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ABSTRACT
This paper describes a general physical background that originates integro-differential problemswith spe-
cific reference to aero-elastic coupling, and offers two techniques of control for this class of problems. The
central result of the paper is that integro-differential equations with kernel exponential series admit an
optimal solution described, in turn, by a Volterra integral equation in terms of the control. Numerical sim-
ulations show how controls prevent the flutter instability of a two-dimensional wing and a wind turbine
blade.
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1. Introduction

Integro-differential equations (IDEs) (Kochetkov & Tomshin,
1978) form the mathematical basis of many physical applica-
tions which have been studied in recent years (Dehghan &
Shakeri, 2008; Rao & Allison, 2015; Rezaei et al., 2019; Sachs
& Strauss, 2008). These equations represent an open challenge
for optimal control investigations (Abdel Hafeez & El-Badawy,
2018; Kumar et al., 2020; Mo et al., 2015; Vasconcellos et al.,
2016; Wolf et al., 2015; Yang & Strganac, 2013).

The dynamics of an integro-differential model differ in a
substantial way with respect to more standard simpler differ-
ential equations, introducing memory effects into the system’s
response, sometimes through the presence of convolution inte-
grals. These memory effects appear when the system dynamic
involves the interaction with the surrounding environment and
describe the system’s response in a more accurate form, that
in some unfortunate conditions can be subject to dynamic
instability.

Typically, these kinds of models are well represented by the
integro-differential equations of Volterra type and the applica-
tion of optimal control to them is still under investigation by
several authors (Belbas, 2007, 2008; Benjamin et al., 2007; Tao
& Gao, 2020; Vijayakumar, 2018; Vinokurov, 1969).

Normally, this implies the use of approximated methods
of solution. In fact, nonlinear Volterra’s problems use mainly
direct methods. Through the discretization of the control prob-
lem, these methods make use of nonlinear dynamic program-
ming, solved by standard large-scale optimisation algorithms
(Maleknejad & Ebrahimzadeh, 2014). Some examples are for-
mulated by (Belbas, 2008) and (Benjamin et al., 2007), which
introduce iterative methods to obtain the optimal control of a
nonlinear integral equation, under some conditions for the ker-
nel of the integral equation. In (Marzban & Rostami Ashani,
2020) some hybrid numerical methods for solving the control
problem of nonlinear Volterra integral equations are proposed.
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Projection solution methods, based on orthogonal functions,
have been utilised by (Maleknejad & Almasieh, 2011; Yan & Lu,
2016) with triangular functions for approximating control and
state variables, and in (Tohidi & Samadi, 2013) the authors pro-
posed the use of Lagrange basis functions in controlling nonlin-
ear Volterra systems. Recently, in this context, wavelet functions
attracted considerable attention among researchers (Singha &
Nahak, 2018; Yousefi et al., 2011), which make use of the Leg-
endre multi-wavelet collocation method for solving fractional
optimal control problems. A new method for optimal control
of Volterra integral equations can be found in (Belbas, 2007),
where the authors utilise discretization of the original Volterra
controlled system and a novel type of dynamic programming,
in which the Hamilton–Jacobi function is parametrised by the
control function. Moreover, the authors have recently proposed
a different indirect variational method for IDEs. This contri-
bution uses the variational theory of Pontryagin (Pepe & Car-
caterra, 2014; Pepe et al., 2020; Pontryagin, 2018), normally
applied to differential equations, to integro-differential models.

Three new elements emerge in this context: (i) the optimal
solution is obtained by the direct application of the variational
calculus to Volterra’s equation, (ii) an open-loop implicit solu-
tion of the optimal control problem is obtained, and (iii) a
feedback control formulation is proposed, through amodel pre-
dictive control for IDEs (Paifelman, 2017; Paifelman et al., 2018;
Paifelman et al., 2019, 2021; Pepe et al., 2021; Pepe et al., 2020a,
2020b).

In this general scenario, the present paper aims to propose
a feedback-based control algorithm applied to Volterra integro-
differential equations of the first species, useful to represent, in
a simplified way, many physical models such as the wind tur-
bine dynamics, aeroplane’s wings flutter, bridges and suspended
cables fluctuations, floating bodies and hydrodynamic lifting
surfaces (de Andrade, 2018; Levinson, 1960; Newman, 1979;
Sachs & Strauss, 2008; Solodusha, 2020).
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The element of originality of the present method is that
thanks to the use of Laplace transform, the problem of a mini-
mum of the objective function is directly solved by a variational
approach, even in the presence of Volterra integrals.

In Section 2, a common basis for the presence of convo-
lution terms in the governing equations of a general category
of physical systems is outlined. A prototype linear integro-
differential equation is considered, introducing two different
control methods (Section 3). The main conclusion is that a con-
trol obeying a Volterra-type integral equation represents the
solution of the optimal control problem of the original integro-
differential equation, provided that its kernel is decomposable
as an exponential series.

Finally, the two control algorithms are compared for two typ-
ical engineering examples, investigated in detail in Section 4: the
two-dimensional wing in an unsteady flow, and the wind tur-
bine blade in which the control avoids the inception of unstable
flutter phenomena.

2. A common physical background for
integro-differential operators

A rather general physical mechanism, that generates integro-
differential equations, comes when coupling two physical fields,
as in the particular case of the fluid-structure coupling.

When the two coupled differential equations of the two fields
are manipulated, so that one of the two fields’ variable dis-
appear (hidden variable), the remaining equation includes a
convolution term, besides the differential ones.

Let us make a general and more detailed point about this
physical background of integro-differential operators. Intro-
duced originally by the authors in (Carcaterra et al., 2015), this
argument is here refined and summarised.

Supposewe are interested inmodelling and controlling a spa-
tially confined linear system S surrounded by a second system E,
the environment where, for example, S is the structure and E is
the surrounding fluid (see Figure 1). Assume the field variable
�(x, t) describes S, in general dependent on both space x and
time t, through the differential equation L�{�} = fE→S(�,�),
where L� is in general a linear partial differential operator. fE→S
represents the interaction between S andE, i.e. the forces applied
by E to S. fE→S depends on both � and � , since it is an inter-
action force, and E is described by the field variable �(x, t).
Moreover, L�{�} = fS→E(� ,�) is the equation of evolution of
the environment E, and fS→E = −fE→S, because of the action-
reaction principle, is the force applied by the system to the
environment, through the commonboundary ∂S ≡ ∂E between
S and E.

If under the hypothesis of linearity, we assume fS→E =
A�� + A��, then L�{�} − A�� = A��.

The formal solution to this last equation can be obtained
considering A�� as a known term, forcing the equation of the
field � . The method of the Green function (Byron & Fuller,
2012), permits to express the solution of the equation L�{�} −
A�� = A��. In fact, considering the Green function G of the
operator L�{·} − A� ·, one obtains the form:

� = A�G ∗� (1)

Figure 1. Illustration of the interaction between the S and E.

This expression is substituted into the equation of evolution of
S, obtaining:

L�{�} + A��+ A�A�G ∗� = 0 (2)

In Equation (2), the field variable � of E does not appear any-
more. The effect of the interaction between S and E can now be
expressed only by using the variable� of S, through the integral
term A�A�G ∗�. We call � the hidden variable. This proce-
dure, even if inmany cases is not explicit in a clear and conscious
way, is common to many physical problems leading to integro-
differential equations. And this is also the physical basis of the
fluid-structure interaction problem considered in the numerical
simulations in the present paper.

For example, A�A�G ∗� can represent a dissipation effect,
the origin of which is the energy release from S towards the envi-
ronment E. In (Carcaterra et al., 2015), the case of radiation
of waves generated by a mass-spring system (S) into a fluid-
structure coupling (the environment E) is illustrated. Analo-
gously, in (Carcaterra & Akay, 2011) the transmission of energy
from a large master oscillator (the system S) to a set of small
resonators (the environment E) is investigated, leading in both
cases to integro-differential equations.

This mechanism helps in understanding the physical inter-
pretation ofA�A�G ∗� asmemory effect. For example, a wave
radiation from S into E can produce, after a delay time τ , a wave
reflected back at some boundaries of E. The wave of intensity�
radiated from S enters E and, after it is reflected back by some
boundaries of E, it re-enters S. Therefore, if the flying time of
this wave is τ , at the time t a perturbation �(t − τ) enters the
system S producing a memory effect.

This physical and mathematical background can be applied
to model: (I) solid’s memory effects, (II) thermodynamics
behaviour, and (III) fluid-structures interaction.

(I) Viscoelasticity, ranging from bio-mechanics to civil
infrastructures (Al Azzawi et al., 2019; Babaei et al., 2017;
Carcaterra et al., 2015; Zhou et al., 2016), involves the
macroscopic stress of thematerial in response to the entire
time history of the strain, as for the Boltzmann’s formula-
tion of hereditary elasticity (Carillo, 2017), replacing the



INTERNATIONAL JOURNAL OF CONTROL 3

Figure 2. Aerofoil section geometry.

simple stress–strain proportionality, assumed in conven-
tional elasticity, by a convolution stress–strain relation-
ship. The creep response of materials is another exam-
ple that makes use of the fractional hereditary model
by Riemann-Liouville and Caputo’s fractional derivative
(Ahmad&Mohyud-Din, 2013; Caputo & Fabrizio, 2015),
which again amounts to convolutional forms.

(II) The prototype Langevin’s equation is another remark-
able example, able to explain some features of irre-
versible processes and fluctuation-dissipation properties
in the thermodynamics of the particle-bath interaction
in the context of Brownian motion (Carcaterra & Akay,
2011). Finally, wave propagation in elastic meta-materials
with long-range interactions, leads to superluminal group
velocity, band gaps, or wave-stopping, as a direct con-
sequence of the integro-differential formulation describ-
ing the travelling perturbations (Carcaterra et al., 2019;
Rezaei et al., 2019).

(III) The convolution effects that are dealt with in this paper
are aimed at the wake generation that the wing produces
to generate lift and that are controlled by the control logic
developed and proposed below. Integro-differential equa-
tions arise in many hydroelastic and aeroelastic problems
including the structure-fluid coupling, as described by the
Wagner theory of aerofoils due to the presence of a vor-
tex wake (Carcaterra et al., 2005; Olsen & Wagner, 1982;
Theodorsen, 1933). The vortex shedding at the wing tail
produces a velocity perturbation about the wing by the
vortices transported along the wake that, in turn, mod-
ify the wing lift as an effect of the past flow, generating a
physical circuit with a delay, i.e. a memory effect.

In the case of the aerofoil, the wing is the system S, i.e a rigid
body elastically restrained. The wing oscillates in a fluid flow
that is the environment E. The general approach to the prob-
lem would be that of writing the equation of the fluid (e.g. the
Navier-Stokes equations) in terms of the flow velocity, the vari-
able � , and the equation of the rigid body motion of the wing
(see Figure 2), in terms of the plunge and pitch motion of the
aerofoil, the variables �. Clearly, the coupling between S and E
passes through interface continuity conditions that impose the
fluid velocity at any point of the wing surface equal to that of the

wing, and the total interaction force (i.e. the local pressure and
shear fluid viscous stress) produces the torque and the vertical
force exciting the wing.

However, the equations of the wing, after very long mathe-
matics, follow only in terms of the aerofoil variables, pitch, and
plunge, making the fluid velocity field variable disappear, i.e. it
is the hidden variable. The resulting equation of the wing, rep-
resented for example by the Wagner theory used in this paper,
is integro-differential, the integral part taking into account the
interaction with the fluid.

The proposed common origin of the convolution terms to
describe the interaction of the studied system Swith an external
environment E, not directly modelled, and the general impor-
tance and diffusion of such integro-differential models in many
disciplines, suggest the correspondent relevance of their analysis
in the context of control.

3. Optimal controls of convolution-type
integro-differential equations

Let us consider an integro-differential equation involving
Volterra’s kernel K :

ẋ = Ax + K ∗ x + Bu (3)

where x(t) is the state vector, A ∈ R
N×N the dynamic matrix,

u(t) the control variable, B ∈ R
N×M the control matrix. The

elements of K, kij(t), are, in general, time-dependent, and (Ein-
stein’s notation is used):

(K ∗ x)i =
t
∫
0
kij(t − τ)xj(τ )dτ i = 1, . . . ,N (4)

introducing memory effects in the equation of motion.
Note that in several important physical applications (e.g. the

case of the fluttering wing analyzed ahead), the kernel K can be
expressed through exponential functions, i.e.:

kij(t) =
N∑
k=1

αijke−βijkt (5)

where αijk and βijk are characteristic coefficients of the model.
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Figure 3. General scheme of the different proposed feedback control solutions for a scalar IDE.

This implies the memory effect decays as time is spent, mak-
ing the more recent memory contributions larger with respect
to the older ones, as intuitive.

For example, in fluidynamics, experimental studies by Jones
(Jones, 1940) have shown that wake memory effects can be
indeed represented by exponential functions. Similarly, in clas-
sical modelling of viscoelastic materials (Caputo & Fabrizio,
2015), Nutting demonstrates (Nutting, 1921) how hereditary
Caputo’s memory effects can be interpolated by exponentials.
Exponentials are also the basis for hysteresis phenomena in
modelling nonconventional constitutive relationships of mate-
rials (Mohammad Naser & Ikhouane, 2015).

Figure 3 shows the scheme of the two possible strategies of
the solution to Equation (3) discussed ahead.

The first strategy, represented on the left side of the scheme,
transforms directly Equation (3) into the Laplace domain –
when its analytical form is available- and, after rearranging the
equation in the Laplace domain, it transforms back to a first-
order differential equation in the time domain, to which the
LQR control applies.

The second strategy, represented on the right of the scheme,
applies the variational approach tominimise the objective func-
tion, where the system’s integro-differential equation is included
in the objective function through the Lagrange multiplier.
The equations produced by this minimisation are themselves
integro-differential (Pontryagin, 2018). Then on the right part
of the scheme, in turn, two possible solution strategies follow:
(i) transform the problem into the Laplace domain if analytical
expressions are available, as it happens for a kernel of expo-
nential type considered here, or (ii) solve directly in the time

domain, without particular hypotheses about the form of the
kernel K .

This last solution is given in detail by the authors in and
minimises the cost function:

J(x, u,λ) =
T
∫
0

1
2
xTQx + 1

2
uTRu

+ λT(ẋ − Ax − K ∗ x − Bu)dt (6)

requiring δJ(x, u,λ) = 0. The non-standard term, the variation
of K ∗ x with respect to x, is one of the crucial aspects treated
in (Yousefi et al., 2011). The minimisation problem finally leads
to a set of integro-differential equations, the solution of which
is in terms of x(t), u(t),λ(t), leading to an open loop control.
In (Yousefi et al., 2011), the authors approach the solution by a
model predictive control –MPC, a feedbackmethod validwhat-
ever the kernel K(t). Although very general, this method meets
computational difficulties when the stiffness or dimension of the
dynamic system increase (for more details see (Paifelman et al.,
2021)).

To overcome this difficulty, in the present paper we simplify
the problem assuming the exponential form of the kernel, as for
Equation (3). Hence the chance to determine a feedback con-
trol without recurring to theMPC approach. This opens theway
to a new opportunity of solution, named Volterra Proportional
Integrative N-order VPI(N).

In fact, Equation (5) permits an analytical Laplace transform
L{} of Equation (3):

L{kij ∗ xj} = Xj(s)
∑
k

αijk

s + βijk
= Xj(s)

Pij(N − 1)(s)
Dij(N)(s)

(7)
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where s is the Laplace variable, Pij and Dij are polynomials of
order N − 1 and N, respectively.

3.1. Optimal control solution through the algebraic Riccati
equation

Let us detail the procedure on the left side of Figure 3, treating
for simplicity a scalar version of Equation (3):

ẋ = ax +
t
∫
0
K(t − τ)x(τ )dτ + bu (8)

where K(t) = α1e−β1t , for t ≥ 0, and K(t) = 0, for t < 0.
Laplace transform of Equation (8) produces:

sX(s)− x0 = aX(s)+ α1

s + β1
X(s)+ bU(s) (9)

where K(s) = α1
s+β1 and x0 is the assigned initial condition.

Rearranging the equation:

(sX(s)− x0)+ (sX(s)− x0)
β1

s

=
(
aX(s)+ aX(s)

β1

s

)
+ α1X(s)

s
+

(
bU(s)+ bU(s)

β1

s

)
(10)

Transforming back to the time domain:

ẋ = ax + (aβ1 + α1)
t
∫
0
xdτ + bu + bβ1

t
∫
0
udτ − β1x + x0β1

(11)

The integro-differential equation can now be traced back to the
expanded state space by the change of coordinates q̃1 = x, q̃2 =
(aβ1 + α1)

t
∫
0
xdτ + bβ1

t
∫
0
udτ + x0β1:{ ˙̃q1 = aq̃1 − β1q̃1 + q̃2 + bu

˙̃q2 = (aβ1 + α1)q̃1 + bβ1u
(12)

or using q̃ = [q̃1 q̃2]T :
˙̃q = Aq̃ + Bu

A =
[

a − β1 1
aβ1 + α10

]
,B =

[
b
bβ1

]
(13)

The optimal control solution can be now easily found through
the application of the Linear Quadratic Regulator which solves
the classic Algebraic Riccati Equations thus obtaining the con-
trol solution as:

u = −Kq̃

= −k1x − k2
(
(aβ1 + α1)

t
∫
0
xdτ + bβ1

t
∫
0
udτ + x0β1

)
(14)

with K = [k1k2] the optimal gain matrix R
1×2 that minimises

the quadratic cost function:

J = 1
2

T
∫
0
q̃TQq̃ + Ru2dt (15)

with Q ∈ R
2×2 and R tuning parameters.

Equation (14) represents the searched feedback control and
it stands in the form of an integral equation of Volterra-type in
terms of the control output u, below named Volterra Algebraic
Riccati Equation -VARE, and is one of the central results of the
present paper. The numerical solution of this equation is at hand
and does not present any particular difficulty.

A generalisation of this approach to the matrix case, i.e.
N > 1, is presented in Appendix A.

3.2. Optimal control solution by variational calculus

Let us follow the right branch of Figure 3, first applying the cal-
culus of the variations and then transforming it into the Laplace
domain. The minimisation of the objective function (6), in its
scalar form, implies:

min
{
J =

T
∫
0

1
2
qx2 + 1

2
ru2 + λ(ẋ − ax − k ∗ x − bu)dt

}
i.c.x(0) = x0 (16)

and for δJ = 0, one obtains the integro-differential problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ = ax + λ b2

r +
∞
∫
0
k(t − τ)x(τ )dτ

λ̇ = qx − aλ−
∞
∫
0
k(τ − t)λ(τ)dτ

lim
T→∞

λ(T) = 0, x(0) = x0, u = b
r λ

(17)

The existence of the transversality conditions at two oppo-
site boundaries λ(T) = 0, x(0) = x0,precludes the chance of
any direct feedback control. The proposed method, here called
Volterra Proportional Integrative N-order, VPI(N), supports a
feedback solution through a particular form of the kernel and
the Lagrange multiplier.

Laplace transform of Equations (17) -considering for sim-
plicity N = 1in equation (5), produces:

sX(s)− x0 = aX(s)+ b2

r

(s)+ α1

s + β1
X(s)

s
(s)− λ0 = qX(s)− a
(s)− α1

s − β1

(s) (18)

and rearranging:

(sX(s)− x0) = (a − β1)X(s)+ b2

r

(s)+ aβ1 + α1

s
X(s)

+ b2β1
rs

(s)+ x0

β1

s

(s
(s)− λ0) = qX(s)− (a − β1)
(s)− q
β1

s
X(s)

+ aβ1 − α1

s

(s)− λ0

β1

s
(19)
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Laplace anti-transform L−1{} and the introduction of the new
variables ξ = [ξ1, ξ2]T , η = [η1, η2]T , defined as

ξ =
[
ξ1
ξ2

]

=
⎡
⎣ x

aβ1
t
∫
0
x(τ )dτ + b2

r β1
t
∫
0
λ(τ)dτ + α1

t
∫
0
x(τ )dτ + x0β1

⎤
⎦

η =
[
η1
η2

]

=
⎡
⎣ λ

−qβ1
t
∫
0
x(τ )dτ + aβ1

t
∫
0
λ(τ)dτ − α1

t
∫
0
λ(τ)dτ − λ0β1

⎤
⎦

(20)

produces:

ξ̇ =
[

a − β1 1
aβ1 + α1 0

]
ξ +

⎡
⎢⎢⎣

b2

r
0

b2

r
β1 0

⎤
⎥⎥⎦ η

η̇ =
[

q 0
−qβ1 0

]
ξ +

[
(β1 − a) 1
aβ1 − α1 0

]
η (21)

or assembling in a compact form:{
ξ̇ = Hξξ ξ + Hξηη

η̇ = Hηξ ξ + Hηηη
(22)

that reduces the integro-differential Equation (17) to a first-
order differential equation.

The generalised Hamiltonian matrices Hij depend on the
coefficients αi and βi that characterise the kernel k(t). The con-
trol u(t) is simply proportional to λ(t), as reported by the third
of eq (17), i.e.:

u(t) = b
r
λ(t) (23)

Therefore, from Equation (22) it is sufficient to determine the
solution λ(t) to produce the control u. The great advantage
of Equation (22) with respect to Equation (17) is that from
Equation (22) we determine a feedback solution u = b

r λ(x).
This goal is achieved by looking for solutions of the form:

η = Pξ (24)

with matrix P ∈ R
2×2 that produces{
ξ̇ = Hξξ ξ + HξηPξ

Ṗξ + Pξ̇ = Hηξ ξ + HηηPξ
(25)

and its compatibility condition:

Ṗ + PHξξ + PHξηP − Hηξ − HηηP = 0 (26)

This is the generalised Riccati’s nonstationary equation associ-
ated with the original integro-differential problem (17).

It is known that solutions of the general Riccati equation are
not available for a feedback formulation, and only special cases
can be treated. For this reason, we consider its stationary form:

PHξξ + PHξηP − Hηξ − HηηP = 0 (27)

Note the matrix H(4x4) = [HξξHξη;HηξHηη] is not Hamilto-
nian, because (JH)T 	= JH, where J is representing a generical
skew-symmetric matrix. For this reason, difficulties arise in the
solution of Equation (26) by using classical approaches. How-
ever, a solution of (26) can be determined by looking at the
eigenvalues problem of the matrixH.

Introducing the vector ν = [ξ , η]T , Equation (22) can be
written as:

ν̇ = H ν (28)

and its general solution can be expressed in function of its 4
eigenvectorsψkθk and eigenvalues p = [p1, . . . , p4] by using the
modal expansion:

ν =
[
ξ

η

]
=

4∑
k=1

ck
[
ψk
θk

]
epkt (29)

where the ck are the coefficients to be determined by imposing
the initial and final boundary conditions.

Splitting the summation, separating the eigenvalues pk with
positive real part from those negative, Equation (29) can be
written as:

ν =
[
ξ

η

]
=

J∑
k=1

c{1}k

⎡
⎣ψ {1}

k

θ
{1}
k

⎤
⎦ ep

{1}
k t +

R∑
k=1

c{2}k

⎡
⎣ψ {2}

k

θ
{2}
k

⎤
⎦ ep

{2}
k t

(30)

where J + R = 4, the superscript {1} identifies the set ψk, θk, ck
associated to Re{pk} ≥ 0, the superscript {2} to Re{pk} < 0,
respectively.

In general, in the modal expansion (30), one needs to deter-
mine c{1}k , c{2}k , respecting the boundary conditions.

Since one requires the final condition lim
T→∞

λ(T) = 0 holds,

then c{1}k = 0, to cancel out the diverging exponential terms, at
the same time preventing the system instability. Therefore:

[
ξ

η

]
=

R∑
k=1

c{2}k

⎡
⎣ψ {2}

k

θ
{2}
k

⎤
⎦ ep

{2}
k t (31)

Introducing the vector

c{2} =
[
c{2}1 , . . . , c{2}R

]T
(32)

one obtains: {
ξ = Ψ {2}Ec{2}
η = Θ {2}Ec{2} (33)

where:

Ψ {2} =
[
ψ

{2}
1 . . . ψ

{2}
R

]
Θ {2} =

[
θ

{2}
1 . . . θ

{2}
R

]
(34)
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are 2xR matrices, and E is the RxR diagonal matrix:

E =
⎡
⎣ep1t 0 0

0 . . . 0
0 0 epRt

⎤
⎦ (35)

Let us examine the initial conditions to determine c{2}k . At t = 0
we have:

ξ 0 =
[

x0
x0β1

]
, η0 =

[
λ0

−λ0β1
]

(36)

that implies: {
ξ 0 = Ψ {2}c{2}
η0 = Θ {2}c{2} (37)

Now if R = 2 = J, then the matrix Ψ {2} is a squared one, and
assuming it is invertible, we can express the coefficient of the
modal expansion as:

c{2} = Ψ {2}−1
ξ 0 (38)

Therefore:

η = Θ{2}Ec{2} = Θ{2}EΨ {2}−1
ξ 0

ξ = Ψ {2}Ec{2} = Ψ {2}EΨ {2}−1
ξ 0 → EΨ {2}−1

ξ 0 = Ψ {2}−1
ξ

(39)

that implies:

η = Θ{2}Ψ {2}−1
ξ = Pξ (40)

that is the desired feedback control form of Equation (24).
If R 	= J, the matrix Ψ {2} is rectangular and not invertible,

and Equation (40) is not valid anymore. However, an approxi-
mated approach could use the pseudo-inverse matrix Ψ {2}+:

η = Θ{2}Ψ {2}+ξ = Pξ (41)

which only guarantees the determined solution is optimal in the
least square sense (if R < J) orminimumnorm sense (if R > J).

For both Equations (40) and (41), the explicit control law for
u is determined using only the first row of (24):

u = b
r
{
P1,1x + P1,2 [(aβ1 + α1) ∫ xdt + bβ1 ∫ udt + x0β1]

}
(42)

where [P1,1,P1,2] are indicating the first row elements of the P
matrix.

Equation (42) is again an integral equation of Volterra, in
terms of the control variable u, the same found for the left
branch of paragraph 3.1, see Equation (14), except for the val-
ues of the coefficients related to theK matrix, which come from
the P matrix solution for the VPI(N) controller. Equation (42),
together with Equation (14), is the central contribution of this
paper.

The general method based on an exponential series of the
kernel for N > 1 is illustrated in Appendix B.

Table 1. Parameters settings used to compare VPI(N) and VARE algorithms.

Parameters Values

a −0.1
b 1
α1 −8.19
β1 5.28
x0 1
Q1 10
Q2 ∈ [0; 1]
r 0.05
[p1, p2, p3, p4] [−13.9; 14.4;−5.5; 4.9]

�{2}
[
0.13 −0.02
0.81 −0.95

]

Θ {2}
[−0.09 0.04
0.55 −0.28

]

4. Numerical results

In this section, the control approaches illustrated in Section
3.1 and 3.2 are compared using numerical simulations. A first
comparison is made for a scalar prototype of IDE without any
particular physicalmeaning. The second comparison represents
instead an elastic wing with the vortex wake. The wing, elasti-
cally restrained, vibrates under the action of the fluid. This is a
typical engineering problem of dynamic instability that will be
controlled here by VARE and VPI(N) methods.

4.1. Case study of a scalar IDE

Let’s start with the simplest model

ẋ = ax +
t
∫
0
K(t − τ)x(τ )dτ + bu (43)

with K(t) = α1e−β1t .
A direct comparison between the two proposed controllers

in terms of the cost function J is not obvious because the VARE

minimises J = 1
2

T
∫
0
q̃TQq̃ + ru2dt, while VPI(N) minimise sJ =

T
∫
0

1
2Q1x2 + 1

2 ru
2.

To remedy this, we have chosen to use the J’s VPI(N) and
therefore the VARE matrix Q contains the same gain Q1of
VPI(N) and an additional parameter of tuning Q2:

Q =
[
Q1 0
0 Q2

]
(44)

The simulations are performed with the parameters listed in
Table 1, whereQ1 and r are set out to reach the behaviour of the
VPI(N) method as close as possible to the Pontryagin solution,
and Q2 belongs to the interval [0; 1].

Figures 4 – 6 show the comparison in terms of state, control,
and cost function for the two controllers.

For Q2 close to 1, the VPI(N) provides results much closer
to the optimal Pontryagin solution, with respect to the VARE
method. The VARE becomes comparable with the Pontryagin
solution for Q2 small enough, finding a perfect matching for
Q2 = 0.
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Figure 4. State x for VPI(N) vs VARE method with variable Q2.

Figure 5. Control u for VPI(N) vs VARE method with variable Q2.

Figure 6. Cost function J for VPI(N) vs VARE with variable Q2.

4.2. Case study of an unsteady airfoil dynamic

In this section, the proposed control algorithms are tested for
a typical engineering problem: the flutter and static instabili-
ties of an aerofoil by using the classical aerodynamic model by

Wagner and Jones (Jones, 1940; Olsen &Wagner, 1982). A wing
immersed within a constant speed current flow U is subject to
a downwash burst. The latter creates a non-stationary aerody-
namic force and if the inflow speed exceeds a critical value, i.e.
it makes the wing unstable, resulting in large oscillations of the
wing response that diverges.

Let us consider a two-degree of freedom aerofoil, and denote
the plunge by h(t) and the pitch by α(t), respectively. Figure 2
shows the aerofoil section where the chord is c = 2b, and G, E
and xe are the gravity centre, the elastic centre, and the distance
GE, respectively.

The typical two-dimensional wing equations of motion are:[
mw Sw
Sw Iw

]
q̈ +

[
kh 0
0 kα

]
q =

[−LC(t)− LNC(t)
MC(t)+ MNC(t)

]
(45)

wheremw, Iw, Sw, kh and kα are themass, inertia, staticmoment,
plunge, and pitch stiffness, respectively. The state vector is q =
[h,α]T and the aerodynamic external forces, formulated by
Wagner and Jones (Jones, 1940; Olsen & Wagner, 1982) are
the lift L(t) and torque M(t). The forces are composed by the
non-circulatory hydrodynamic contribute (NC) and the cir-
culatory one (C). The non-circulatory terms, named apparent
mass forces, are expressed as:

LNC = πρsb2
[
ḧ + Uα̇ − xeα̈

]
(46)

MNC = πρsb2
[
xeḧ − Ub

(
1
2

− xe
b

)
α̇ − b2

(
1
8

+ x2e
b2

)
α̈

]
(47)

where ρ and s are the flow density and wingspan. The pres-
ence of a circulatory contribution, physically related to the
vortex shedding, implies the presence of a convolution term,
which represents thememory effects (see (Jones, 1940) formore
details). The circulatory lift and torque are:

LC = 2πsρUb
[
w(0)φ(t)+

t
∫
0
ẇ(τ )φ(t − τ)dτ

]
(48)

MC = b
[
1
2

+ xe
b

]
LC (49)

where w(t) = Uα(t)+ ḣ(t)+ α̇(t)
( 1
2 − xe

b
)
b is the downwash

composed of (i) uniform downwash corresponding to a pitch-
ing angle α, w = Usin(α) ≈ Uα for small angles; (ii) a uni-
form downwash due to the vertical translation ḣ; (iii) and a
non-uniform downwash α̇ evaluated at 3

4 -chord. Finally

φ(t) = 1 − ψ1e−
ε1U
b t − ψ2e−

ε2U
b t (50)

is the Wagner function approximated as in (Jones, 1940).
By substituting the expressions from (46) to (49) into

Equation (45), we obtain the classical formulation of the integral
differential equation:

Mq̈ + Kq + Cq̇ = F∗φ̇ (51)

where the matrices which represent mass M, stiffness K , and
damping C of the system and the circulatory forces F∗φ̇ have
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the detailed mathematical forms:

M =

⎡
⎢⎣
mw + πsρb2 Sw − πsρb2xe

Sw − πsρb2xe Iw + πsρb4
(
1
8

+ x2e
b2

)
⎤
⎥⎦

K =

⎡
⎢⎣kh 2πsρU2bφ(0)

0 kα − 2πsρU2b2
[
1
2

+ xe
b

]
φ(0)

⎤
⎥⎦

C =

⎡
⎢⎣ 2πsρUbφ(0)

−2πsρUb2
[
1
2

+ xe
b

]
φ(0)

×
2πsρUb2

(
1
2

− xe
b

)
φ(0)+ πsρUb2

πsρUb3
(
1
2

− xe
b

)(
1 −

[
1 + 2xe

b

]
φ(0)

)
⎤
⎥⎥⎥⎦

F∗φ̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2πsρUb
t
∫
0

(
Uα(τ)+ ḣ(τ )

+ α̇(τ )

(
1
2

− xe
b

)
b
)
φ̇(t − τ)dτ

2πsρUb2
[
1
2

+ xe
b

]
t
∫
0

(
Uα(τ)+ ḣ(τ )

+ α̇(τ )

(
1
2

− xe
b

)
b
)
φ̇(t − τ)dτ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(52)

Let us define the state vector as x = [q, q̇]T and insert a con-
trol u proportional to the torque acting on the wing pitch. The
equation of motion is:

ẋ = Ax + Dx ∗ φ̇ + Bu (53)

where the matrices definition are reported below (I is the iden-
tity matrix):

A =
[

0 I
−M−1K −M−1C

]
,

D =
[

0 0
M−1D1 M−1D2

]
,B =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦

D1 =

⎡
⎢⎣0 −2πsρU2b

0 2πsρU2b2
[
1
2

+ xe
b

]
⎤
⎥⎦

D2 =

⎡
⎢⎣ −2πsρUb

2πsρUb2
[
1
2

+ xe
b

]

×
−2πsρUb2

(
1
2

− xe
b

)
2πsρUb3

[
1
2

+ xe
b

](
1
2

− xe
b

)
⎤
⎥⎥⎦ (54)

In the next sections, the model of the wing represented by
Equation (53) is controlled both through the VARE and the
VPI(N) control techniques, respectively.

The next two subsections specify the mathematical formula-
tion of the control algorithms for the wing case, as it comes out
from the previous theory.

4.2.1. VARE control algorithm formulation
Following the procedure illustrated in the previous part of the
paper, the expanded state-space dynamic permits to write the
first order equation of motion of the wing as

˙̃q = Ãq̃ + B̃u (55)

where:

Ã =
⎡
⎣ (A − Id1) I 0
Ad1 + Dp1 − Id0 0 I

Ad0 + Dp0 0 0

⎤
⎦ , B̃ =

⎡
⎣ B
Bd1
Bd0

⎤
⎦ (56)

and the state variable q̃ = [q̃1, q̃2, q̃3]T is so organised:

q̃1 = x

q̃2 =
t
∫
0
d1Axdτ +

t
∫
0
p1Dxdτ +

t
∫
0
Bd1udτ + x0d1

−
t
∫
0
d0xdτ +

t
∫
0

τ

∫
0
d0Axdτdτ ′ +

t
∫
0

τ

∫
0
p0Dxdτdτ ′

+
t
∫
0

τ

∫
0
Bd0udτdτ ′ + x0d0t

q̃3 =
t
∫
0
d0Axdτ +

t
∫
0
p0Dxdτ +

t
∫
0
d0Budτ + x0d0 (57)

with d0 = ε1ε2
( 2U

c
)2, d1 = (ε1 + ε2)

( 2U
c
)
, p0 =

ε1ε2(ψ1 + ψ2)
( 2U

c
)2 and p1 = (ε1ψ1 + ε2ψ2)

( 2U
c
)
.

Let us minimise the classic quadratic cost function:

J = 1
2

T
∫
0
q̃TQq̃ + Ru2dt (58)

and apply the stationary Riccati solution obtaining:

u = −Kq̃ (59)

where K is the optimal gain matrix. Equation (59) is an integral
Volterra’s equation in terms of u to be solved numerically.

4.2.2. VPI(N) control algorithm formulation
The VPI(N) control algorithm follows the variational formula-
tion of Equation (53)

ẋ = Ax + Dx∗φ̇ + BR−TBTλ

λ̇ = QTx − ATλ− DTλ ∗ φ̇ (60)

its compact is {
ξ̇ = Hξξ ξ + Hξηη

η̇ = Hηξ ξ + Hηηη
(61)
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where theHij ∈ R
12 12 matrixes are expressed as follows:

Hξξ =
⎡
⎣ (A − Id1) I 0
Ad1 + Dp1 − Id0 0 I

Ad0 + Dp0 0 0

⎤
⎦Hξη =

⎡
⎣ BR−TBT 0
BR−TBTd1 0
BR−TBTd0 0

⎤
⎦

Hηη =
⎡
⎣ (−AT − Id1) I 0

−ATd1 − DTd1 − Id0 0 I
−ATd0 − DTd0 0 0

⎤
⎦Hηξ =

⎡
⎣ QT 0
QTd1 0
QTd0 0

⎤
⎦

(62)

As for the Equation (42), the final control law takes the form:

u = R−TBTλ = P11x + P12
(∫Ad1x + ∫ p1Dx + ∫Bd1u

+ x0d1 − ∫ d0x + ∫∫Ad0x + ∫∫ p0Dx + ∫ ∫Bd0u

+ x0d0t)+ P13
(∫Ad0x + ∫ p0Dx + ∫Bd0u + x0d0

)
(63)

an integral Volterra equation in terms of u, where P11,P12,P13
are the coefficients of Riccati’s matrix, which is the solution of
Equation (27) and x0 is the assigned initial condition.

4.2.3. Numerical results and discussion
The two VPI(N) and VARE controls are compared below by
analyzing different flight configurations and tuning parameters.

In particular, Wagner’s wing exhibits a speed threshold,
called flutter velocity, that when exceeded produces an unstable
wing motion.

Looking at Figure 7, once the wing parameters have been set
(see Table 2), three different regions can be highlighted, associ-
ated with three separated behaviours, depending on the ratio xe

c
and the inflow speed U. More precisely, looking at Figure 7: (i)
below the curve Uflutter, oscillations are always stable; (ii) at the
top margin on the right, the divergent instability emerges, i.e.
the average trend of the state (both pitch and plunge) shows a
divergent trend; (iii) at the top margin of the left, a typical flut-
ter vibration is shown, in which is the amplitude of oscillations
(both pitch and plunge) diverges, while the average trend of the
response remains neutral.

We investigate four different flight regimes, identified by the
star marker symbols in the map of Figure 7. Two simulations
relate to stable flight conditions, while the other two to divergent
and fluttering instability, respectively. In Table 3, the reference
data for the simulations are shown.

Table 2. Numerical simulation parameters.

Parameters Values

c Chord 0.1 [m]
a Thickness 0.005 [m]
s Span 1 [m]
ρ Density 2300 [kg/m3]
fh Plunge frequency 1 [Hz]
fα Pitch frequency 5 [Hz]
mw Mass 1.15 [Kg]
Iw Inertia 0.0011 [kg/m2]
Sw Static Moment −0.0115 [kg m]
kh Plunge stiffness 45.4 [N/m]
kα Pitch stiffness 1.06 [Nm/rad]
[ε1;ψ1; ε2;ψ2] Kernel parameters [0.041; 0.165; 0.32; 0.335] –

Table 3. Numerical simulations scenarios.

xe/c Uflutter Uinflow

−0.2 12m/s 11m/s(stable dynamic)
13m/s(unstable dynamic)

0.1 9.5m/s 9m/s(stable dynamic)
10m/s(unstable dynamic)

In Table 4 are reported the settings for the two controllers,
divided in two categories, for xe

c = −0.2 and xe
c = 0.1, respec-

tively, and tested in both conditions of stability and dynamic
instability. For all cases, the VPI(N) control is compared with
the VARE. As previously observed, the latter exhibits more tun-
ing parameters generated by the state expansion, and two sets
of tuning for the VARE are tested, called set1 and set2, showing
quite different trends.

The cost function, for both methods, is the one referred to
the VPI(N), so defined:

J = 1
2

T
∫
0
xTQVPI(N)x + RVPI(N)u2dt (64)

The diagonal gains of QVARE ∈ R
12×12 have been set empiri-

cally, except the already assigned diagonal values of QVPI(N) ∈
R
4×4, and dynamic trends have been identified that could

improve the overall system response:

QVARE =
[
QVPI(N) 0

0 QVAREseti

]
with i = 1, 2

RVARE = RVPI(N) (65)

Figure 7. Wing dynamic regimes: stable and unstable flight.
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Table 4. Numerical simulation parameters.

Scenarios Control Gains Values

U
[m
s
] xe

c Initial conditions [h0; ḣ0;α0; α̇0]
[
m; ms ; deg;

deg
s

]
11 stable dynamic13 unstable dynamic −0.2 [−0.1;−0.1;−7; 0.05] QVPI(N) diag([100; 100; 0.1; 0.01])

QVARE diag
([
diag(QVPI(N)); diag(QVAREseti

)
])

QVAREset1
diag([10; 10; 10; 10; 100; 100; 1; 1] · 10−4)

QVAREset2
diag([1; 1; 1; 1; 100; 100; 0.1; 0.1] · 10−4)

RVARE = RVPI(N) 100
9 stable dynamic10 unstable dynamic 0.1 [0.1; 0.5;−5; 0.1] QVPI(N) diag([106; 106; 100; 0.1])

QVARE diag
([
diag(QVPI(N));diag(QVAREseti )

])
QVAREset1

diag([600; 10; 10; 0.1; 10−2; 10−2; 10−4; 10−4])
QVAREset2

diag([10; 1; 10; 0.1; 0.1; 0.1; 10−2; 10−2])
RVARE = RVPI(N) 106

Figure 8. Plunge time evolution for U = 11m
s and xe

c = −0.2.

Figure 9. Pitch time evolution for U = 11m
s and xe

c = −0.2.

However, it appears the VARE results are very sensitive to the
choice of the gains QVAREseti ∈ R

8×8, and a more exhaustive
search could be performed through parametric optimisation
techniques, not the subject of this paper.

Let’s consider Figures 8–11 relative to the stable case, with an
inflow velocity of 11ms and a characteristic ratio xe

c = −0.2. The
VARE and the VPI(N) both control the plunge in the same way,
with a better settling time for the VPI(N), and a higher over-
shoot for the VAREset1 . The pitch is instead better controlled by
theVAREset1 , with smaller oscillation amplitudeswith respect to
the VPI(N). The intensity of the control action is similar for all
three cases, except for some initial values, for which the VARE
requires an intensity of the control of 4–5 times greater than
those used by VPI(N). Finally, the cost function J calculated by
Equation (64) is lower for the VPI(N).

The same set of the Qi,R gains is used to test the wing
response under conditions of dynamic flutter instability for an
inflow speed of 13m

s (see Figures 12–15). Obviously, as intu-
itive, the passive response shows unstable flutter with very large
amplitudes, while the active controls both stabilise very effec-
tively the wing motion.

In Figures 16–19, the controls are compared for xe
c = 0.1 and

an inflow speed of 9m/s. The plunge is controlled in the same

Figure 10. Control action for U = 11m
s and xe

c = −0.2 (with horizontal zoom
until 0.1 s).

Figure 11. Cost function time evolution for U = 11m
s and xe

c = −0.2.

Figure 12. Plunge time evolution for U = 13m
s and xe

c = −0.2.
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Figure 13. Pitch time evolution for U = 13m
s and xe

c = −0.2.

Figure 14. Control action for U = 13m
s and xe

c = −0.2 (with horizontal zoom
until 0.1s).

Figure 15. Cost function time evolution for U = 13m
s and xe

c = −0.2.

way by all the three controls, with slightly higher oscillations
for the VPI(N), which shows the highest settling time. For the
pitch, the best control is obtained by the VAREset2 which, how-
ever, requires an initial control intensity more than double for
the set2 and even three times for the set1.

Finally, in Figures 20–23, a diverging wing instability is
investigated, with the same Qi,R of the previous case, but an
increased inflow speed (U = 10m

s ). The wing response remains
almost similar with respect to the previous cases, except for a
slight worsening in the cost function of VPI(N).

In conclusion, it appears that both the new controls produce
good performances in both stable and unstable aerofoil condi-
tions and that both the methods, VPI(N) and VARE, exhibit
performances strongly depending on the selection of the tuning

Figure 16. Plunge time evolution for U = 9m
s and xe

c = 0.1.

Figure 17. Pitch time evolution forU = 9m
s and xe

c = 0.1.

Figure 18. Control action for U = 9m
s and xe

c = 0.1(zoom until 0.6s).

parameters appearing in the matrices Qand R, not determin-
ing a definite ranking between the two. However, we remark
the VPI(N) presents a smaller set of tuning parameters Qi with
respect to the VARE, making probably its use simpler.

4.3. Case study of an unsteady bladewind turbine dynamic

In the following paragraph, the control is applied to the blade
of a wind turbine in flutter condition. Typically, the wind blades
are oriented in angle of attack through rotary motors contained
in the ogive (see Figure 24) and this allows to maximise the
energy extracted from the wind in all conditions. When the
wind speed exceeds a critical threshold, the motors orient the
blades to the wind so that they do not generate lifts on the blades
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Figure 19. Cost function time evolution for U = 9m
s and xe

c = 0.1.

Figure 20. Plunge time evolution for U = 10m
s and xe

c = 0.1.

Figure 21. Pitch time evolution for U = 10m
s and xe

c = 0.1.

Figure 22. Control action for U = 10m
s and xe

c = 0.1 (zoom until 0.6s).

and therefore can stop the rotor. This speed is also called cut-
off speed, beyond which the blades are subject to vibration with
the risk of generating structural damage due to the high oscil-
lations they can reach. In the present study, a wind turbine is
modelled, inspired by a plant of 5MW (Pourazarm et al., 2016;

Figure 23. Cost function time evolution for U = 10m
s and xe

c = 0.1.

Figure 24. Sketch of wind turbine blades controlled in attack angle.

Shakya et al., 2019) subject to bending and torsional vibrations
and is controlled in the unstable conditions of flutter through
the orientation of the blade.

The equations of motion characterising the flapwise dis-
placement w(x, t) and the torsional displacement ϕ(x, t) of a
wind turbine blade (see Figure 25) are the equations of (Hodges
& Dowell, 1974):

[
EIw′′ − eϕ

L
∫
x
�2ρAxdx

]′′

−
[
w′ L∫

x
�2ρAxdx

]′
− (�2mexϕ)′

+ m (ẅ + eϕ̈) = LC + LNC

−
[(

GJ + K2
m

L
∫
x
�2ρAxdx

)
ϕ′
]′

+�2ρA(K2
m2 − K2

m1)ϕ

+ ρAK2
mϕ̈ −

(
L
∫
x
�2ρAxdx

)
ew′′ +�2mxew′ + meẅ

= MC + MNC + u(t)δ(x) (66)

where EI and GJ are the bending and torsional stiffness; Km,
Km1 and Km2 are the gyration radius over x, y, and z axis; m, ρ
are the mass per unit length and the blade material density; A is
the cross-section area; e is the distance between the elastic axis
and the centroid of mass;� is the rotor speed; LC(t), LNC(t) and
MC(t),MNC(t), as described in the previous paragraph, are the
lift force and pitching moment acting on the blade, due to the
circulatory (C) and the non-circulatory (NC) contributions of
the aerodynamic load.

The term u(t), in the second equation, represents the torque
control action applied on the blade and is represented by the
Dirac distribution.
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Figure 25. Wind blade with bending and torsional deformation.

Equations (46)–(49) are substituted into Equation (66), and
h = −w, α = ϕ. To solve the coupled partial differential equa-
tions, the Galerkin method is used by a modal decomposition

including N modes:

w(x, t) =
N∑
j=1

�wj(x)ςj(t)

ϕ(x, t) =
N∑
j=1

�ϕj(x)θj(t) (67)

Multiplying its corresponding eigenfunctions and integrating
over the beam length, the set of Volterra equations can be
obtained:

(Ms + MA)q̈ + CAq̇ + (Ks + KA)q = FA ∗ φ̇ + Cu (68)

Figure 26. Modal coordinates of the uncontrolled wind turbine blade subject to initial conditions other than zero: (a) stable behaviour with nominal omega (b) unstable
behaviour with flutter omega.
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Figure 27. Trend of control laws VPIN and VARE for modal coordinates: (a) first mode (b) second mode (c) third mode and (d) fourth mode.

Table 5. Wind blade parameters.

Parameters Values

c Chord 4 [m]
s Span 62.6 [m]

fw Bending natural
frequencies

[
0.65 2 4.5 8.2

]
[Hz]

fϕ Torsional natural
frequencies

[
4 12.1 20.3 28.4

]
[Hz]

ρ Density 721 [kg/m3]
e Distance between

mass centroid and
the elastic axis

0.13 [m]

m Mass per unit length 225.8 [kg/m]
A Section area 2.75 [m2]
EI Bending stiffness 5.5315e + 08 [Nm2]
GJ Torsional stiffness 2.6962e + 09 [Nm2]
�;�f Rated rotor Speed;

Flutter rotor speed
12.1; 22.1 [RPM]

Rm Mean radius 31.7 [m]
Km1 Radius of gyraon 0.28 [m]
Km2 0.85 [m].
Km 0.89 [m]
[ε1;ψ1; ε2;ψ2] Kernel parameters [0.041; 0.165; 0.32; 0.335] –

where Ms,Ks are structural matrices, while MA,KA, CA are
aerodynamic matrices, with dimension R

2N × 2N , and FA ∈
R
2N is an aerodynamic vector associated with the circula-

tion effect, and C is a control vector (see Appendix C for the
definition of symbols).

In order to make more realistic simulations, we have been
inspired by the 5MW turbine (Jonkman et al., 2009), widely
studied in the literature (see Table 5). The blade’s parameters
have been chosen as a function of the bending and torsional
natural frequencies found in (Pourazarm et al., 2016; Shakya
et al., 2019), in order to recover the critical flutter velocity of
about �f = 22.1 RPM with a flutter frequency of 5.5Hz. The
reference wing section used for the medium radius is the Delft
University DU25 airfoil for which opensource data is available.

Simulations in the absence of control are shown in Figure
26(a) with the nominal working conditions for the rated rotor
speed of � = 12.1RPM, while in Figure 26(b) the instability
condition for which the flutter occurs appears. In both cases, the
initial conditions imposed are a linear deformation both bend-
ing and torsion so at the end of the wing we find a displacement
of 1mm and a section rotation of 0.1 degrees.

On the other hand, the controlled flutter conditions are
shown in Figure 27, with a linear distribution for the initial dis-
placement conditions, with the blade tip deflected of 20 cm and
rotated of 15°, and linear velocity distribution, with strain rate
at the tip about 0.01m/s and 10 rad/s of tip angular velocity,
respectively.

The proposed control algorithms are formulated starting
from the integro-differential model of the blade, based on a 4-
mode decomposition (4 flexural and 4 torsional). In Figure 27,
the blue lines represent the rotational modal coordinates while
those in black are the flexural ones.

For the first mode in Figure 27(a) the VPI(N) method shows
a very good control of the rotational oscillations just after 1s
of simulation. Indirectly, the flexural oscillations are also con-
trolled after 4s, obtaining a strong damping of the oscillations.
Instead, VARE control provides the total attenuation even in
a shorter time (0.5 s), allowing slightly larger flexural oscilla-
tion. The performance of the VARE is obviously paid in terms
of power and torque action; in fact, anticipating the attenuation
times requires a larger effort of control (Figure 28).

The other 3 modes of response are represented in Figure
27(b–d). For the second mode, VPI(N) control is characterised
by smaller oscillations than the others. In the fourth mode, on
the other hand, VARE shows a better result.

The cost function, shown in Figure 29, turns out to be better
(lower value) for the VPI(N) controller. In general, we conclude
that the results largely depend on the tuning parameters of the
controllers. It may be possible that a different choice of tuning
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Figure 28. Power (a) and torque (b) evolution for VPI(N) and VARE.

Figure 29. Cost functions evolution for VPI(N) and VARE.

parameters can change the results and invert the ranking of
the performances of the two methods. Both controllers work
very well and give the possibility to study different patterns and
explore different scenarios.

5. Conclusion

This paper aims to contribute to the optimal control of Volterra
IDEs with special application to the flutter control of a wing in
a fluid flow.

A common physical background to the appearance of inte-
gral and convolutional terms in the equation of engineering
interest is outlined, emphasising how these memory effects can
be borne in problems in which two different fields are coupled,
with emphasis to the problem of fluid-structure interaction, one
of the most significant for engineering applications.

Two examples considered in detail in the present paper are
that of an airfoil oscillating in a fluid flow, and of a rotating
wind turbine blade, looking for optimal control of their unsta-
ble flutter oscillation. Since the problem couples the rigid body
equations of the structure with that of the flow, where the flow
field variables are not explicitly appearing (hidden variables),
a mechanism of generation of integral memory terms appears,
consistent with the general view provided in the paper.

Two different methods are presented to approach the control
of integro-differential equations, both leading to an analytical
form of the control u in terms of an integral Volterra equation,
that can be readily solved numerically.

The first method, after a direct Laplace transformation of
the equations, possible because the exponential expansion of
the kernel, determines the Volterra Algebraic Riccati Equation-
VARE for the integro-differential problem, while the second
introduces an indirect variationalmethodwhichmeets the opti-
mality conditions VPI(N). Both controllers start from an IDE

model in its scalar simplest form, under the hypothesis the ker-
nel has a series exponential form, which is reasonable in many
physical problems, as in the case of control of the aerofoil flutter
studied in detail.

Although both controllers determine an explicit analyti-
cal form of the minimum cost problem, leading to the same
Volterra integral equation for the control, they show differences
which are emphasised by the numerical results. Differently from
VPI(N) method, the optimal control VARE requires a num-
ber of additional tuning parameters equal to the number of the
exponential terms of the kernel.

Furthermore, both the VARE and the VPI(N) controls guar-
antee stability and robustness. In fact, in the first method, the
stability comes directly from the control gain derived by the
steady Riccati’s equation through the LQR. For the second
method, a suitable selection of the eigenvalues (those with neg-
ative real part) and associated eigenvectors makes the solution
intrinsically stable, being the modal expansion deprived by the
diverging terms.

Both applications of controlled flutter show very good per-
formance.

Future developments will involve the development of a com-
plete model for wind turbines including the study of the actua-
tor’s dynamic in order to apply this control theory to a real wind
turbine.
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Appendices

Appendix A
Below is the generalisation of the result presented in Section 3.1 considering
an exponential series of the kernel:

k(t) =
N∑
k=1

αke−βkt (69)

where its Laplace transformation can be expressed as a ratio of a series of
polynomials of combinations of the coefficients αk and βk:

L{k ∗ x} = X(s)
P(N−1)(s)
D(N)(s)

(70)

which can be conveniently grouped with coefficients di and pi:

D(N)(s) = sN +
N−1∑
i=0

disi

P(N−1)(s) =
N−1∑
i=0

pisi (71)

Starting from the Volterra integro-differential equation:

ẋ = ax + k ∗ x + bu (72)

and proceeding with the Laplace transform we obtain:

(sX(s)− x0)D(N)(s) = aD(N)(s)X(s)+ P(N−1)(s)X(s)+ bD(N)(s)U(s)
(73)

Now,multiplying Equation (73) by 1
sN and using 1

sN
N−1∑
i=0

disi =
−1∑

i=−N
dN+isi,

we obtain:

(sX(s)− x0) = aX(s)+ bU(s)+ a

( −1∑
i=−N

dN+isi
)
X(s)

+
−1∑

i=−N
pN+isiX(s)+ b

( −1∑
i=−N

dN+isi
)
U(s)

− (sX(s)− x0)
−1∑

i=−N
dN+isi (74)

Assuming di = 0 for i < 0, than we have:

Zj(s) = (adN−jX(s)+ pN−jX(s)+ bdN−jU(s)+ x0dN−j

− dN−1−jX(s))s−jwith j = [1, . . . , N] (75)

and Equation (74) becomes:

(sX(s)− x0) = (a − dN−1)X(s)+
N∑
j=1

Zj(s)+ bU(s) (76)

Transforming back to time domain, and reducing to first order derivative,
we have:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˙̃q1 = (a − dN−1)q̃1 + q̃2 + bu
...

˙̃qk = d(k−1)

dt(k−1)L−1{Zk−1(s)} + q̃k+1

...

with k = [2, . . . ,N + 1] (77)

with q̃k = d(k−2)

dt(k−2)

N∑
j=k−1

L−1{Zj(s)} and L−1{x0dN−js−j} = x0dN−j
tj−1

(j−1)!

and q̃N+2 = 0.
Finally, Equation (77) can be reduced to an LTI system with the state

vector q̃ = [q̃1, . . . , q̃N+1], the matrixA ∈ R
N+1xN+1 and B ∈ R

N+1 1 and
assigned initial conditions q̃0:

˙̃q = Aq̃ + Bu

i.c.q̃0 (78)

The optimal control solution can be easily found through the applica-
tion of the Linear Quadratic Regulator which minimise the quadratic cost
function:

J = 1
2

T
∫
0
q̃TQq̃ + u2R (79)

that require δJ(q̃, u) = 0. The explicit control solution can be obtained
through the classic Algebraic Riccati Equations (Roberts, 1980) with its
associated gain matrix K :

u = −Kq̃ (80)
Finally, expanding the (80) the final control shows integrals in function of
x and u variable:

u = −k1x +
N∑
i=1

ki+1 ∫ . . . ∫︸ ︷︷ ︸
i

(d̂ix + p̂iu) dt . . . dt︸ ︷︷ ︸
i

+
N∑
i=1

x0dN−i
ti−1

(j − 1)!

(81)

where d̂i and p̂i are groupings of coefficients. The last term depends on the
initial state x0 making the control a non-autonomous function of N − 1

https://doi.org/10.2298/FIL1813485S
https://doi.org/10.1080/00207179.2018.1531148
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order. Equation (81) has the following structure:

u = f

⎛
⎜⎝x, ∫ x, ∫ u, . . . , ∫ . . . ∫︸ ︷︷ ︸

i

x dt . . . dt︸ ︷︷ ︸
i

, ∫ . . . ∫︸ ︷︷ ︸
i

× u dt . . . dt︸ ︷︷ ︸
i

, . . . , t, . . . , ti−1, . . . , x0

⎞
⎠ (82)

Note that the same typology of solution is also obtained in the case of the
vector Equation (72).

Appendix B
We generalise the theory presented in Section 3.2 (right branch of Figure 3)
for N-order series of the exponential kernel (69). Starting from the Laplace
transform of (17), we obtain:

sX(s)− x0 = aX(s)+ b2

r

(s)+ P(N−1)(s)

D(N)(s)
X(s)

s
(s)− λ0 = qX(s)− a
(s)− P(N−1)(−s)
D(N)(−s)


(s) (83)

where:

L
{∞

∫
0
k(t − τ)x(τ )dτ

}
=

∑
i

αi

s + βi
X(s) = P(N−1)(s)

D(N)(s)
X(s)

L
{∞

∫
0
k(τ − t)λ(τ )dτ

}
=

∑
i

αi

s − βi

(s) = P(N−1)(−s)

D(N)(−s)

(s) (84)

The P(N−1) and D(N) are polynomials of order N − 1 and N, respectively,
defined as:

D(N)(s) = sN +
N−1∑
i=0

disi;D(N)(−s) = sN +
N−1∑
i=0

d̃isi

P(N−1)(s) =
N−1∑
i=0

pisi;P(N−1)(−s) =
N−1∑
i=0

p̃isi (85)

where di, d̃i, pi, p̃i are suitable coefficients. Dividing Equation (85) by sN , the

equations can be arranged as follow, considering the relation 1
sN

N−1∑
i=0

disi =
−1∑

i=−N
dN+isi:

(sX(s)− x0) = aX(s)+ b2

r

(s)+ a

( −1∑
i=−N

dN+isi
)
X(s)

+ b2

r

( −1∑
i=−N

dN+isi
)

(s)+

−1∑
i=−N

pN+isiX(s)

− (sX(s)− x0)
−1∑

i=−N
dN+isi

(s
(s)− λ0) = qX(s)− a
(s)+ q

( −1∑
i=−N

d̃N+isi
)
X(s)

− a

( −1∑
i=−N

d̃N+isi
)

(s)+

−1∑
i=−N

p̃N+isi
(s)

− (s
(s)− λ0)

−1∑
i=−N

d̃N+isi (86)

The d and d̃ coefficients with negative subscript i are null and it is possible
to proceed with the following grouping:

Zj(s) =
(
adN−jX(s)+ pN−jX(s)+ b2

r
dN−j
(s)

+ x0dN−j − dN−1−jX(s)
)
s−j with J = [1, . . . , N]

Yj(s) = (qdN−jX(s)+ p̃N−j
(s)− ad̃N−j
(s)

+ λ0d̃N−j − d̃N−1−j
(s))s−j (87)

this way, Equation (86) is written as:

(sX(s)− x0) = (a − dN−1)X(s)+
N∑
j=1

Zj(s)+ b2

r

(s)

(s
(s)− λ0) = −(a + d̃N−1)
(s)+
N∑
j=1

Yj(s)+ qX(s) (88)

Laplace anti transform L−1{} and use of the variables ξ1 = L−1{X(s)},
η1 = L−1{
(s)}, ξ̇1 = L−1{sX(s)− x0}., η̇1 = L−1{s
(s)− λ0}, permits
to rewrite Equation (88) as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = (a − dN−1)ξ1 + ξ2 + b2

r
η1

...

ξ̇k = d(k−1)

dt(k−1)L−1{Zk−1(s)} + ξk+1

...
η̇1 = −(a + d̃N−1)η1 + η2 + qξ1

...

η̇k = d(k−1)

dt(k−1)L−1{Yk−1(s)} + ηk+1

...

with k = [2, . . . ,N + 1] (89)

With ξk = d(k−2)

dt(k−2)

N∑
j=k−1

L−1{Zj(s)}, ηk = d(k−2)

dt(k−2)

N∑
j=k−1

L−1{Yj(s)}, noting

that L−1{x0dN−js−j} = x0dN−j
tj−1

(j−1)! , L−1{λ0d̃N−js−j} = λ0d̃N−j
tj−1

(j−1)!
and ξN+2 = ηN+2 = 0.

Finally, Equation (89) can be reduced to a linear time-invariant
system with the state vector ν = [ξ , η]T , ξ = [ξ1, . . . , ξN+1]T , η =
[η1, . . . , ηN+1]T and matrix H = [HξξHξη ;HηξHηη] ∈ R

(2N+2) x (2N+2)

analogously to expression (28).
Consequently, following the same solution methodology illustrated in

the previous section, from (28) to (41), it is possible to obtain the infinite-
horizon problem solution, i.e. finding the coefficients of the P Riccati’s
matrix in (27). In this way an analytic expression of the control law can
be identified as:

u = b
r

⎡
⎢⎣P1,1x +

N∑
i=1

P1,i+1 ∫ . . . ∫︸ ︷︷ ︸
i

(d̂ix + p̂iu) dt . . . dt︸ ︷︷ ︸
i

+
N∑
i=1

x0dN−i
ti−1

(i − 1)!

]
(90)

where [P1,1, . . . ,P1,N+1] are the first row elements of the P matrix and d̂i
and p̂i are suitable constant coefficients. The control presents a combination
of integral terms of the same order of the kernel function of the series k(t).



20 G. PEPE ET AL.

Appendix C

The single matrices which characterise the final equation of motion (68) of
the wind turbine’s blade are the follows:

Ksj

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EI�wi�wj
IV −�2ρA

[
1
2
(L2 − x2)�wi�wj

′′ − x�wi�wj
′
]

−e�2ρA�wi

[
1
2
(L2 − x2)�ϕj

′′ − 2x�ϕj ′ −�ϕj

]
−me�2x�wi�ϕj

′ − me�2�wi�ϕj

−e�2ρA
1
2
(L2 − x2)�ϕi�wj

′′ +�2mxe�ϕi�wj
′ − GJ�ϕi�ϕ

′′
j

−K2
m�

2ρA
[
1
2
(L2 − x2)�ϕi�ϕ

′′
j − x�ϕi�ϕ ′

j

]
+�2ρA(K2

m2 − K2
m1)�ϕi�ϕ j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

MAij =

⎡
⎢⎣
πρb2�wi�wj πρb2xe�wi�ϕj

πρb2xe�ϕi�wj πρb4
(
1
8

+ x2e
b2

)
�ϕi�ϕj

⎤
⎥⎦

KAij =

⎡
⎢⎣
0 −2πρU2bφ(0)�wi�ϕj

0 −2πρU2b2
[
1
2

+ xe
b

]
φ(0)�ϕi�ϕj

⎤
⎥⎦

CAij =

⎡
⎢⎣

2πρUbφ(0)�wi�wj

2πρUb2
[
1
2

+ xe
b

]
φ(0)�ϕi�wj

×
−2πρUb2

(
1
2

− xe
b

)
φ(0)�wi�ϕj − πρUb2�wi�ϕj

πρUb3
(
1
2

− xe
b

)(
1 −

[
1 + 2xe

b

]
φ(0)

)
�ϕi�ϕj

⎤
⎥⎥⎥⎦

FAi ∗ φ̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2πρUb�wi

t
∫
0

∑
j

(
U�ϕjθ(τ )−�wj ς̇ (τ )

+ �ϕj θ̇ (τ )

(
1
2

− xe
b

)
b
)
φ̇(t − τ)dτ

2πρUb2
[
1
2

+ xe
b

]
�ϕi

t
∫
0

∑
j

(
U�ϕjθ(τ )−�wj ς̇ (τ )

+ �ϕj θ̇ (τ )

(
1
2

− xe
b

)
b
)
φ̇(t − τ)dτ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(91)

For all thematrices we can synthetically report the example forMs while
for convolution we have a vector integral:

Ms =
L
∫
0

⎡
⎢⎣
Ms11 · · · Ms1N
...

. . .
...

MsN1 · · · MsNN

⎤
⎥⎦ dxFA ∗ φ̇ =

⎛
⎜⎝L

∫
0

⎡
⎢⎣
FA1
...

FAN

⎤
⎥⎦ dx

⎞
⎟⎠

∗φ̇C =

⎡
⎢⎢⎢⎢⎢⎣

0
�ϕ1 (0)

...
0

�ϕN (0)

⎤
⎥⎥⎥⎥⎥⎦ (92)
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