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Non-destructive distinction between geogenic and
anthropogenic calcite by Raman spectroscopy
combined with machine learning workflow†

Sara Calandra, *a,b Claudia Conti, c Irene Centauro a and Emma Cantisani d

Here, we demonstrate, for the first time, the possibility of distinguishing between geogenic and anthropo-

genic calcite in a non-destructive and effective way. Geogenic calcite derives from natural sedimentary

and metamorphic rocks whereas anthropogenic calcite is formed artificially due to the carbonation

process in mortars and plaster lime binders. Currently, their distinction is a major unaddressed issue

although it is crucial across several fields such as 14C dating of historical mortars to avoid contamination

with carbonate aggregates, investigating the origins of pigments, and studying the origins of sediments, to

name a few. In this paper, we address this unmet need combining high-resolution micro-Raman spec-

troscopy with data mining and machine learning methods. This approach provides an effective means of

obtaining robust and representative Raman datasets from which samples’ origins can be effectively

deduced; moreover, a distinction between sedimentary and metamorphic calcite has been also high-

lighted. The samples, chemically identical, exhibit systematic and reliable differences in Raman band posi-

tions, band shape and intensity, which are likely related to the degree of structural order and polarization

effects.

Introduction

Calcite is a mineral widely diffused on the Earth’s surface,
having different origins. It is mainly present in sedimentary
and metamorphic rocks (e.g. marbles) and can also be pro-
duced by biological systems and human activities (pyrotech-
nology origin).

Anthropogenic calcite is mainly found as a binder in
mortars and plasters and is produced following traditional
technologies.1,2 The production of lime mortar is shown in
reactions (1)–(3). Air-hardening calcitic limes are obtained by:
(1) burning pure limestones at temperatures of 800–950 °C; (2)

hydration of calcium oxide; and then, (3) carbonation of
calcium hydroxide in air with the formation of calcite.

CaCO3 þ heat ¼ CaO ðlimeÞ þ CO2 ð1Þ

CaOþH2O ¼ CaðOHÞ2 ðportlanditeÞ þ heat ð2Þ

CaðOHÞ2 þ CO2 ¼ CaCO3 þH2O: ð3Þ

The calcite obtained in this process has the same chemical
composition as burnt limestone, but has different textural and
mechanical properties. An efficient, fast, effective and wide-
spread technique in laboratories is needed to distinguish
calcite from different domains.

Satisfactory results were obtained using Fourier transform
infrared spectroscopy (FTIR) in different configurations3–5 and
the luminescence properties of calcium carbonate.6,7 Both
methods are based on different densities and distributions of
atomic defects in the calcite crystal structure.

FTIR can distinguish calcite formed by different processes
using the trend lines of anthropogenic and geogenic calcite
constructed from the intensity of specific bands.3,4

Luminescence allows us to identify the structural defects in
calcite that cause changes in the infrared spectra. The ion sub-
stitutions provide luminescence activators or quenchers. Most
geogenic forms of CaCO3, e.g. limestone, exhibit red–orange
luminescence due to the presence of Mn2+ sites in the calcite

†Electronic supplementary information (ESI) available: SFig. 1: Figure depicting
the 2D plots of v1, v4, L wavenumbers are reported and expressed as average
values; SFig. 2: Scatterplot from the key influence factor visual: increase in % of
anthropogenic calcite samples of v4 intensity values. For more details about data
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crystal lattice.8 In anthropogenic calcite, the luminescence
varies, since its formation process involves molecular structure
changes, decreasing the number of luminescence centers in
the structure.9,10

This study aims to verify the feasibility of micro-Raman
spectroscopy to distinguish calcite formed by different pro-
cesses. The Raman spectrum of calcite is characterized by a ν1
sharp band at 1086 cm−1 along with other subsidiary bands at
156 cm−1 (T), 282 cm−1 (L) and 712 cm−1 (ν4).11–17

The Raman technique was used to estimate the cation
(Mg2+, Fe2+, and Mn2+) content in carbonate since the
vibrational wavenumbers of the translational (T) and libra-
tional (L) modes of carbonates are sensitively related to their
cation composition,13,17,18 to investigate the changes in atomic
bonds in biogenic calcite crystals,19 and to distinguish the
degree of crystallinity of calcium carbonate in biological
materials,20 evaluating the wavenumbers and the width of v1
and v4 bands.

These papers highlight the suitability of Raman spec-
troscopy for evidencing the structural and chemical changes
that occur in the calcite lattice. Indeed, by studying the vari-
ation of the structure of calcite, the short-range order is best
detected at the molecular level using Raman spectroscopy.21

The micro-Raman identification of anthropogenic calcite
can be used for different purposes: (1) for the selection of the
datable fraction from binders in aerial mortars, avoiding any
type of contamination with geogenic calcite due to the pres-
ence of carbonate aggregates or the remains of underburnt
fragments of stone for lime – the accurate 14C dating of
mortars is strictly related to the removal of this kind of
contaminant;10,22,23 (2) to distinguish the preparation tech-
nique of white pigments (crushed rocks or lime-based
materials); (3) to identify calcitic wood ash in sediments;3 and
(4) to identify the self-healing areas in ancient mortars.24 In
these frameworks, since a very small amount of material
samples is available, which must be preserved for further ana-
lyses, a non-destructive high-resolution micro-Raman tech-
nique is recommended and strongly encouraged. In addition,
the Raman technique in the portable configuration is more
easily applicable than the respective IR spectroscopy (diffuse
reflectance spectroscopy) to broaden the use of the calcite
identification method in a non-invasive way. It is known that
portable FTIR provides spectral modifications, such as distor-
tion, inversion, enhancement, or abatement of infrared
bands,25 which can hinder our application.

We selected a wide range of different geogenic and anthro-
pogenic calcites, belonging to different carbonate rocks and
mortars. We used high-resolution micro-Raman spectroscopy
to accurately measure the order of crystal calcite and identify
the information on the spectrum of the geogenic calcite and
anthropogenic calcite.

Two technologies, Microsoft Power BI and Python, were
used to build a data analysis workflow aiming to distinguish
groups of the spectral data acquired for the different calcite
samples and to identify their characteristic Raman spectral
features. Another objective of the data analysis was to evaluate

the accuracy of the identification of geogenic and anthropo-
genic calcite from spectral data through a comparison between
machine learning models.

Materials and methods
Selected samples

The selected samples consist of calcite belonging to Italian
geological materials (geogenic calcite samples) and calcite
extracted from the binders of air-hardening mortar samples
(anthropogenic calcite samples). 13 carbonate rocks, generally
burnt to produce quicklime, taken from different Italian quar-
ries and 11 binder mortars collected from historical buildings,
factory-made binders and test specimens made in the labora-
tory were investigated (Table 1). Lumps represent portions of
unmixed lime in an aerial mortar produced with traditional
technologies.2

In order to systematically investigate the powder, the par-
ticle sizes were controlled through different sieves, up to a
granulometric class below 25 µm.26

All samples were first analysed through X-ray powder diffr-
actometry (XRPD), scanning electron microscopy with energy
dispersive X-ray spectroscopy (SEM-EDS) and attenuated total
reflection Fourier transform infrared spectroscopy (ATR-FTIR)
and subsequently beamed under a Raman spectrometer. This
extensive investigation, not reported here, was performed to
control the composition of powders for the suitable selection
of those samples consisting mainly of calcite. In fact, the
reduction of the number of variables, and the consequent
complexity of the system, is essential at this stage for the
proper interpretation of spectral changes.

In addition, lime binders and lumps extracted from ancient
mortars were thoroughly characterized by optical microscopy
(OM), thermogravimetric analysis (TGA) and optical
microscopy–cathodoluminescence (OM-CL) imaging to evalu-
ate their reliability for this study (results are not reported
here).

Raman spectroscopy

Raman spectra were collected using a high-resolution
Renishaw inVia Raman spectrometer coupled to a Leica
DMLM microscope. The measurements were carried out with a
785 nm excitation line equipped with a 50× long working dis-
tance objective (NA 0.5, a spectral resolution of <1 cm−1 and a
theoretical laser spot diameter of 1.9 μm). A laser power of
80 mW and an acquisition time of 5 s per spectrum were used.

We decided to focus our attention towards the low-medium
region of the spectral range, collected in the range of
100–1400 cm−1. For each powder, we took 10 Raman spectra at
slightly different positions.

The wavenumbers, intensities, and areas of typical
vibrations of carbonate groups in calcite (L, librational mode;
v4, in-plane bending mode; and v1, symmetric stretching
mode) were processed with Spectragryph v 1.2.15 software.
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The spectra were not baseline corrected but normalized to
the v1 height. For each Raman spectrum, from the L, v4, and v1
bands were collected (Fig. 1): (i) the position of the band, to
evaluate the wavenumber shift; (ii) the intensity of band, fol-
lowing the method of Chu et al. (2008),3 where the intensity
value was subtracted from the specific baseline; and (iii) the
area subtended by the band without the baseline.

Given the amount of variables, the extracted parameters
were used for statistical analysis of the data to investigate the
presence of discriminating factors for distinguishing geogenic
and anthropogenic calcite. To better investigate the obtained
results, full-width at half-maximums (FWHMs) were recorded
for L, v4 and ν1 Raman bands for each sample.

Data exploration and analysis

The proposed workflow integrates Microsoft Power BI data
visualization and analysis tool and Python programming
language with the Scikit-learn package.27,28 The proposed
method involves the following main steps: (1) visual inspection
of the dataset; (2) reduction of the dataset dimensionality and
segmentation by principal component analysis (PCA) and
K-means clustering; and (3) building of machine learning
models able to predict the value of the target variable (calcite
types) based on the values of the independent variables (logis-
tic regression and random forest models).

Raman spectra data are stored in a dataframe: each para-
meter collected from Raman spectra is called a “feature” (or a
“variable”); the 2 possible classes of the target variable are geo-
genic or anthropogenic calcite. For each variable, outliers are
detected and removed by the interquartile range (IQR)
method, calculated in Python.29

Then, visual inspection is carried out in Power BI, directly
connected to the dataframe, through the key influence factor
(KIF) visual, which performs ML.NET SDCA regression
implementation.30 According to the second step, PCA was per-
formed in Python, using the sklearn.decomposition.PCA
function.31

Before applying the PCA, data are standardized using
StandardScaler, a function implemented in the Scikit-learn
package, so that all features are at the same scale. From the
transformed dataframe after PCA, K-means clustering in Power
BI clustering visual is performed. Then, the dataframe is ran-
domly divided into a training set and a testing set (with a
70 : 30 split ratio) in Python. A comparison between logistic

Table 1 List samples, reporting the ID sample, material type and provenance, sample composition and calcite type (geogenic or anthropogenic)

ID sample Material type and provenance Compositiona Calcite typeb

MAR Marble, Carrara (Tuscany, Italy) Cal (+++) Geogenic
CAMP 1 Marble, Campiglia Marittima (Tuscany, Italy) Cal (+++) Geogenic
CAMP 2 Marble, Campiglia Marittima (Tuscany, Italy) Cal (+++) Geogenic
CAMP 3 Marble, Campiglia Marittima (Tuscany, Italy) Cal (+++) Geogenic
MS Marble, Montagnola Senese (Tuscany, Italy) Cal (+++) Geogenic
LIM Marble, Carrara (Tuscany, Italy) Cal (+++), qz (*) Geogenic
PLEC Limestone, Pietra di Lecce (Apulia, Italy) Cal (+++) Geogenic
ALB L Limestone, Alberese, Monte Morello (Tuscany, Italy) Cal (+++), cl min (*), qz (*) Geogenic
ALB A Limestone, Alberese, Monte Morello (Tuscany, Italy) Cal (+++), cl min (*), qz (*) Geogenic
TRAV Travertine, Rapolano (Tuscany, Italy) Cal (+++), qz (*) Geogenic
PGAL Limestone, Pietra Gallina (Venetian region, Italy) Cal (+++) Geogenic
PMAT Limestone, Pietra di Matera (Basilicata, Italy) Cal (+++) Geogenic
PVIC Limestone, Pietra di Vicenza (Venetian Region, Italy) Cal (+++) Geogenic
OS Ancient plaster, archaeological site Cal (+++) Anthropogenic
LS01 Laboratory mortar Cal (+++), qz (+), portl (*) Anthropogenic
WHL Factory-made binder Cal (+++), cl min (*), qz (*) Anthropogenic
CT26L1 Lime lump, historical building Cal (+++), qz (++) Anthropogenic
CT26L2 Lime lump, historical building Cal (+++), qz (*) Anthropogenic
CT26L4 Lime lump, historical building Cal (+++), qz (*) Anthropogenic
CT27L4 Lime lump, historical building Cal (+++) Anthropogenic
CT27L1 Lime lump, historical building Cal (+++) Anthropogenic
SFC1B1 Lime binder, historical church Cal (+++), qz (*) Anthropogenic
SFC1L1 Lime lump, historical church Cal (+++), qz (*) Anthropogenic
SFC5B1 Lime binder, historical church Cal (+++), qz (*) Anthropogenic

Cal: calcite; qz: quartz; cl min: clay minerals; portl: portlandite. +++: very abundant; ++: abundant; +: present; *: traces; and −: below the
detection limit. a Via XRPD, SEM-EDS and TGA. b Via OM, OM-CL, and ATR-FTIR.

Fig. 1 A selected region of measured micro-Raman spectra of the car-
bonate samples. Wavenumbers, intensities, and areas of L, v4, v1 were
collected as shown in the detailed windows at 230 and 310 cm−1, which
highlight the data-taking method.

Analyst Paper

This journal is © The Royal Society of Chemistry 2023 Analyst

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
M

ay
 2

02
3.

 D
ow

nl
oa

de
d 

on
 6

/5
/2

02
3 

10
:2

5:
34

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3an00441d


regression and random forest models31–34 is performed in
Python, with the Scikit-learn functions logistic regression and
random forest classifier, on the PCA components, setting up a
repeated K-fold cross-validation with the Scikit-learn function
K-fold on the training set, in order to find the best fit to
describe the relationship between the target variable and the
predictor variables.

Results and discussion
Analytical characterization of the geogenic and anthropogenic
calcites

The Raman calcite spectrum (Fig. 1 and 2a) is characterized by
an intense band at 1086 cm−1 (v1), along with other subsidiary
bands: a weak band at 712 cm−1 (v4) and a medium intensity
band at 282 cm−1 (L). These wavenumbers are characteristic of
the samples consisting of geogenic calcite, and are not
observed in anthropogenic calcite samples, as they exhibit a
Raman shift at bands L and v1. Geogenic samples present on
average an L varying from 280.4 to 282.4 cm−1, a v4 varying
from 712.4 to 713.0 cm−1, and finally a v1 varying from 1086.2
to 1086.9 cm−1 (Table 2). Meanwhile, the anthropogenic
samples have an average L ranging from 273.8 to 278.3 cm−1, a
v4 rather constant from 712.1 to 712.5 cm−1, and finally a v1
ranging from 1085.4 to 1086.0 cm−1. In Fig. 2b, the marble
(blue spectrum) is compared with one of the ten spectra
obtained from each anthropogenic sample studied, and a sig-
nificant variation is highlighted, especially, for L and v1
wavenumbers.

This systematic discrepancy observed in the Raman shifts
of the two calcite groups of different origin prompted us to
further investigate the information gathered from the main
vibrational modes (in Fig. S1,† 2D plots of the main discrimi-

nating parameters are reported and expressed as average
values). We determined the wavenumber, intensity, and area of
the three main vibrational modes of 24 calcite samples. In
Table 2, the parameter average is collected by the spectra. A
preliminary observation of results suggests differences
between the data gathered.

Data analysis results

In the first step of the data analysis workflow, visual inspection
of the dataset is performed through the key influence factor
(KIF) visual. The KIF highlights the L wavenumber and v1 wave-
number as the most important influencers to discriminate
geogenic from anthropogenic calcite (Fig. 3). The scatterplot in
Fig. 3a shows that all the samples with an L wavenumber value
over about 280.0 cm−1 are of geogenic calcite. Similarly, Fig. 3b
shows that 85% of samples with a v1 wavenumber value higher
than 1086.2 cm−1 consist of geogenic calcites. In addition,
another influencing factor could be the v4 intensity: samples
with v4 intensity values between 0.026 and 0.098 consist more
of anthropogenic calcite than geogenic calcite (Fig. S2†).
However, this value is quite variable in geogenic calcite
samples, so some fall into this range.

From the preliminary KIF results, correlations between the
L and v1 wavenumbers and v4 intensity are evaluated. Bubble
charts are used to determine whether there is a correlation or
a shared trend between at least 3 variables. The L and v1 wave-
numbers seem to be the most significant parameters in discri-
minating geogenic from anthropogenic calcite, thus they are
set as the x and y axes in the bubble chart visual in Power BI
(Fig. 4).

A different distribution of samples is clearly visible in
Fig. 4a, where geogenic samples (in blue) are all located over
about 280.0 cm−1 (L wavenumber) and 1086.2 cm−1 (v1 wave-

Fig. 2 Comparison among individual Raman spectra of carbonate samples, normalized to the v1 intensity: geogenic calcite (in blue, MAR sample)
and anthropogenic calcite (in orange, SFC1L1 sample) (a). Raman spectra details for the anthropogenic sample (in orange) are shown with the geo-
genic sample (b). Band positions of L, v4, v1 are reported to highlight the Raman shift, especially in L vibrational mode. Bottom, characteristic values
of the band position of the MAR sample (blue), and top, characteristic values of the SFC1L1 sample (first orange band).
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number). To better highlight the behavior of the v4 intensity of
the KIF results, Fig. 4b is built with only geogenic calcite
samples and it can be observed that the samples are well sep-
arated along the x-axis (v4 intensity). Most of the samples have
v4 intensity values below and above the range of 0.026–0.098,

in which the majority of anthropogenic calcite samples fall,
except for the PMAT, PVIC, TRAV, CAMP 3 and CAMP 1
samples. In particular, the v4 intensity within the geogenic
samples is more variable, so this parameter could discriminate
against the geogenic calcite types. In addition, the distribution
of geogenic samples in the graph could allow a distinction
between sedimentary carbonate (ALB A, ALB L, PGAL, PMAT,
PLEC, and PVIC) and metamorphic (MAR, CAMP 1, CAMP 2,
CAMP 3, LIM, and MS) rocks. Detached from the two groups is
the travertine sample (TRAV), since it is a sedimentary rock of
chemical origin.

To highlight pairwise relationships between the variables
and to complete the visual inspection step in the dataframe, a
pairplot is created. Fig. 5 shows that the original dataframe
has a high level of multicollinearity, since many variables are
strongly correlated with one or more of the other variables. In
line with the findings of the KIF analysis, the L and v1 wave-
numbers, correlated with all other parameters, allow us to
better distinguish the different calcites. The same consider-
ation can be performed for the v4 wavenumber, although a
precise discriminating factor cannot be considered.

The second step of data analysis provides the PCA in order
to eliminate the multicollinearity, reduce the dimensionality
of the dataframe and improve the machine-learning algorithm
performance. PC1 and PC2 describe 90.2% of the variance
(56.7% and 33.5%, respectively). Thus, PCA is performed again
keeping only the first 2 PCs. Creating a heatmap of the trans-
formed dataset, it can be seen that no variable is correlated
with one or more of the other variables. The Python code is
then implemented in Power BI to visualize the biplot of the 2
PCs (Fig. 6). A PCA biplot shows both the PC scores of the
samples (dots) and the loadings of the variables (vectors). The

Table 2 The average of the variables: the wavenumbers, intensities, and areas of typical vibrations of carbonate groups in calcite were collected
from 10 Raman measures performed for each sample

ID sample L_wavenumber L_intensity L_area v4_wavenumber v4_intensity v4_area v1_wavenumber v1_intensity v1_area

MAR 282.4 0.29 4.07 712.9 0.10 0.68 1086.8 0.94 4.81
CAMP 1 281.9 0.29 4.38 712.5 0.09 0.54 1086.4 0.86 4.24
CAMP 2 280.9 0.27 4.44 712.5 0.10 0.62 1086.5 0.91 5.01
CAMP 3 281.5 0.23 3.48 712.4 0.08 0.49 1086.4 0.75 3.73
MS 282.1 0.28 4.26 712.6 0.11 0.67 1086.6 0.61 4.88
LIM 280.4 0.28 5.56 712.7 0.11 0.84 1086.4 0.96 6.71
PLEC 281.9 0.06 1.51 713.0 0.01 0.08 1086.9 0.14 0.68
ALB L 281.4 0.05 1.53 712.8 0.01 0.09 1086.7 0.11 0.57
ALB A 281.1 0.06 1.72 712.5 0.01 0.08 1086.5 0.19 0.78
TRAV 281.9 0.19 3.20 712.8 0.07 0.43 1086.7 0.60 3.44
PGAL 282.0 0.09 1.73 712.7 0.02 0.14 1086.7 0.24 1.24
PMAT 282.0 0.09 1.80 712.5 0.03 0.18 1086.6 0.28 1.47
PVIC 281.4 0.13 2.28 712.4 0.05 0.27 1086.2 0.41 2.08
OS 276.4 0.08 2.41 712.2 0.02 0.19 1085.6 0.20 1.59
LS01 277.6 0.09 2.11 712.3 0.03 0.30 1085.8 0.36 2.37
WHL 276.4 0.18 5.14 712.3 0.06 0.52 1085.6 0.66 5.15
CT26L1 275.0 0.14 4.02 712.1 0.05 0.42 1085.4 0.46 3.36
CT26L2 277.4 0.21 5.34 712.4 0.08 0.58 1085.8 0.68 4.14
CT26L4 277.2 0.21 5.08 712.4 0.08 0.55 1085.8 0.77 5.04
CT27L4 273.8 0.20 6.46 712.2 0.07 0.62 1085.4 0.62 5.11
CT27L1 277.8 0.25 5.99 712.5 0.09 0.70 1086.0 0.87 5.76
SFC1B1 277.5 0.18 4.67 712.5 0.06 0.53 1085.9 0.62 4.89
SFC1L1 277.7 0.23 5.65 712.4 0.08 0.66 1085.8 0.77 5.92
SFC5B1 278.3 0.24 5.42 712.5 0.09 0.69 1085.9 0.78 5.73

Fig. 3 Scatterplots and a list of top influencers from the key influence
factor visual of geogenic calcite samples. The upper part of the figure
shows that: L wavenumber is the top factor contributing to identification
of the geogenic calcite samples (i.e. the likelihood of calcite being geo-
genic increases by infinite times). This trend is best explained by the
scatterplot in (a). The second factor is the v1 wavenumber (i.e. the
samples are 2.66 times more likely to consist of geogenic calcite when
the value increases), as highlighted in the scatterplot in (b).
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PC1 vs. PC2 scores indicate a clear separation of the geogenic
from the anthropogenic calcites, except for a few samples
(Fig. 6a). The L, v1 and v4 wavenumbers are the most influen-
tial variables for calcite distinction and strongly influence the
PC2 score.

Another observation on loadings is that the angles between
the vectors represent how characteristics correlate with one
another: when two vectors are close, forming a small angle, the
two variables they represent are positively correlated (e.g., L
wavenumber, v1 wavenumber and v4 wavenumber), whereas if
they are almost perpendicular, they are not likely to be corre-
lated. As already observed in the KIF analysis and bubble
charts, the v4 intensity in the biplot separates geogenic calcites
into 3 main groups. From the transformed dataframe after PCA,
K-means clustering in Power BI visual is performed (Fig. 6b).
K-means is used to identify groups of similar features based on
the new representation of data generated by PCA. Of the
5 groups identified, the geogenic calcites are separated into 3
clusters (Fig. 6b), as observed in the bubble chart (Fig. 3b).

PCA and K-means clustering are unsupervised machine
learning algorithms that allow us to reduce and segment the
data. In order to build a model able to explain the relationship
between the target variable (calcite types) and the new vari-
ables obtained from PCA, a comparison between supervised
machine learning algorithms was performed. Logistic
regression classification and random forest classifier algor-
ithms were performed, to extensively investigate the predic-
tion. In general, it is useful to compare different classification
or regression models when there are several hypotheses about
the relationship between characteristics and the target class
and when we want to determine which model provides a better
performance for a given classification problem.

The logistic regression algorithm is able to correctly predict
64 out of 67 instances in the test set, resulting in 96% accuracy,
while the random forest algorithm is able to correctly predict 62
out of 67 instances, resulting in 93% accuracy (Table 3).

As shown in Table 3, the accuracies of the two models are
similar, but logistic regression has higher values of precision,

Fig. 4 Bubble charts: average values of v1 wavenumber vs. L wavenumber with v4 intensities as the bubble size of both calcites (a); average values
of v1 wavenumber vs. v4 intensities with L wavenumber as the bubble size of geogenic calcites (b).
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recall and F1-score, so it seems to be the best model for explain-
ing the relationship between the target variable and the predictor
variables, and to predict the binary outcomes. On the other
hand, the performance of the random forest model is relatively
robust against parameter specifications and less subject to over-
fitting, because it depends less on parameter values than other
machine learning algorithms such as logistic regression.35

Discussion

The L and v1 wavenumbers are the variables which are more
influential for distinguishing calcite domains.

These vibrational bands fall into two regions: the L band is
due to vibrations of the complete unit cell which are generally
referred to as the lattice modes; the v1 band, is caused by the
internal modes of the molecular carbonate ion.20,36–38

It is worth noting that Mg is not present in the samples,
thus the wavenumber shift is not ascribable to the decrease in
the average metal–oxygen bond length (Mg–O bonds are
shorter than Ca–O bonds).13,17,39

In order to establish more insights, the FWHMs of L, v4
and v1 bands were measured, and the average values are
reported in Table 4. The carbonate rocks are well-crystallized
materials, and the average FWHM for the L band is in the
range 11.8–17.4 cm−1; for the v4 band, it is in the range
5.1–6.8 cm−1; and for the v1 band, it is in the range
4.3–5.1 cm−1. The binder mortars present significantly higher
FWHMs of the L band, in the range 18.1–26.6 cm−1; of v4 in
the range 6.3–8.8 cm−1; and of v1 in the range 5.2–6.7 cm−1. It
is noteworthy that the more the band positions of anthropo-
genic calcite are shifted to low values, as in the case of L and
ν1 wavenumbers, the higher the FWHM values are.

The relatively large FWHMs reflect the Raman spectro-
scopic features of a structural disorder in calcite crystals or a
small crystalline order: the broader the spectra bandwidth, the
lower the degree of mineral crystallinity. This disorder changes
the selection rules of the Raman active modes: more phonon
modes become Raman active, and each phonon mode broad-
ens its features.40 The slope of the phonon dispersion curves
of the vibrational modes determines the shift of the bands:41 a
negative slope results in a shift towards lower wavenumbers.

Fig. 5 Pairplot of the variables. The pairplot is in matrix format where the row name represents the x axis and the column name represents the y
axis; the main-diagonal subplots are the univariate distributions for each attribute.
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As a consequence, calcite disordered systems reflect a systema-
tic larger FWHM and a shift of certain modes toward lower
wavenumbers when compared with the crystalline counter-
parts, as already observed in the literature also for other
minerals.20,42,43

Crystallinity can vary for many reasons, mainly regarding the
increase in crystal defects or in amorphous or nanocrystalline
phases in the sample.44 During the carbonation process, the
degree of structural order of calcite can be compromised by
several factors, i.e. the time of setting and environmental con-
ditions, and there is a general agreement in the literature on the
possibility of achieving complete carbonation.45 The findings
achieved in this study highlight that the carbonation process
leads to the formation of structurally disordered calcite crystals.

The further outcome of the present study concerns the
discriminating power of v4 intensity within the geogenic

samples: sedimentary carbonates, travertine and meta-
morphic rocks are distinguishable by following their v4
intensity. The average calcite crystal size is higher in geo-
genic samples than in anthropogenic samples, and thus
polarization effects in Raman spectra of rocks should be
considered. The crystallographic orientation of calcite with
respect to the incident light polarization is one of the key
factors responsible for the relative intensity ratio change of
bands in calcite Raman spectra. Interestingly, the outcomes
of the present study highlight that mineral orientation
depends on the growth and deformation processes of crys-
tals during diagenesis and Raman spectroscopy can be used
to distinguish the preferred mineral orientation.46 The polar-
ization effect is negligible in anthropogenic calcite due to
the reduced crystal size, as confirmed by the quite homo-
geneous v4 intensity.

Fig. 6 Biplot from the PCA analysis (a) and K-means clustering plot after performing PCA (b).

Table 3 Classification report of the logistic regression and random forest model performances

Validation methods Calcite Precision Recall F1-score Support

Logistic regression Anthropogenic 0.95 0.97 0.96 38
Geogenic 0.96 0.93 0.95 29

Accuracy 0.96 67
Macro avg 0.96 0.95 0.95 67
Weighted avg 0.96 0.96 0.96 67

Random forest Anthropogenic 0.90 0.97 0.94 38
Geogenic 0.96 0.86 0.91 29

Accuracy 0.93 67
Macro avg 0.93 0.92 0.92 67
Weighted avg 0.93 0.93 0.92 67
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Conclusions

In this work, for the first time, the distinction between geo-
genic and anthropogenic calcite was made using high-resolu-
tion micro-Raman spectroscopy in a non-destructive way. The
observed systematic Raman shifts in L and v1 bands for
anthropogenic calcite prompted us to apply data analysis and
integrated machine learning methods. The successful para-
meters (among the position of the band, the intensity of the
band, the area subtended by the bands and the FWHMs of L,
v4, and v1) for distinguishing the calcite origins were identified
from KIF, PCA, K-means clustering, and the relationship
between the target and the predictor variables using the logis-
tic regression and random forest models.

The proposed method was shown to be effective in discri-
minating anthropogenic calcite in pyrotechnological materials
(i.e. mortars and plasters) in order to select the most suitable
carbonate fraction for radiocarbon dating purposes. The appli-
cation of this approach could be extended to the evaluation of
the carbonate origins of pigments and sediments in archaeolo-
gical contexts. Furthermore, types of carbonate rocks are dis-
tinguishable on the basis of the v4 intensity, paving the way to
other geological and petrographic applications. The measure-
ments could also be potentially performed in situ using porta-
ble Raman instruments with a suitable spectral resolution.

The structurally ordered–disordered, crystallinity degree
and the polarization effect are the main factors that influence
the Raman spectral signature of calcite. These findings encou-
rage further investigations, i.e. with single crystal X-ray diffrac-
tion to obtain detailed information about the crystal structure

of the different examined calcites, extending this research also
to the precipitation of secondary calcite in different fields.
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