Supporting Information

for

Ion Implantation as an Approach for Structural Modifications and Functionalization of Ti₃C₂T_x MXenes

Hanna Pazniak,^{*,†} Mohamed Benchakar,[‡] Thomas Bilyk,[†] Andrea Liedl,[&] Yan Busby,[§] Céline Noël,[‡] Patrick Chartier,[†] Simon Hurand,[†] Marc Marteau,[†] Laurent Houssiau,[/] Rosanna Larciprete,[#] Paolo Lacovig,^{//} Daniel Lizzit,^{//} Ezequiel Tosi,^{//} Silvano Lizzit, ^{//} Jérôme Pacaud,[†] Stéphane Célérier,[‡] Vincent Mauchamp,^{*,†}Marie-Laure David^{*,†}

[†]Institute Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France

[‡]Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France

[&]INFN-LNF, P.O. box 13, 00044 Frascati (Rome), Italy

[§]Nanomatériaux pour les Systèmes Sous Sollicitations Extrêmes (NS3E), ISL-CNRS-UNISTRA UMR 3208, French-German Research Institute of Saint-Louis, 68301 Saint-Louis, France

[£]IMEC, Kapeldreef 75, B-3001 Heverlee, Belgium

[/]Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium

[#]CNR-Institute for Complex Systems (ISC), 00185 Rome, Italy

^{*II*}Elettra-Sincrotrone Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy Email: H.P. <u>hanna.pazniak@univ-poitiers.fr</u>; V.M. <u>vincent.mauchamp@univ-poitiers.fr</u>; M.-L.D. <u>mldavid@univ-poitiers.fr</u>

Figure S1. The survey XPS spectra taken on a spin-coated $Ti_3C_2T_x$ film after implantation with $1 \cdot 10^{15}$ Mn-ions/cm² at 60 keV and after different 0.5 keV Ar⁺ sputtering cycles carried out to remove each time the exposed film surface and have access to the underneath layer.

Figure S2. The SRIM simulated depth profiles of Ti and C vacancies (black curves) and Mn^+ ions distribution (blue curve) within the $Ti_3C_2T_x$ thin film following the ion-implantation with $1 \cdot 10^{15}$ ions/cm² fluence at 60 keV energy, showing the maximum Mn concentration of ~0.32 at.%.

Figure S3. The TEM micrograph of thick parts extracted from the spin-coated $Ti_3C_2T_x$ films implanted at $1 \cdot 10^{15}$ (a) and $1 \cdot 10^{16}$ ions/cm² (b) at 60 keV and corresponding energy-filtered (10 eV slit) SAED patterns (insets). (c), (d) The radial intensity profiles of the SAED patterns presented in insets in (a) and (b). d-spacing values, d^{cal}, are calculated from experimental SAED patterns (a, b, insets). Reference values of d-spacings for anatase (A) were taken from JCPDS database – PDF#21-1272. Reference values of d-spacings for graphene oxide (GO) were taken from the Reference S1.

Figure S4. The Ti-L_{2,3} (a), and O-K edge (b) EEL spectra of oxidized $Ti_3C_2T_x$ flakes.

Figure S5. XRD patterns of the $Ti_3C_2T_x$ spin-coated film before implantation (black curve), $Ti_3C_2T_x$ films implanted with $1 \cdot 10^{15}$ Mn-ions/cm² at 60 keV (grey curve). The bottom curve shows, for comparison, the XRD pattern of the Si/SiO₂ substrate (green curve).

Figure S6. Schematic description of the ion implantation procedure and the implanted film "structure", showing different regions labeled as R1-R3, used to perform electron energy loss spectroscopy analysis of implanted with $1 \cdot 10^{16}$ Mn-ions/cm² Ti₃C₂T_x film. The R1-R3 regions are given for a schematic illustration. The precise position of the R1-R3 fragments in the film have not been determined.

Figure S7. SAED patterns of studied R1 (a), R2 (b), and R3 (c) regions extracted from different parts of sub-surface region (Figure S5) of $1 \cdot 10^{16}$ ions/cm² Mn-implanted Ti₃C₂T_x film. (d) The radial intensity profile of the R3 region SAED pattern presented in (c). d-spacing values, d^{cal}, are calculated from experimental SAED patterns (a, b, insets). Reference values of d-spacings for anatase (A) were taken from JCPDS database – PDF#21-1272. Reference values values of d-spacings for graphene oxide (GO) were taken from the Reference S1.

REFERENCES

S1 Wilson, N.; Pandey, P.A.; Beanland, R.; Rourke, J.P.; Lupo, U.; Rowlands, G.; Roemer,

R.A. On the Structure and Topography of Free-Standing Chemically Modified Graphene. New J. Phys. 2010, 12, 125010.