[0, n]$ over the set of natural numbers, with the successor relation and the closure operator C_{succ} induced by such a relation.

Definition 3 (Path). A path in CS (X, \mathcal{C}) is a continuous function from an index space $\mathcal{J} = (I, \mathcal{C}^{\mathcal{J}})$ to (X, \mathcal{C}) . A path π is bounded if there exists $\ell \in I$ such that $\pi(\iota) = \pi(\ell)$ for all ι such that $\ell \leq \iota$; we call the minimal such ℓ the length of π , written len (π) .

We need some additional notation and terminology:

³ Given CS (X, \mathcal{C}) , $A \subseteq X$ is *connected* if it is *not* the union of two non-empty separated sets. Two subsets $A_1, A_2 \subseteq X$ are called separated if $A_1 \cap C(A_2) = \emptyset$ $C(A_1) \cap A_2$. CS (X, \mathcal{C}) is *connected* if X is connected.

Definition 4. Given IMLC formulas Φ_1 and Φ_2 , we let $\Psi_1, \Psi_2 \dots$ be the following formulas:

 $\Psi_1 = \stackrel{\leftarrow}{\mathcal{N}} \Phi_1$ $\Psi_2 = \stackrel{\leftarrow}{\mathcal{N}} (\Phi_2 \wedge \stackrel{\leftarrow}{\mathcal{N}} \Phi_1) = \stackrel{\leftarrow}{\mathcal{N}} (\Phi_2 \wedge \Psi_1)$ $\Psi_3 = {\stackrel{\leftarrow}{\cal N}} \,\, (\Phi_2 \, \wedge \, \Psi_2)$. . .

so that, for $j \geq 1$ we have:

$$
\Psi_{j+1} = \stackrel{\leftarrow}{\mathcal{N}} (\Phi_2 \wedge \Psi_j) = \overbrace{\stackrel{\leftarrow}{\mathcal{N}} (\Phi_2 \wedge \stackrel{\leftarrow}{\mathcal{N}} (\ldots \wedge \stackrel{\leftarrow}{\mathcal{N}} (\Phi_2 \wedge \stackrel{\leftarrow}{\mathcal{N}} \Phi_1)))}^{\substack{j+1 \text{ nested } \stackrel{\leftarrow}{\mathcal{N}}}}.
$$

Definition 5. We say that a bounded path π is internal loops free *(ILF, or* canonical, in the sequel) if and only if whenever $\pi(i) = \pi(j)$ for some $i < j$ then $\pi(k) = \pi(i)$ for all $k \geq i$.

Intuitively, canonical paths are obtained by removing "redundant" cycles leaving only the last one, starting at the index that determines the length of the path.

Definition 6. A path π is a $\Phi_1[\Phi_2]$ -path if and only if there exists $\ell \geq 0$ such that $\mathcal{M}, \pi(\ell) \models \Phi_1$ and $\mathcal{M}, \pi(j) \models \Phi_2$ for all $j \in (0, \ell)$.

We note that for each $\Phi_1[\Phi_2]$ -path π there is a (shorter) canonical path π' such that $\pi(0) = \pi'(0)$ and π' is a $\Phi_1[\Phi_2]$ -path as well.

3 The main result

Theorem 1. For all $x \in X$ and Ψ_i as in Definition 4 the following holds: $\mathcal{M}, x \models \stackrel{\rightarrow}{\rho} \Phi_1[\Phi_2]$ if and only if $\mathcal{M}, x \models \bigvee_{j \geq 1} \Psi_j$.

Proof. Suppose $\mathcal{M}, x \models \stackrel{\rightarrow}{\rho} \Phi_1[\Phi_2]$. This means that $\mathcal{M}, x \models \Phi_1$ or that there exists a $\Phi_1[\Phi_2]$ -path rooted in x. In the first case, by definition, we have $x \in [\Phi_1]$ and, since $A \subseteq \overline{C}$ (A) for all $A \subseteq X$, we also have $x \in \overline{C}$ ([Φ_1]). So, by definition of $\overleftarrow{\mathcal{N}}$, we have $\mathcal{M}, x \models \overleftarrow{\mathcal{N}} \Phi_1$. Consequently, by definition of $\Psi_1, \mathcal{M}, x \models \Psi_1$, and thus $\mathcal{M}, x \models \bigvee_{j\geq 1} \Psi_j$. In the second case, there exists also a canonical $\Phi_1[\Phi_2]$ path π such that $\pi(0) = x$ and len $\pi = n$ for some $n \geq 1$; by Lemma 1 below, we get $\mathcal{M}, x \models \Psi_n$ for some $n \geq 1$, and thus $\mathcal{M}, x \models \bigvee_{j \geq 1} \Psi_j$.

Assume now $\mathcal{M}, x \models \bigvee_{j \geq 1} \Psi_j$. This means there exists $n \geq 1$ such that $\mathcal{M}, x \models$ Ψ_n . By Lemma 2 below, there exists a $\Phi_1[\Phi_2]$ -path π with $\pi(0) = x$ so that, by definition of $\overrightarrow{\rho}$, $\mathcal{M}, x \models \overrightarrow{\rho} \Phi_1[\Phi_2]$. Q.E.D.

Lemma 1. For all $n \geq 1$, formulas Φ_1 , Φ_2 and formula Ψ_n as in Definition 4, if π is a canonical $\Phi_1[\Phi_2]$ -path of length n over model M, then $\mathcal{M}, \pi(0) \models \Psi_n$.

Proof. We proceed by induction on *n*.

Base case (n=1): if len $\pi = 1$, and π is a canonical $\Phi_1[\Phi_2]$ -path, then $\mathcal{M}, \pi(i) \models$ Φ_1 for all $i \geq 1$ necessarily, and so also $\mathcal{M}, \pi(1) \models \Phi_1$. This last fact implies, by **Lemma 2**(5) of [2], $\pi(0) \in \mathcal{C}$ ($\pi(1)$) $\subseteq \mathcal{C}$ ([Φ_1]). This means $\mathcal{M}, \pi(0) \models \mathcal{N} \Phi_1$ by definition of $\overline{\mathcal{N}}$ and so, by Definition 4, $\mathcal{M}, \pi(0) \models \Psi_1$. **Induction step**: Let π be a canonical $\Phi_1[\Phi_2]$ -path of length $n + 1$. Then π' ,

defined as $\pi'(i) = \pi(i + 1)$, is also a canonical $\Phi_1[\Phi_2]$ -path and len $\pi' = n$. So, by the induction hypothesis, $\mathcal{M}, \pi'(0) \models \Psi_n$, which means $\mathcal{M}, \pi(1) \models \Psi_n$ since $\pi(1) = \pi'(0)$ by definition of π' . Moreover, since $n+1 \geq 2$, path π has at least two elements before the ending loop. This implies that $\mathcal{M}, \pi(1) \models \Phi_2$ as well, since π is a canonical $\Phi_1[\Phi_2]$ -path. That is, $\pi(1) \in [\Phi_2 \wedge \Psi_n]$. By Lemma 2(5) of [2], we have that $\pi(0) \in \mathcal{C}$ $(\pi(1)) \subseteq \mathcal{C}$ $([\![\Phi_2 \wedge \Psi_n]\!])$. So, we have $\mathcal{M}, \pi(0) \models \mathcal{N}$ $(\Phi_2 \wedge \Psi_n)$ by definition of $\overleftarrow{\mathcal{N}}$ and thus $\mathcal{M}, \pi(0) \models \Psi_{n+1}$. Q.E.D.

Lemma 2. For all $n \geq 1$, formulas Φ_1 , Φ_2 and formula Ψ_n as in Definition 4, if $\mathcal{M}, x \models \Psi_n$ then there exists a $\Phi_1[\Phi_2]$ -path π such that $\pi(0) = x$ and len $\pi \leq n$.

Proof. By induction on n.

Base case (n=1): $\mathcal{M}, x \models \Psi_1$ if and only if $\mathcal{M}, x \models \overleftarrow{\mathcal{N}} \Phi_1$, by Definition 4, if and only if $x \in \overleftarrow{C}$ ([Φ_1]), by definition of \overleftarrow{N} . By definition of \overleftarrow{C} , $x \in [\Phi_1]$ or there exists $y \in [\![\Phi_1]\!]$ such that $(x, y) \in R$, where R is the relation underlying the closure operator⁴ \vec{c} . In the first case, let π be defined as $\pi(j) = x$ for $j \ge 0$. Trivially, π is a $\Phi_1[\Phi_2]$ -path, $\pi(0) = x$ and len $\pi = 0 \le 1$. In the second case, let π be defined as $\pi(0) = x$ and $\pi(j) = y$ for $j \ge 1$. This function π is continuous, as shown by Lemma 3 in the Appendix, and so it is a $\Phi_1[\Phi_2]$ -path. Moreover, $\pi(0) = x$ and $\operatorname{len} \pi = 1 \leq 1$.

Induction step: Suppose $\mathcal{M}, x \models \Psi_{n+1}$, that is $\mathcal{M}, x \models \stackrel{\leftarrow}{\mathcal{N}} (\Phi_2 \land \Psi_n)$, by Definition 4. This means $x \in \mathcal{C}$ ($[\![\Phi_2 \wedge \Psi_n]\!]$) by definition of $\overleftrightarrow{\mathcal{N}}$. By definition of $\overleftarrow{\mathcal{C}}$, $x \in [\![\Phi_2 \wedge \Psi_n]\!]$ or there exists $y \in [\![\Phi_2 \wedge \Psi_n]\!]$ such that $(x, y) \in R$. In the first case, we have that $\mathcal{M}, x \models \Psi_n$ and, by the Induction Hypothesis, there exists $\Phi_1[\Phi_2]$ -path π such that $\pi(0) = x$ and len $\pi \leq n \leq n+1$. In the second case, by the Induction Hypothesis we know that there exists $\Phi_1[\Phi_2]$ -path π' such that $\pi'(0) = y$ and len $\pi' \leq n$; moreover, by hypothesis we also know that $M, y \models \Phi_2$ and that $y \in \vec{C}$ $(\{x\})$, since $(x, y) \in R$. We define π as follows: $\pi(0) = x$ and $\pi(i + 1) = \pi'(i)$ for $i = 0 \dots$ len π' . By Lemma 4 in the Appendix we know that π is continuous; moreover π is a $\Phi_1[\Phi_2]$ -path since π' is a $\Phi_1[\Phi_2]$ -path, $\pi(1) = \pi'(0) = y$ so $\mathcal{M}, \pi(1) \models \Phi_2$ and since len $\pi' \le n$ we also get len $\pi \leq n+1$. Q.E.D.

⁴ Recall that $\mathcal{M} = (X, \vec{\mathcal{C}}, \mathcal{V})$, where $\vec{\mathcal{C}}$ (and not $\vec{\mathcal{C}}$) is the reference closure operator.

4 Finite models

We close these notes by noting that if $\mathcal{M} = (X, \overrightarrow{c}, \mathcal{V})$ is finite, then the length of any canonical path over $\mathcal M$ is bounded by the cardinality $|X|$ of X. Moreover, we recall that for each $\Phi_1[\Phi_2]$ -path π there exists a canonical $\Phi_1[\Phi_2]$ -path π' such that $\pi(0) = \pi'(0)$. Thus, the infinite disjunction in Theorem 1 can be replaced by $\bigvee_{j=1}^{|X|} \Psi_j$:

Corollary 1. Suppose X is finite. Then, for all $x \in X$ and Ψ_j as in Definition 4 the following holds: $\mathcal{M}, x \models \overrightarrow{\rho} \Phi_1[\Phi_2]$ if and only if $\mathcal{M}, x \models \bigvee_{j=1}^{|X|} \Psi_j$.

Appendix

Lemma 3. Let $x, y \in X$ with $(x, y) \in R$, where R is the relation underlying \overrightarrow{C} . Let furthermore π be defined as $\pi(0) = x$ and $\pi(i) = y$ for $i \ge 1$. Then π is a continuous function.

Proof. Let $N \subseteq \mathbb{N}$. We have to show that $\pi(\mathcal{C}_{succ}(N)) \subseteq \mathcal{C}$ $(\pi(N))$. If $N = \emptyset$ the assert follows trivially. If $N \neq \emptyset$ and $0 \notin N$, then we also have $0 \notin C_{succ}(N)$ by definition of C_{succ} . This implies that $\pi(C_{succ}(N)) = \{y\} = \pi(N)$ and then $\vec{C}(\pi(N)) = \vec{C}(\{y\}).$ So, we get $\pi(\mathcal{C}_{succ}(N)) = \{y\} \subseteq \vec{C}(\{y\}) = \vec{C}(\pi(N))$ where we used that $A \subseteq \overrightarrow{C}$ (A) for all $A \subseteq X$. Finally, if $0 \in N$, we have that $\{0,1\} \subseteq$ $\mathcal{C}_{succ}(N)$ so that $\pi(\mathcal{C}_{succ}(N)) = \{x, y\}$. Moreover, since $x = \pi(0) \in \pi(N)$, noting that $y \in \vec{C}$ ({x}) since $(x, y) \in R$, we get that $\{x, y\} \subseteq \vec{C}$ ($\pi(N)$). So we get $\pi(\mathcal{C}_{succ}(N)) = \{x, y\} \subseteq \overrightarrow{C}(\pi(N)).$ Q.E.D.

Lemma 4. Let $x, y \in X$ with $(x, y) \in R$. Let π' be a bounded path over M, with $\pi'(0) = y$ and define π as $\pi(0) = x$ and $\pi(i + 1) = \pi'(i)$ for $i = 0 \dots \text{len } \pi'.$ Then π is a continuous function.

Proof. Let N be an arbitrary subset of N. We have to show that $\pi(\mathcal{C}_{succ}(N)) \subseteq$ \vec{C} ($\pi(N)$). We first of all note that for all $N \subseteq \mathbb{N} \setminus \{0\}$ we have:

i. $C_{succ}(\{i-1 \mid i \in N\}) = \{i-1 \mid i \in N\} \cup N$ and ii. $\{i-1 \mid i \in \{j \mid j-1 \in N\}\}=N$.

We proceed separately for the case in which $0 \notin N$ and $0 \in N$. case $0 \notin N$:

$$
\pi(\mathcal{C}_{succ}(N))
$$
\n
$$
= [\text{Def. of } \mathcal{C}_{succ}]
$$
\n
$$
\pi(N \cup \{i \mid i-1 \in N\})
$$
\n
$$
= [\pi(A \cup B) = \pi(A) \cup \pi(B) \text{ for all } A, B \subseteq X]
$$
\n
$$
\pi(N) \cup \pi(\{i \mid i-1 \in N\})
$$

 $=$ [Def. of π in terms of π'] $\pi'(\{i-1 \mid i \in N\}) \cup \pi'(\{i-1 \mid i \in \{j \mid j-1 \in N\}\})$ $=$ [Point (ii) above] $\pi'(\{i-1 \mid i \in N\}) \cup \pi'(N)$ $= \left[\pi'(A) \cup \pi'(B) = \pi'(A \cup B) \text{ for all } A, B \subseteq X \right]$ $\pi'(\{i-1 \mid i \in N\} \cup N)$ $=$ [Point (i) above] $\pi'(\mathcal{C}_{succ}(\{i-1\,|\,i\in N\}))$ \subseteq [π' continuous by hypothesis] $\vec{c} \ (\pi'(\{i-1 \mid i \in N\}))$ $=$ [Def. of π in terms of π'] $\vec{c} \; (\pi(N))$

case $0 \notin N$:

First of all note that $\pi(\vec{C}_{succ}(\{0\})) \subseteq \vec{C}$ ($\pi(\{0\})$). In fact $\pi(\vec{C}_{succ}(\{0\}))$ = $\pi(\{0,1\}) = \{\pi(0), \pi(1)\}\$ and by hypothesis $\pi(0) = x$ and $\pi(1) = y \in \mathcal{C}(\{x\})$, since $(x, y) \in R$, and $\overrightarrow{C} (\{x\}) = \overrightarrow{C} (\{\pi(0)\})$; so $\pi(\overrightarrow{C}_{succ} (\{0\})) = \{\pi(0), \pi(1)\} \subseteq \overrightarrow{C}$ $({\lbrace \pi(0) \rbrace})$. We proceed with the following derivation:

$$
\pi(\vec{C}_{succ}(N))
$$
\n
$$
= [\text{Def. of } \vec{C}_{succ}]
$$
\n
$$
\pi(N \cup \{i | i - 1 \in N\})
$$
\n
$$
= [\pi(A \cup B) = \pi(A) \cup \pi(B) \text{ for all } A, B \subseteq X]
$$
\n
$$
\pi(N) \cup \pi(\{i | i - 1 \in N\})
$$
\n
$$
= [\text{Let } \hat{N} = N \setminus \{0\}]
$$
\n
$$
\pi(\{0\} \cup \hat{N}) \cup \pi(\{1\} \cup \{i | i - 1 \in \hat{N}\})
$$
\n
$$
= [\pi(A \cup B) = \pi(A) \cup \pi(B) \text{ for all } A, B \subseteq X]
$$
\n
$$
\pi(\{0\}) \cup \pi(\hat{N}) \cup \pi(\{1\}) \cup \pi(\{i | i - 1 \in \hat{N}\})
$$
\n
$$
= [\text{Rearranging}]
$$
\n
$$
\pi(\hat{N}) \cup \pi(\{i | i - 1 \in \hat{N}\}) \cup \pi(\{0, 1\})
$$

= [Def. of π in terms of π' and Point (ii) above (as before, but on \hat{N})]

$$
\pi'(\{i-1 \mid i \in \hat{N}\}) \cup \pi'(\hat{N}) \cup \pi(\{0,1\})
$$
\n
$$
= [\pi(A) \cup \pi(B) = \pi(A \cup B) \text{ for all } A, B \subseteq X]
$$
\n
$$
\pi'(\{i-1 \mid i \in \hat{N}\} \cup \hat{N}) \cup \pi(\{0,1\})
$$
\n
$$
= [\text{Point (i) above; Def. of } C_{\text{succ}}(\{0\}))]
$$
\n
$$
\pi'(C_{\text{succ}}(\{i-1 \mid i \in \hat{N}\})) \cup \pi(C_{\text{succ}}(\{0\}))
$$
\n
$$
\subseteq [\pi' \text{ is continuous by hypothesis}]
$$
\n
$$
\vec{c} (\pi'(\{i-1 \mid i \in \hat{N}\})) \cup \pi(C_{\text{succ}}(\{0\}))
$$
\n
$$
= [\text{Def. of } \pi \text{ in terms of } \pi']
$$
\n
$$
\vec{c} (\pi(\hat{N})) \cup \pi(C_{\text{succ}}(\{0\}))
$$
\n
$$
\subseteq [\pi(C_{\text{succ}}(\{0\})) \subseteq \vec{c} (\pi(\{0\})))
$$
\n
$$
= [\vec{c} (\pi(\hat{N})) \cup \vec{c} (\pi(\{0\})))
$$
\n
$$
= [\vec{c} (\pi(\hat{N})) \cup \vec{c} (\pi(\{0\})))
$$
\n
$$
= [\vec{c} (\pi(\hat{N}) \cup \pi(\{0\})))
$$
\n
$$
= [\pi(A) \cup \pi(\{0\}))
$$
\n
$$
= [\pi(A) \cup \pi(B) = \pi(A \cup B) \text{ for all } A, B \subseteq X]
$$
\n
$$
\vec{c} (\pi(\hat{N} \cup \{0\}))
$$
\n
$$
= [\pi \times \hat{N} \cup \{0\} \text{ by definition}]
$$
\n
$$
\vec{c} (\pi(N))
$$
\nQ.E.D.

References

- 1. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: Back-and-forth in space: On logics and bisimilarity in closure spaces. In: Jansen, N., Stoelinga, M., , van den Bos, P. (eds.) A Journey From Process Algebra via Timed Automata to Model Learning - A Festschrift Dedicated to Frits Vaandrager on the Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 13560, pp. 98–115. Springer (2022)
- 2. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: On bisimilarities for closure spaces - preliminary version. CoRR abs/2105.06690 (2021), https://arxiv.org/abs/2105.06690