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1 Introduction

In these notes we prove that, in quasi-discrete closure models, the ISLCS forward
(backword) conditional reachability operator can be expressed using a (possibly)
infinite disjunction of nested formulas using only conjunction and the IMLC
backward (forward) proximity operator.

2 Preliminaries and Terminology

We recall the notion of path as a continuous function; for all other definitions
and notation we refer to [2, 1].

Definition 1 (Continuous function). Function f : X1 → X2 is a continuous
function from (X1, C1) to (X2, C2) if and only if for all sets A ⊆ X1 we have
f(C1(A)) ⊆ C2(f(A)). •

Definition 2 (Index space). An index space is a connected3 CS (I, C) equipped
with a total order ⩽ ⊆ I × I with a bottom element 0. We often write ι1 < ι2
whenever ι1 ⩽ ι2 and ι1 ̸= ι2, (ι1, ι2) for {ι | ι1 < ι < ι2}, [ι1, ι2) for {ι | ι1 ≤ ι <
ι2}, and (ι1, ι2] for {ι | ι1 < ι ≤ ι2}. •

For QdCMs, index spaces are intervals [0, n] over the set of natural numbers,
with the successor relation and the closure operator Csucc induced by such a
relation.

Definition 3 (Path). A path in CS (X, C) is a continuous function from an
index space J = (I, CJ ) to (X, C). A path π is bounded if there exists ℓ ∈ I
such that π(ι) = π(ℓ) for all ι such that ℓ ⩽ ι; we call the minimal such ℓ the
length of π, written len(π). •

We need some additional notation and terminology:

3 Given CS (X, C), A ⊆ X is connected if it is not the union of two non-empty
separated sets. Two subsets A1, A2 ⊆ X are called separated if A1 ∩ C(A2) = ∅ =
C(A1) ∩A2. CS (X, C) is connected if X is connected.



Definition 4. Given IMLC formulas Φ1 and Φ2, we let Ψ1, Ψ2 . . . be the following
formulas:

Ψ1 =
←
N Φ1

Ψ2 =
←
N (Φ2 ∧

←
N Φ1) =

←
N (Φ2 ∧ Ψ1)

Ψ3 =
←
N (Φ2 ∧ Ψ2)

...
so that, for j ≥ 1 we have:

Ψj+1 =
←
N (Φ2 ∧ Ψj) =

j+1 nested
←
N︷ ︸︸ ︷

←
N (Φ2∧

←
N (. . .

←
N (Φ2∧

←
N Φ1))) .

Definition 5. We say that a bounded path π is internal loops free (ILF, or
canonical, in the sequel) if and only if whenever π(i) = π(j) for some i < j then
π(k) = π(i) for all k ≥ i.

Intuitively, canonical paths are obtained by removing “redundant” cycles leaving
only the last one, starting at the index that determines the length of the path.

Definition 6. A path π is a Φ1[Φ2]-path if and only if there exists ℓ ≥ 0 such
that M, π(ℓ) |= Φ1 and M, π(j) |= Φ2 for all j ∈ (0, ℓ).

We note that for each Φ1[Φ2]-path π there is a (shorter) canonical path π′

such that π(0) = π′(0) and π′ is a Φ1[Φ2]-path as well.

3 The main result

Theorem 1. For all x ∈ X and Ψj as in Definition 4 the following holds:

M, x |=
→
ρ Φ1[Φ2] if and only if M, x |=

∨
j≥1 Ψj.

Proof. Suppose M, x |=
→
ρ Φ1[Φ2]. This means that M, x |= Φ1 or that there

exists a Φ1[Φ2]-path rooted in x. In the first case, by definition, we have x ∈ [[Φ1]]

and, since A ⊆
←
C (A) for all A ⊆ X, we also have x ∈

←
C ([[Φ1]]). So, by definition

of
←
N , we have M, x |=

←
N Φ1. Consequently, by definition of Ψ1, M, x |= Ψ1, and

thus M, x |=
∨

j≥1 Ψj . In the second case, there exists also a canonical Φ1[Φ2]-
path π such that π(0) = x and lenπ = n for some n ≥ 1; by Lemma 1 below,
we get M, x |= Ψn for some n ≥ 1, and thus M, x |=

∨
j≥1 Ψj .

Assume now M, x |=
∨

j≥1 Ψj . This means there exists n ≥ 1 such that M, x |=
Ψn. By Lemma 2 below, there exists a Φ1[Φ2]-path π with π(0) = x so that, by

definition of
→
ρ , M, x |=

→
ρ Φ1[Φ2]. Q.E.D.

Lemma 1. For all n ≥ 1, formulas Φ1, Φ2 and formula Ψn as in Definition 4,
if π is a canonical Φ1[Φ2]-path of length n over model M, then M, π(0) |= Ψn.
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Proof. We proceed by induction on n.
Base case (n=1): if lenπ = 1, and π is a canonical Φ1[Φ2]-path, then M, π(i) |=
Φ1 for all i ≥ 1 necessarily, and so also M, π(1) |= Φ1. This last fact implies, by

Lemma 2(5) of [2], π(0) ∈
←
C (π(1)) ⊆

←
C ([[Φ1]]). This means M, π(0) |=

←
N Φ1

by definition of
←
N and so, by Definition 4, M, π(0) |= Ψ1.

Induction step: Let π be a canonical Φ1[Φ2]-path of length n + 1. Then π′,
defined as π′(i) = π(i + 1), is also a canonical Φ1[Φ2]-path and lenπ′ = n. So,
by the induction hypothesis, M, π′(0) |= Ψn, which means M, π(1) |= Ψn since
π(1) = π′(0) by definition of π′. Moreover, since n+1 ≥ 2, path π has at least two
elements before the ending loop. This implies that M, π(1) |= Φ2 as well, since π
is a canonical Φ1[Φ2]-path. That is, π(1) ∈ [[Φ2 ∧Ψn]]. By Lemma 2(5) of [2], we

have that π(0) ∈
←
C (π(1)) ⊆

←
C ([[Φ2 ∧ Ψn]]). So, we have M, π(0) |=

←
N (Φ2 ∧ Ψn)

by definition of
←
N and thus M, π(0) |= Ψn+1. Q.E.D.

Lemma 2. For all n ≥ 1, formulas Φ1, Φ2 and formula Ψn as in Definition 4, if
M, x |= Ψn then there exists a Φ1[Φ2]-path π such that π(0) = x and lenπ ≤ n.

Proof. By induction on n.

Base case (n=1): M, x |= Ψ1 if and only if M, x |=
←
N Φ1, by Definition 4, if

and only if x ∈
←
C ([[Φ1]]), by definition of

←
N . By definition of

←
C , x ∈ [[Φ1]] or

there exists y ∈ [[Φ1]] such that (x, y) ∈ R, where R is the relation underlying

the closure operator4
→
C . In the first case, let π be defined as π(j) = x for j ≥ 0.

Trivially, π is a Φ1[Φ2]-path, π(0) = x and lenπ = 0 ≤ 1. In the second case, let
π be defined as π(0) = x and π(j) = y for j ≥ 1. This function π is continuous,
as shown by Lemma 3 in the Appendix, and so it is a Φ1[Φ2]-path. Moreover,
π(0) = x and lenπ = 1 ≤ 1.

Induction step: Suppose M, x |= Ψn+1, that is M, x |=
←
N (Φ2 ∧ Ψn), by Def-

inition 4. This means x ∈
←
C ([[Φ2 ∧ Ψn]]) by definition of

←
N . By definition of

←
C , x ∈ [[Φ2 ∧ Ψn]] or there exists y ∈ [[Φ2 ∧ Ψn]] such that (x, y) ∈ R. In the
first case, we have that M, x |= Ψn and, by the Induction Hypothesis, there
exists Φ1[Φ2]-path π such that π(0) = x and lenπ ≤ n ≤ n + 1. In the sec-
ond case, by the Induction Hypothesis we know that there exists Φ1[Φ2]-path
π′ such that π′(0) = y and lenπ′ ≤ n; moreover, by hypothesis we also know

that M, y |= Φ2 and that y ∈
→
C ({x}), since (x, y) ∈ R. We define π as fol-

lows: π(0) = x and π(i + 1) = π′(i) for i = 0 . . . lenπ′. By Lemma 4 in the
Appendix we know that π is continuous; moreover π is a Φ1[Φ2]-path since π′ is
a Φ1[Φ2]-path, π(1) = π′(0) = y so M, π(1) |= Φ2 and since lenπ′ ≤ n we also
get lenπ ≤ n+ 1. Q.E.D.

4 Recall that M = (X,
→
C ,V), where

→
C (and not

←
C ) is the reference closure operator.
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4 Finite models

We close these notes by noting that if M = (X,
→
C ,V) is finite, then the length

of any canonical path over M is bounded by the cardinality |X| of X. Moreover,
we recall that for each Φ1[Φ2]-path π there exists a canonical Φ1[Φ2]-path π′ such
that π(0) = π′(0). Thus, the infinite disjunction in Theorem 1 can be replaced

by
∨|X|

j=1 Ψj :

Corollary 1. Suppose X is finite. Then, for all x ∈ X and Ψj as in Definition 4

the following holds: M, x |=
→
ρ Φ1[Φ2] if and only if M, x |=

∨|X|
j=1 Ψj.

Appendix

Lemma 3. Let x, y ∈ X with (x, y) ∈ R, where R is the relation underlying
→
C .

Let furthermore π be defined as π(0) = x and π(j) = y for j ≥ 1. Then π is a
continuous function.

Proof. Let N ⊆ N. We have to show that π(Csucc(N)) ⊆
→
C (π(N)). If N = ∅

the assert follows trivially. If N ̸= ∅ and 0 ̸∈ N , then we also have 0 ̸∈ Csucc(N)
by definition of Csucc. This implies that π(Csucc(N)) = {y} = π(N) and then
→
C (π(N)) =

→
C ({y}). So, we get π(Csucc(N)) = {y} ⊆

→
C ({y}) =

→
C (π(N)) where

we used that A ⊆
→
C (A) for all A ⊆ X. Finally, if 0 ∈ N , we have that {0, 1} ⊆

Csucc(N) so that π(Csucc(N)) = {x, y}. Moreover, since x = π(0) ∈ π(N), noting

that y ∈
→
C ({x}) since (x, y) ∈ R, we get that {x, y} ⊆

→
C (π(N)). So we get

π(Csucc(N)) = {x, y} ⊆
→
C (π(N)). Q.E.D.

Lemma 4. Let x, y ∈ X with (x, y) ∈ R. Let π′ be a bounded path over M, with
π′(0) = y and define π as π(0) = x and π(i + 1) = π′(i) for i = 0 . . . lenπ′.
Then π is a continuous function.

Proof. Let N be an arbitrary subset of N. We have to show that π(Csucc(N)) ⊆
→
C (π(N)). We first of all note that for all N ⊆ N \ {0} we have:

i. Csucc({i− 1 | i ∈ N}) = {i− 1 | i ∈ N} ∪N and
ii. {i− 1 | i ∈ {j | j − 1 ∈ N}} = N .

We proceed separately for the case in which 0 ̸∈ N and 0 ∈ N .
case 0 ̸∈ N :

π(Csucc(N))

= [Def. of Csucc ]

π(N ∪ {i | i− 1 ∈ N})

= [π(A ∪B) = π(A) ∪ π(B) for all A,B ⊆ X ]

π(N) ∪ π({i | i− 1 ∈ N})
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= [Def. of π in terms of π′ ]

π′({i− 1 | i ∈ N}) ∪ π′({i− 1 | i ∈ {j | j − 1 ∈ N}})

= [ Point (ii) above ]

π′({i− 1 | i ∈ N}) ∪ π′(N)

= [π′(A) ∪ π′(B) = π′(A ∪B) for all A,B ⊆ X ]

π′({i− 1 | i ∈ N} ∪N)

= [ Point (i) above ]

π′(Csucc({i− 1 | i ∈ N}))

⊆ [π′ continuous by hypothesis ]

→
C (π′({i− 1 | i ∈ N}))

= [Def. of π in terms of π′ ]

→
C (π(N))

case 0 ̸∈ N :

First of all note that π(
→
C succ ({0})) ⊆

→
C (π({0})). In fact π(

→
C succ ({0})) =

π({0, 1}) = {π(0), π(1)} and by hypothesis π(0) = x and π(1) = y ∈
→
C ({x}),

since (x, y) ∈ R, and
→
C ({x}) =

→
C ({π(0)}); so π(

→
C succ ({0})) = {π(0), π(1)} ⊆

→
C

({π(0)}). We proceed with the following derivation:

π(
→
C succ (N))

= [Def. of
→
C succ ]

π(N ∪ {i | i− 1 ∈ N})

= [π(A ∪B) = π(A) ∪ π(B) for all A,B ⊆ X ]

π(N) ∪ π({i | i− 1 ∈ N})

= [ Let N̂ = N \ {0} ]

π({0} ∪ N̂) ∪ π({1} ∪ {i | i− 1 ∈ N̂})

= [π(A ∪B) = π(A) ∪ π(B) for all A,B ⊆ X ]

π({0}) ∪ π(N̂) ∪ π({1}) ∪ π({i | i− 1 ∈ N̂})

= [Rearranging ]

π(N̂) ∪ π({i | i− 1 ∈ N̂}) ∪ π({0, 1})

= [Def. of π in terms of π′ and Point (ii) above (as before, but on N̂) ]
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π′({i− 1 | i ∈ N̂}) ∪ π′(N̂) ∪ π({0, 1})

= [π(A) ∪ π(B) = π(A ∪B) for all A,B ⊆ X ]

π′({i− 1 | i ∈ N̂} ∪ N̂) ∪ π({0, 1})

= [ Point (i) above; Def. of Csucc({0})) ]

π′(Csucc({i− 1 | i ∈ N̂})) ∪ π(Csucc({0}))

⊆ [π′ is continuous by hypothesis ]

→
C (π′({i− 1 | i ∈ N̂})) ∪ π(Csucc({0}))

= [Def. of π in terms of π′ ]

→
C (π(N̂)) ∪ π(Csucc({0}))

⊆ [π(Csucc({0})) ⊆
→
C (π({0})): see above ]

→
C (π(N̂))∪

→
C (π({0}))

= [
→
C (A)∪

→
C (B) =

→
C (A ∪B) for all A,B ⊆ X ]

→
C (π(N̂) ∪ π({0}))

= [π(A) ∪ π(B) = π(A ∪B) for all A,B ⊆ X ]

→
C (π(N̂ ∪ {0}))

= [N = N̂ ∪ {0} by definition ]

→
C (π(N)) Q.E.D.
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