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Abstract

In opportunistic networks data dissemination is an important, although not widely explored, topic. Since opportunistic networks
topologies are very challenged and unstable, data-centric approaches are an interesting directions to pursue. Data should be
proactively and cooperatively disseminated from sources towards possibly interested receivers, as sources and receivers might not
be aware of each other, and never get in touch directly. In this work we consider a utility-based cooperative data dissemination
system in which the utility of data is based on the social relationships between users. Specifically, we study the performance of
this system through an analytical model. Our model allows us to characterise the data dissemination process, as it describes both
its stationary and transient regimes.

This work aims to extend an analytical model previously obtained for a scenario of 2 channels, to the case of n channels. A
case study for 3 channels is first introduced to better understand the n-channel general case analysis.

Index Terms

opportunistic networks, data dissemination, delay tolerant networks.

I. INTRODUCTION

In [1] a data dissemination system is analyzed and modeled assuming that nodes can at most subscribe to two channel1.
In other words, each node is supposed to have chosen a channel of interest and to maintain this choice along the time. Each
node has a buffer that can store only one unit data and the node can decide which data to store each time it meets another
node. The decision is based on a utility function whose variables are the initial distribution of the node preferences, and the
current distribution of the number of nodes actually storing each channel data.

The purpose of the present work is to generalize the model in [1] from the simple case of two channel to the n channels
case. To perform a direct comparison with the simulation results presented in [1] for the 2 channels case, we used the same
assumptions for the cost function and the distribution of nodes’ interests.

The rest of the report is organised as follows. Section II overviews the data dissemination system model. Section III introduces
a study on a 3-channel case to familiarise in a visual way with the problem. In Section IV for the general case of N channels a
comprehensive analytic study is presented with the most important results. Finally In Section V we verify the analytical model
by simulation and in Section VI a summary of the results is reported.

II. THE DATA DISSEMINATION SYSTEM MODEL

The reference scenario we deal with in this work is similar to the one used in PodNet [2], named “podcasting for ad hoc
networks”. As in the paradigm of a typical opportunistic network, we consider a number of mobile users whose devices cannot
be continuously connected to the Internet. Communication is possible by opportunistically exploiting pair-wise intermittent
contacts between users to exchange messages, and bring them towards their final destinations. Sporadic contacts of users with
point of access to the Internet are also possible. In podcasting applications, data objects (e.g., software updates, music or video
files, advertisements, . . . ) are organised in different channels to which users can subscribe. Data objects might be generated
both from within the Internet or by the mobile users. The data dissemination system defined in [3] is responsible for managing
subscriptions, and bringing data objects to subscribed users.

A. Utility-based data dissemination system

A data dissemination system has to specify mechanisms for managing subscriptions and delivering data to subscribed users.
In our reference framework each node advertises the channels its user is subscribed to upon making contact with any other
node, and the subscription to a channel is performed just at the beginning of the events.

The typical form of the utility function is the product of the access probability to the data object (pac) by a measure of the
retrieval cost (c), normalised by the object’s size (s). The rationale of this definition is that the utility of an object should be
high if it is very popular and costly to be retrieved. Normalising by the size is usually just a way to simplify the approximate

The activity of this report was carried out in collaboration with Marco Conti, Chiara Boldrini and Andrea Passarella, from Institute for Informatics and
Telematics, National Research Council of Italy.

1A channel is set of data regarding a particular topic such as software update, podcasting, music and video files
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solution of the resulting knapsack problem. In our framework we use exactly this kind of utility function, and we define the
cost c as a monotonically decreasing function (denoted as fc()) of the object’s availability in the network (hereafter referred
to as pav). Specifically, pav is defined as the probability of finding the object in the cache of any node. Clearly, the higher
pav , the lower the cost to retrieve the object, the lesser its value. Different types of functions can be used for fc() such as
exponential or linear ones.

In our opportunistic networking scenario, the users of any node cache are i) the local user, and ii) the users of the other
encountered nodes. Our utility function takes this into consideration by defining multiple components, one for the local user
and one for any social community the user is in contact with. In this paper, we consider a simplified, yet significant, version,
made up of two components only, one related to the local user (u(l)), the other (the social component, u(s)) aggregating the
utility for all the other users encountered in the past:

U = u(l) + u(s) = p(l)
acfc(p

(l)
av) + p(s)

ac fc(p
(s)
av ). (1)

In Equation 1: i) p(l)
ac represents the probability that the local user is interested in the data object; ii) p(s)

ac represents the
probability of meeting nodes interested in the data object; iii) p(l)

av represents the probability that the local node “sees” the data
object in the caches of encountered peers; and iv) p(s)

av represents the average probability (over encountered nodes), i.e. the
probability that those nodes “see” the data object in the caches of nodes they encounter.

B. Assumptions in the model

In our model we assume that the time is slotted, and nodes compute utilities at the beginning of each time slot, storing
then the data from the channel with the higher utility. Furthermore we assume that nodes have global knowledge of the state
of the network, in particular of the number of nodes storing each group i data in their buffer. In addiction the nodes are
supposed to be able to access to any data without taking into account any mobility model. In this way we can model the
evolution of the data distribution process with a Markov chain whose status is the vector n = (n1, . . . , nN ), where N is the
number of channels, and ni the number of nodes storing objects of channel i. This Markov chain completely describes the
data distribution process in the network. Specifically, since the chain is finite, stationary distributions always exist.

For the sake of explanation, let us focus on a user subscribed to channel j, and let us evaluate its utility parameters with
respect to channel i. The local access probability to is p(l)

ac = 1ij where 1ij is the standard indicator function. The social
access probability is the probability of meeting a node subscribed to channel i. Under our assumptions, this is the probability
that any given node subscribes to channel i (throughout referred to as zi, while z = (z1, . . . , zN ) is the distribution vector for
all the zi) 2. Since we assume that nodes can compute exact pav parameters, p(l)

av and p(s)
av are both equal to ni/M , where M

is the number of nodes in the system. Therefore, the utility of channel i computed by any node subscribed to j is

Uij = (1ij + zi) · fc(
ni
M

). (2)

The properties of the Markov chain can be analysed by exploiting the fundamental observation that, all nodes subscribed to
j store data objects of the channel ı̂ such that:

ı̂ = arg max
i
{Uij} . (3)

Without loosing in generality, we make the assumption:

fc() > 0 (4)

The reason will be clear in the following, but we can anticipate that it will simplify the model. In the following we will
denote with pi the probability that a node initially stores a data item of channel i.

III. ANALYSIS OF THE 3 CHANNELS CASE

Before approaching the general case of N channels, we analyze in details the 3 channels case. The reason is that for N = 3
it is possible to have a visual interpretation of the space state and this allows a deeper insight in the system behaviour. Such a
visualization is difficult for N = 4 and not possible for N > 4. In the following there is then a detailed analysis of the system
behavior in the case of 3 channels, in terms of stability, when varying some key parameters.

2Note that we are assuming that the probability distribution of subscribing to channels is the same for all nodes.
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Fig. 1. Domain of states in the case N = 3: all the possible states are on the triangle.

A. Space of States

In case of 2 channels the state space of the system is very simple. We have two groups of nodes, and at each step, each
node can decide to store one of two types of data. So the total number of possible states is given by the combined choice
made by each group of users. As each group can decide indipendently what channel to store, the number of possible states is
NN , where N is the number of channels. For example, for N = 2, there are 4 possible states: (M, 0), (0,M), (Mz1,Mz2)
and (Mz2,Mz1). Actually, with the assumption fc() > 0 it can be proved that the state (Mz2,Mz1) is not possible. In the
case N = 3 the number of possible states is then 33 = 27. Let us consider another condition on the space state, that is:

N∑
k=1

nk = M (5)

where N is the number of channels. Exploiting this constraint, it is possible to represent the states belonging to the RN space,
in the projected subspace RN−1. In fact, for example, in the case N = 3 all the states belong to the plain depicted in the
Figure 1, that is the 27 possible states belong to the depicted triangle. It means that we can consider their projection on the
plane (n1, n2) without losing any information, because for each of them we can obtain the 3rd component, knowing that
n3 = M −n1−n2. In the following we will identify each of these states using either the notations n = (n1, n2, n3) where ni
is the number of nodes storing data from group i, or c = (c1, c2, c3) where ci ∈ {1, 2, 3} and represents the index of the data
channel stored by the user from group i. For example the state c = (1, 1, 2) corresponds to the state n = (2, 1, 0). It is worth
nothing that the notation c gives more detailed information, while in the notation n the groups nodes choices are implicit. In
other words to a state c can correspond more states n.

Another notation that will be used is Gj to represent the nodes/users of group j, that is the nodes whose users have subscribed
to the channel j.

Moreover, given a state c, let’s define Ψ(c) the next state for c, and similarly Ψ(n) the next state for n.

B. Zones of decision per single user group

Altough the number of states is 27, each of them can be taken into account only if there is another state from which the
system can reach them. To evaluate this condition let us consider the decision zones of each group of users. Figure 2 depicts
the 3 utility Ui1(n1, n2) functions of the nodes G1 for an exponential fc(). Each utility function is a surface, and has an
intersection with the other utility function. The intersections are lines, and the three lines have a common point. Let us define
the following variables:

H
∗(k)
ij = Uik ∩ Ujk (6)

H(k) = U1k ∩ U2k ∩ U3k (7)

All of these objects have to be considered on their projection in the plane (n1, n2). Each of the three lines H(k)
ij divide the

plane into two half-planes corresponding to a different choice for the user Gk. Combining all these half-planes, with mutual
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Fig. 2. Utility functions in the case N = 3 (the state space is in R2 (n1, n2) as a projection of the complete space R3)

intersections, we obtain three convex polytopes [4] which can be unambiguously determined by proper lines H(k)
ij obtained

by a proper truncation of the curves H∗(k)
ij to the point H(k). It is trivial to prove that each one of the three H(k) points has

three decision zone oriented in the same way. The next step is now to find if there exist possible boundaries for curves and
lines defined in Equations 6 and 7.

C. Constraints for lines H(k)
ij and points H(k)

In this section we want to find possible boundaries for the existence domain of the curves H(k)
ij and consequently for the

points H(k). Let us introduce another assumption, without losing any generality in the model. Let zi be ordered in a descending
way, that is i < j ⇒ zi > zj . Let us start by considering the curve H(1)

1;2 (n1, n2). It is the locus of points satisfing the condition
U1;1 = U2;1 that is (1 + z1)fc(

n1

M ) = z2fc(
n2

M ). For z2 6= 0 and fc(n1

M ) 6= 0 we can write:

1 + z1

z2
=
fc(

n2

M )

fc(
n1

M )
> 1 (8)

Exploiting the condition 4 we can write fc(n2

M ) ≥ fc(
n1

M ). Finally, being fc() strictly monotone decreasing, we obtain the
following condition for the existing domain of the curve:

∃H(1)
1;2 (n1, n2) : n2 ≤ n1 (9)

Repeating a similar reasoning for the other two curves of G1 we obtain a set of three half-planes, whose intersection is the
existence domain for the point H(1), which is the open unbounded convex polytope named A1 in Figure 3. Applying an
analogous procedure to the other curves, we get the domain constraints A2 and A3 respectively for H(2) and H(3). This leads
to a possible relative position of decision boundaries curves Hi;j(k) as shown in Figure 4. It is worth to note that the curves
don’t need to be straight lines, like in the figure but can have a curved shape.

D. Relative position of curves H(k)
i;j

According to the constraints found until now, there could be other three degrees of freedom for the relative position of the
curves H(k)

i;j , such as the one among H(1)
1;2 and H(3)

1;2 . We can prove that the relative position depicted in Figure 4 is the only
one possible. More in general we want to prove that, fixed an arbitrary value n2 = n∗2 and leaving only n1 as a variable, the
following inequalities are true: 

H
(2)
1;2 < H

(0)
1;2 < H

(3)
1;2 < H

(1)
1;2

H
(3)
2;3 < H

(0)
2;3 < H

(1)
2;3 < H

(2)
2;3

H
(3)
1;3 < H

(0)
1;3 < H

(2)
1;3 < H

(1)
1;3

(10)

where H(0)
1;2 is the straight line n2 = n1, H(0)

2;3 the one passing through the points (M, 0) and (0,M/2), and H
(0)
1;3 the one

through the points (M/2, 0) and (0,M). To prove that H(3)
1;2 < H

(1)
1;2 along the direction of n1 we first prove that there is no
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Fig. 3. Constraint boundaries Ak for H(k) points.

Fig. 4. Decision boundaries lines and H(k) points

intersection among the two lines. Let us suppose by contraddiction that a point of intersection exists, P ∗ = (n∗1, n
∗
2). So the

point must belong to both the lines, that is:

{
z1fc(

n∗1
M ) = z2fc(

n∗2
M )

(1 + z1)fc(
n∗1
M ) = z2fc(

n∗2
M )

(11)
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Fig. 5. The only possible zones from which to reach states of the system

Dividing the first equation by the second one we get the contraddiction 0 = 1. So there is no intersection. To evaluate the
relative position along n1, let us fix a value n2 = n̄2 for both the curves: H

(3)
1;2 : z1fc(

n
(3)
1

M ) = z2fc(
n̄2

M )

H
(1)
1;2 : (1 + z1)fc(

n
(1)
1

M ) = z2fc(
n̄2

M )
(12)

The second term in Equation (12) is the same, so also the first terms have to be identical. We have:

z1fc(
n

(3)
1

M
) = (1 + z1)fc(

n
(1)
1

M
) (13)

then
fc(

n
(3)
1

M )

fc(
n
(1)
1

M )
=

(1 + z1)

z1
> 1 (14)

and then

fc(
n

(3)
1

M
) > fc(

n
(1)
1

M
) (15)

and as fc() is strictly monotonical decreasing we have n1(3) < n1(1) which means that:

H
(3)
1;2 < H

(1)
1;2 (16)

and this concludes the proof. With analog reasoning the other inequalities can be proved.

E. Pruning the Space of States by reachability

As a consequence of what discussed and proved in the previous sections, the relative position of the H(k)
i;j boundaries is

only one, and this generates only 10 distinct decision zones, as shown in Figure 5. It means that whatever the initial state of
the system is, after the first step, the system will be only in one of these 10 states out of 27. Figure 6 shows the position
of the states after pruning. Some considerations can be done about them. Almost all of the states are on the boundary of the
zone of the possible states; only one is inside. Moreover there is a sort of central symmetry among the decision zones and the
corresponding states. E.g., the state < 1, 1, 1 > (n1 = M , n2 = 0, n3 = 0) is reached by states bolonging to the corresponding
zone that is at the opposide side. On the other hand, the state < 1, 2, 3 > (n1 = Mz1, n2 = Mz2, n3 = Mz3) is very close
or inside its corresponding decision zone, depending on the fc(), its parameters, and the zi distribution, which determines the
position of the boundary lines H(k)

i;j . It is worth to noting that the state < 1, 2, 3 > is the one in which every node stores the
data unit to which it has subscribed.

According to the considerations and results of the previous sections, some important properties can be highlighted.
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Fig. 6. The only states that are reachable from any other state

Lemma 1. The states on the boundary of the State Space cannot be absorbing.

Proof: Let us consider the states on the n1 axes (Figure 6). They are characterized3 by having n2 = 0. So the states on
axes n1 can have n3 6= 0. If one of these states is absorbing, it must belong to a decision zone where, at the next step, no
node will chose to store data belonging to group 2, so to have n2 = 0. But that can never happen because the boundaries lines
H

(2)
1;2 and H(2)

2;3 are constrained to stay above all the states on the n1 axes. In other words, starting from these states, the nodes
of group 2 will choose to store data from channel 2.

Theorem 1. There is a threshold condition which defines two cases:

• if the condition is met then there is a single absorbing state (Mz1,Mz2,Mz3) and there could be also recurrent classes;
• if the condition is not met, there is no absorbing state but only one or more recurrent classes.

The condition to be met is the following: 

fc(z2)
fc(z1) ≤

1+z1
z2

fc(z3)
fc(z1) ≤

1+z1
z3

fc(z3)
fc(z2) ≤

1+z2
z3

(17)

Proof: It is trivial to prove that the point Pz = (n∗1, n
∗
2, n

∗
3) = (Mz1,Mz2,Mz3) ∈ B, as shown if Figure 7, if

z1 + z2 + z3 = 1 (zi is a probability distribution) and z1 > z2 > z3 (by assumption). If Pz ∈ B the only way for Pz to go
out from the central polytope (pseudo-hexagon) is through at least one of the three boundary lines: H(1)

1;2 , H(1)
1;3 and/or H(2)

2;3 .
So the conditions to meet are: 

H
(1)
1;2 : (1 + z1)fc(

n∗1
M ) ≥ z2fc(

n∗2
M )

H
(1)
1;3 : (1 + z1)fc(

n∗1
M ) ≥ z3fc(

n∗3
M )

H
(2)
2;3 : (1 + z2)fc(

n∗2
M ) ≥ z3fc(

n∗3
M )

(18)

Substituting n∗i = Mzi we get the Equations (17). This concludes the proof.
It is worth noting that all the results obtained until this section are valid for any cost function fc() and any distribution zi,

provided the assumptions on them in previous sections.

IV. ANALYSIS OF THE GENERAL CASE OF N CHANNELS

In the following sections, the general case of N channel is explored. In particular some general proprieties are stated and
proved. These proprieties are useful to characterize the behaviour of the system.

3It is worth to recall that Figure 6 represents the projection of the states that actually stay on the triangle depicted in Figure 1
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Fig. 7. The system has an absorbing state Pz if it is included in the central polytope (pseudo-hexagon)

A. Assumptions

As described in Section II the cost function fc() used in the utility function Uij is assumed to belong to a class (Φc) with
some constraints: the function is strictly positive and monotonically decreasing. Formally:

Φc =

{
fc(x) : ∀x ∈ R⇒ fc(x) > 0,

∂

∂x
fc(x) < 0

}
(19)

Moreover, the the probabilities zi for nodes to subscribe to channels i decrease in reverse order:

i < j ⇒ zi > zj (20)

with, obviously:
N∑
i=1

zi = 1 (21)

B. Reachable states

The system state, at any time, is completely described by the vector c = (c1, c2, . . . , cN ), where N is the number of channels
and ci is the channel chosen by the nodes in group Gi (nodes subscribed to channel i). Without any constrain for the choses
channel, the possible number of states of the system would be then NN . We will show in the following that using the utility
function Uij , defined in Equation (2), the actual number of reachable states has an upper bound much lower than NN , and
represents a specific subset of all possible states, with a nice geometric interpretation in the space representation given by
n = (n1, n2, . . . , nN ). Let us start considering what happens if a node in group Gi does not choose to save data from its
subscribed channel i.

Lemma 2. If nodes subscribed to channel i do not save data from channel i, then no other node can save data from channel
i.

Proof: Let us consider the case in which nodes Gi do not save data from channel i, but save data from a different channel
j. This happens if and only if:

∃j : zjfc(
nj
M

) > (1 + zi)fc(
ni
M

) (22)

Let us suppose by contradiction the hypothetical existence of a node within the group Gk that selects channel i, with k 6= i.
There are two cases: k 6= j and k = j. We want to prove that both cases lead to a contradiction.

Let us consider the case k 6= j. This would imply:

zifc(
ni
M

) > zjfc(
nj
M

) (23)
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Fig. 8. The states of a 4-channels system: their set is represented as a projection from R4 (n1, n2, n3, n4) to R3 (n1, n2, n3).

Using the Equations (22), the right-hand side of Equation (23) can be bounded below:

zifc(
ni
M

) > zjfc(
nj
M

) > (1 + zi)fc(
ni
M

) (24)

This implies:
zifc(

ni
M

) > (1 + zi)fc(
ni
M

) (25)

Subtracting zifc(niM ) from both sides we finally get:

0 > fc(
ni
M

) (26)

But the Equation (26) contradicts the assumption fc(x) > 0 in Equation (19).
The case k = j is more immediate. If we bound below and above the inequality in Equation (22) we get:

(1 + zj)fc(
nj
M

) > zjfc(
nj
M

) > (1 + zi)fc(
ni
M

) > fc(
ni
M

) (27)

from which we get:
(1 + zj)fc(

nj
M

) > fc(
ni
M

) (28)

that is, if k = j the nodes Gk do not save the i channel data. This concludes the proof by contradiction.
A consequence of Lemma 2 is that the only possible state in which all channel data are saved in the system at the same time,

is the one in which every node saves data to the channel to which it is subcribed to: let’s define this state ĉ∗ = (1, . . . , N),
corresponding to n̂∗ = M(z1, . . . , zN ). Let us name this state the ”all channels” state. It is worth nothing that the definition
of n̂∗ does not represent an actual stochastic realization of the chose channels by the nodes, for which the element ni must
obsviously be integer numbers. Actually it is an average of all possible choices, according to the z probability distribution. In
other words, a possible realization is n̂∗′ = M(p1, . . . , pN ) = Mp where z is the average of all possible p.

For all the other reachable states, except n̂∗, at least one channel data is not saved in the system. That is there is at least
an index i for which ni = 0 in state nb. If we represent the set of all possible states using a projection of RN on RN−1,
such as in Figure 6 or in Figure 8, we have a portion of space corresponding to a convex polytope 4. In this space, the only
reachable states are on the boundary surface (let us name them ”boundary” states, nb), while just one, the ”all channels”
state, is inside.

Given the Lemma 2 and its consequences discussed above, it is possible to evaluate the number of states that can be actually
reached from ayn other state.

4The states’ space can be represented in a subspace of dimension N − 1 because for each state represented by n = (n1, . . . , nN−1) the value of nN is
obtained by the constraint

∑N
k=1 nk =M . In other words, the states’ space in RN belonh to an hyperplane of dimension N − 1.
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Lemma 3. The number of reachable states can be bounded above by:

RN =

N−1∑
k=0

(
N

k

)
(N − k)k (29)

Proof: In the c = (c1, c2, . . . , cN ) state representation, let us consider a set a states where there are k, and only k, groups
of user who have chosen to save the data from the channel they are subscribed to. Let us call them dominant groups. E.g.: for
k = 3 and N = 6, one of these possible groups is c = (∗, 2, 3, ∗, ∗, 6), where 2, 3 and 6 are the dominant chosen channels.
The number of all of these groups can be easily computed as the number of ways to choose k elements from N , without
repetition, that is

(
N
k

)
= N !

k!(N−k)! , and this is the first factor in the sum in Equation (29). For each one of these sets of states,
the remaining N − k groups of users can only chose one of the k dominant channels: this is a consequence of Lemma 2.
As there are no more dominant groups, except the k already mentioned, the other groups must chose one of the k dominant
channel data, and repetitions are allowed. As a consequence, the number of possibile states for each group is (N −k)k, that is
the second factor in the sum in Equation (29). We must then sum on all possible number of dominant groups, that is k from
1 to N − 1. Moreover we have excluded by this sum the ”all channel” state, where all the groups are dominant. Note that
we can not extend the sum in Equation (29) to k = N because the second factor does not work correctly with zero remaining
groups, and would add a zero contribution. But we note that the formula in the sum gives a contribution of 1 for k = 0. So
we can extend the sum from k = 0 to k = N − 1 to get the total number of reachable states. This concludes the proof.

To have an idea of what is the order of reduction in the number of reachable states as compared with the theoretical number
NN we note that formula for RN in Equation (29) does not change the result if we extend the sum for k from 0 to N and
that it generates a sequence known in mathematics as EIS A000248 [5]. An asymptotic estimate can be derived either from
the Laplace method or from the saddle-point method expounded in [6]:

RN '
N !√

2πNµ
µ−Ne

N+1
µ+1 (30)

where µ is the positive solution of:
µ(µ+ 1)eµ = N + 1 (31)

Using the Stirling approximation N ! '
√

2πN NN

eN
, and µ ' log(N) as an approximated solution of the Equation (31), with

some mathematical manipulation a rough bound for large values of N can be found: RN < NN

eN
.

C. Boundary states features

An important goal of this study is to identify what are the possible absorbing states. In the following we prove that the next
step of a boundary state can not be itself, so it can not be absorbing.

Theorem 2. ”boundary” states can not be absorbing.

Proof: Given a ”boundary” state, nb = (n1, n2, . . . , nN ), at least one component must be 0, that is: ∃i : ni = 0. Let
us suppose by contradiction that nb is absorbing, that is, Ψ(nb) = nb. In other words, if ni = 0, at the next step it must be
ni = 0. But it can be verified that:

ni = 0⇒ Uii > Uji,∀j 6= i (32)

This implies that the node Gi will choose to store data from channel i and it will be ni 6= 0. To prove the statement in
Equation (32) consider the following equations:

Uii = (1 + zi)fc(0) (33)

Uji = zjfc(
nj
M

) < zjfc(0) ≤ (1 + zi)fc(0) = Uii (34)

From Equation (34) we get Uji < Uii which proves the Equation (32). This concludes the prof.

D. One possible absorbing state

We can now state what is the only possible absorbing state.

Theorem 3. The only potential absorbing state is the ”all channel” state n̂∗ = M(z1, . . . , zN ).

Proof: A consequence of the Lemma 2 and Theorem 2 is that the only reachable states are the ”boundary” states and
the ”all channels” state. As the ”boundary” states can not be absorbing, the only candidate is the ”all channels” state.

Let us verify if this n̂∗ state can be absorbing and under what conditions.
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E. All Channels state conditions to be absorbing state

In this section we investigate what are the conditions for the ”all channels” state to be absorbing, if any. Let us consider
the matrix Uij :

Uij =


U11 U12 . . . U1M

U21 U22 . . . U2M

...
...

. . .
...

UM1 UM2 . . . UMM

 (35)

For the specific state n̂∗ = Mz it is:
(1 + z1)fc(z1) z1fc(z1) . . . z1fc(z1)

z2fc(z2) (1 + z2)fc(z2) . . . z2fc(z2)
...

...
. . .

...
zMfc(zM ) zMfc(zM ) . . . (1 + zM )fc(zM )

 (36)

In order for the state Mz to be absorbing, each diagonal element in matrix in Equation (36) must be greater than the other
elements of the same column. This would require M(M − 1) comparisons to verify if it is absorbing. Actually the number of
comparisons can be reduced, as proved in the following Lemma and Theorem.

Lemma 4. In ”all channels” state n̂∗, Uhh > Ulh, for h > l.

Proof: Given the assumptions in Equations (19), (20) and (21), we want to prove that in n̂∗ = Mz it holds Uhh > Ulh,
for h > l, that is (1 + zh)fc(zh) > zlfc(zl) is always true. In other words, we want to prove that the diagonal elements in
Equation (36) are always greater than the elements above. Let us consider a point z = (z1, z2, . . . , zN ) in an N-dimensional
space Ψ (RN ), subject to the constraints in Equations (20) and (21). In particular z belongs to an hyperplane of dimension
N−1, that divides Ψ into 2 semi-spaces. Le us define the function Ûjk(x) , (1jk+zj)fc(xj), where xj is the j-th component
of the variable x while zj is a constant given by the j-th component of z. Let us then consider the locus of points x∗ ∈ Ψ
that satisfy the equation Uhh(x∗) = Ulh(x∗), that is:

(1 + zh)fc(x
∗
h) = zlfc(x

∗
l ) (37)

Let us name H lh
h this locus of points. It is worth nothing that we do not impose any condition on the other x∗i component of

x∗ (i 6= l, h). From the Equation (37) we get:
fc(x

∗
h)

fc(x∗l )
=

zl
(1 + zh)

< 1 (38)

This implies fc(x∗h) < fc(x
∗
l ) and being f

′

c() < 0 we get:

x∗h > x∗l (39)

that means that the locus of points x∗ ∈ Ψ satisfying the condition Uhh(x∗) = Ulh(x∗) are subject to the constraint in Equation
(39). As for z it must be zh < zl, then we get:

z /∈ H lh
h (40)

It means that z belongs to one of the 2 semi-spaces in which H lh
h divides Ψ. Let us now consider a point x̄∗ ∈ H lh

h with the
following constraints on its coordinates:  x̄∗h = zh

x̄∗l : (1 + zh)fc(zh) = zlfc(x
∗
l )

x∗i any for i 6= h, l
(41)

From the Equations (20), (39) and (41) we can write:

x̄∗l < x̄∗h = zh < zl (42)

then x∗l < zl and, being fc() monotonically decreasing, fc(x∗l ) > fc(zl). We can then write (1 + zh)fc(zh) = zlfc(x
∗
l ) >

zlfc(zl), from which:
(1 + zh)fc(zh) > zlfc(zl) (43)

This concludes the proof.
We can finally get the condition for the ”all channels” state to be absorbing.
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Theorem 4. The ”all channels” state Mz is absorbing if the following condition is met:⋂
1<i<j<N

{
f(zj)

f(zi)
<

1 + zi
zj

}
(44)

Proof: If Mz state is absorbing, every node Gi must continue to choose to buffer the channel data it is subscribed to.
That is, the following conditions must be met:

Uii > Uji ∀i, j : i 6= j (45)

According to Theorem 4, some of these conditions are always met for Mz state. In particular Uii > Uji ∀i, j : i > j. So
the only conditions to verify are Uii > Uji ∀i, j : i < j. That is (1 + zi)fc(zi) > zjfc(zj)∀i, j : 1 < i < j < N . From
which we get the Equation (44).

Summarising, with the previous theorems, we have proved, for an N-channels system, what are the reachable states and
under what conditions absorbing states can exists. We must now investigate what are the possible recurrent classes of the
system. In the following section some preliminary study about it is reported.

F. Behaviour of ”single channel” states

Let us consider the class of states for which all the subscribers (to different channels) have chosen to save data from the
same channel. There are N (number of channels) of these possible states which we name n̂k = (n1,k, . . . , nN,k) where

ni,k =

{
M for i = k
0 for i 6= k

(46)

with k = 1, . . . , N . It is worth to note that these states are on the vertexes of the convex polytope representing the domain of
the feasable states. In the equivalent representation, let’s name these states ĉk = (k, . . . , k).

For example, in the case N = 3, the ”single channel” states are n = (M, 0, 0), (0,M, 0), and (0, 0,M), or, in the equivalent
representation, c = (1, 1, 1), (2, 2, 2), and (3, 3, 3) (see Figure 6).

Let’s define two more states’ classes. One is the single state class ĉ∗ = (1, . . . , N) in which every node saves data from
the channel it is subscribed to. The other one is composed by the set of states ĉ∗,h = (1, . . . , h− 1, ch, h+ 1, . . . , N) where

ch =

{
2 for h = 1
1 for h > 1

(47)

with h = 1, . . . , N . In other words, ĉ∗,h is the set of states in which any node saves data from the channel it is subscribed to,
except the nodes subscribed to channel h that saves data from the channel with the lowest index different from h. E.g., for 3
channels, ĉ∗ = (1, 2, 3), ĉ∗,1 = (2, 2, 3), ĉ∗,2 = (1, 1, 3), ĉ∗,3 = (1, 2, 1).

In the following we will use equivalently both the notations n and c for the states of the system.

Lemma 5. A ”single channel” state ĉk can have only two possible next states: i) Ψ(ĉk) = ĉ∗ or ii) Ψ(ĉk) = ĉ∗,k.

Proof: If c = ĉk then for any node Gj subscribed to a channel j 6= k there are three different cases for the utility function:
Ujj(n̂

k) = (1 + zj)fc(0), Uhj(n̂k) = zhfc(0) (for h 6= k) and Ukj(n̂k) = zkfc(1). Using the assumptions made on fc(), it
holds always true that Ujj(n̂k) > Uhj(n̂

k) and Ujj(n̂
k) > Ukj(n̂

k). As a consequence, any node Gj will save data from
channel j. On the other hand, for any node subscribed to the channel k we have: Ukk(n̂k) = (1 + zk)fc(1) and, for h 6= k,
Uhk(n̂k) = zhfc(0). Let us consider the greatest value among Uhk(n̂k) that is always Û = Uĥk(n̂k) with ĥ = minh {h},
according to the assumptions on zh. There are two possible cases: if k = 1 then Û = U2,1(n̂1) = z2fc(0) corresponding to
ĥ = 2, otherwise if k > 1 then Û = U1k(n̂k) = z1fc(0) and ĥ = 1. This implies that nodes subscribed to channel k will
choose the channel, to save data from, according to the max{Ukk, Û}, resulting then in choosing the channel k or one between
the channels 1 (if k > 1) and 2 (if k = 1). In the first case the next state will be ĉ∗, in the second one it will be ĉ∗,k.

To better understand the dependance of the system from the cost function, let us restrict fc() to a class of functions, named
Hλ, introducing a parameter λ in fc(niM ) = fc(

ni
M , λ). To specify the class we define a support function

h(λ) =
fc(0, λ)

fc(1, λ)
(48)

We impose that fc() must be such that h(λ) is monotonically increasing, that is ∂
∂λh(λ) > 0. In other words, increasing λ the

cost of a fully diffused channel will decrease if compared with the cost of a channel not spread at all. For the sake of clarity
Hλ ⊂ Ψc, that is fc() is subject to the assumptions described in Section II-B. An example of fc() ∈ Hλ is e−λ

ni
M .

Lemma 6. ∀fc() ∈ Φc, ∃ k̄ ∈ N such that

Ψ(ĉk) =

{
ĉ∗ for k ≤ k̄
ĉ∗,k for k > k̄

(49)
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Fig. 9. Simulation results for exponential cost function (the graph is the λ boundary for an absorbing state)

with k ∈ [1, . . . , N ].

Proof: As seen in Lemma 5, if the system is in the state ĉk, there are only two possible next states, ĉ∗ and ĉ∗,k, where
the difference between them depends only on the choice of the Gk users (subscribed to channel k): they can decide to save
data from channel k or from a specific different channel, according to the ĉ∗,k definition. For k = 1 the choice of G1 users is
ı̂ = arg maxi {Ui,1} which can be ı̂ = 1 (which is k, in this case) if fc(0)

fc(1) <
1+z1
z2

, α1, or ı̂ = 2, otherwise. For all the other

Gk users, with k > 1, the choice ı̂ = arg maxi {Ui,k} is ı̂ = k if fc(0)
fc(1) <

1+zk
z1

, αk, and ı̂ = 1, otherwise. The thresholds

αk are monotonically decreasing with k, so for any fixed value fc(0)
fc(1) , h̄ there is a k̄ for which the following inequations

hold true: αN < αN−1 < . . . < αk̄+1 < h̄ < αk̄ < . . . < α2 < α1. In other words there is a lower contiguous
set of integers

[
1, . . . , k̄

]
, S−

k̄
such that, for k ∈ S−

k̄
, h̄ < αk holds true, which implies Ψ(ĉk) = ĉ∗, and there is an upper

contiguous set of integers
[
k̄ + 1, . . . , N

]
, S+

k̄
such that, for k ∈ S+

k̄
, αk < h̄ holds true, which implies Ψ(ĉk) = ĉ∗,k. It is

worth to noting that one of the two sets could be empty. This concludes the proof.

Theorem 5. If fc(niM , λ) ∈ Hλ, and if, varying the value of λ, there is a change in any Ψ(ĉk), then it will happen in such a
way that increasing λ the change will affect a sequence of states ĉk, with consecutive decreasing k. Increasing λ, the change
in affected states’ transitions will be from ĉ∗ to ĉ∗,k.

Proof: By definition of Hλ, h(λ) = fc(0,λ)
fc(1,λ) is monotonically decreasing with λ.

This completely describes the behaviour of ”single channel” states, that is their next step.

V. VALIDATION BY SIMULATION

In order to verify the results obtained so far we performed a simulation for a specific case of the cost function fc() and
preference distribution. As the present work aims to generalize to N channels the 2 channels study in [1], we used the same
assumptions for the cost function and the distribution of nodes’ interests by channel subscriptions. In particular we used an
exponential cost function, and a zipf interest distributions. Then for each value of n (number of subscribing channels) ranging
from 2 to 60, for the cost function fc(ni) = e−λ

ni
M we run simulations in which the initial subscription of node (zi) coincides

with their preference to store (pi). Then we found the threshold value for λ for which the ”all channels” state is absorbing.
All the values match the theoretical results described in Theorem 4.

Figure 9 shows the results. For each n (number of channels), for any λ value below the value of the graph the system has
an absorbing state.

Just to consider a specific case, for exponential cost function fc(ni) = e−λ
ni
M the conditions of Theorem 1, that can be

obtained also from the Theorem 4, reduces to two (one of them is redundant) and we get:
λ ≤

ln(
1+z1
z2

)

z1−z2

λ ≤
ln(

1+z1
1−(z1+z2)

)

2z1+z2−1

(50)

If zi has a zipf distribution, then the first condition is sufficient, and we get:

λ ≤ 5.88518 (51)

The value matches the simulation results.
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VI. CONCLUSION AND FUTURE WORK

In this work we have described part of the extension of the analytical model presented in [1]. The previous model completely
describes the behaviour of a 2 channel data dissemination system in opportunistic networks. In the present work we have initially
analysed the system in the case of 3 channels, to familiarise with the problem with the help of a visual representation of the
state space, not possible for a higher number of channels. Then the general case of N channels is studied providing a general
model to identify the conditions for the stability of the system with any cost function and any channel interest distribution.
In particular we have found what are the reachable states of the system, that are a subset of all theoretical states. We have
identified two classes of states: ”boundary states” and one ”all channels” state. Then we have proved that the ”all channels”
state is the only possible absorbing state and have found the condition to be satisfied by the parameters of the system for the
absorbing state to be possible. Finally we have investigated some partial behaviours in order to identify the recurrent classes
of the system. This last topic is object of future developments.
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